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Abstract. Currently, spectral indices are very common tool how to describe various 

characteristics of vegetation. In fact, these are mathematical operations which are calculated using 

specific bands of electromagnetic spectrum. Nevertheless, remote sensing sensors can differ due 

to the variations in bandwidth of the particular spectral channels. Therefore, the main aim of this 

study is to compare selected sensors in terms of their capability to predict crop yield by NDVI 

utilization. The experiment was performed at two locations (Prague-Ruzyně and Vendolí) in the 

year 2015 for both locations and in 2007 for Prague-Ruzyně only, when winter barley or spring 

barley grew on the plots. The cloud-free satellite images were chosen and normalised difference 

vegetation indices (NDVI) were calculated for each image. Landsat satellite images with 

moderate spatial resolution (30 m per pixel) were chosen during the crop growth for selected 

years. The other data sources were commercial satellite images with very high spatial resolution 

– QuickBird (QB) (0.6 m per pixel) in 2007 and WorldView-2 (WV-2) (2 m per pixel) in 2015 

for Prague-Ruzyně location; and SPOT-7 (6 m per pixel) satellite image in 2015 for Vendolí 

location. GreenSeeker handheld crop sensor (GS) was used for collecting NDVI data for both 

locations in 2015 only. NDVI calculated at each of images was compared with the yield data. The 

data sources were compared with each other at the same term of crop growth stage. The results 

showed that correlation between GS and yield was relatively weak at Ruzyně. Conversely, 

significant relation was found at Vendolí location. The satellite images showed stronger relation 

with yield than GS. Landsat satellite images had higher values of correlation coefficient (in 30 m 

spatial resolution) at Ruzyně in both selected years. However, at Vendolí location, SPOT-7 

satellite image has significantly better results compared to Landsat image. It is necessary to do 

more research to define which sensor measurements are most useful for selected applications in 

agriculture management. 
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INTRODUCTION 

 

The concept of Precision Agriculture (PA) has developed as an indispensable 

reaction to higher population growth over recent decades (Zhang, 2015; United Nations, 

2015). Up to 1960s, increasing crop production was enabled by expansion of agricultural 

areas, however, this trend slowed down when the percentage of arable land reached 9% 
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of total area worldwide (Moldan, 2015). Vegetation Indices (VI) are one of the tools by 

which it the concept of PA is currently fulfilled. These mathematical formulas are based 

on various combinations of reflectance values in specific bands of electromagnetic 

spectrum. Knowledge of spectral behaviour of vegetation is therefore essential for results 

interpretation. The method of evaluation canopy characteristics using VI has been 

gaining importance recently because the whole process operates in a non-destructive 

mode (Richards, 1993). It is therefore possible to carry out particular analysis repeatedly, 

for instance in different growth stages (Jones & Vaughan, 2010). A number of studies 

have been performed to prove the relation between VI and investigated vegetation 

characteristics, e.g. the study of Hunt Jr. et al. (2013), where triangular greenness index 

(TGI) was developed and successfully used to indicate leaf chlorophyll content. 

Prediction models for barley, canola and spring wheat yield were created by 

Johnson et al. (2016) using Normalized Difference Vegetation Index (NDVI) and 

Enhanced Vegetation Index (EVI) data. VI may be also utilized for comparison of 

different hybrids yield, as Marino et al. (2013) did when studying two hybrids of onion 

productivity. 

NDVI is the basic representative of VI's. The algorithm for NDVI calculation was 

stated by Rouse et al. (1973) as the ratio of reflectance in near infrared (NIR) and red 

visible region. NDVI is considered as main indicator of greenness, e.g. of dense and 

healthy vegetation. Its values range from -1.0 to +1.0, where higher values (0.6–0.9) 

indicate denser vegetation cover (USGS, 2015). Nevertheless, Huete et al. (2002) stated, 

that NDVI tend to lose sensitivity as the vegetation cover becomes denser.  

To acquire desired information about specific vegetation characteristic in form of 

VI, remotely sensed data are utilized. At present, there are a number of sources that 

provide such kind of imagery. The data may beacquired by spacecraft or aircraft. These 

carry devices onboard, that capture Earth's surface either actively or passively (Khorram 

et al., 2016), therefore remote sensing sensors are divided into active and passive as well. 

Passive sensors exploit the electromagnetic radiation emitted or reflected from Earth’s 
surface, thus the signal detected comes from outside a sensor. Conversely, active sensors 

collect information per an artificial signal. Energy is emitted from within the sensor and 

detected after it is reflected from the surface (Wang & Weng, 2013). In literature, 

differences between active and passive sensors have been intensively studied. Erdle et 

al. (2011) tested one passive and three active reflectance sensors to examine how they 

provide the information about nitrogen content and crop biomass. Another study 

(Elsayed et al., 2015) dealt with the capability of both types of sensor to estimate 

Normalized Relative Canopy Temperature (NRCT). GS is a representative of the active 

sensors. Its signal is emitted towards the target and the amount of reflected radiation is 

detected. GS convert such data into NDVI directly (Trimble, 2017). On the other hand, 

satellite data in this study were all acquired by passive sensors. There are differences in 

desired wavelengths between particular sensors. 

It is clear from the above literature review that different methods and sensors can 

be used for crop yield prediction. Therefore, this study aims to compare selected sensors 

in terms of their capability to predict crop yield by NDVI utilization. 
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MATERIALS AND METHODS 

 

Study area 

The data for this study were obtained from two experimental fields. The first one 

(Ruzyně) was situated in Prague-Ruzyně (50°05'N, 14°17'30''E), Czech Republic. 
A larger part of the field has a southern aspect and the elevation ranges from 338.5 to 

357.5 m above average sea level (a.s.l). The size of area is 11.5 ha. The average slope of 

the field is approximately 6%. The soil of this experimental plot can be classified as 

Haplic Luvisols partially covering fine calcareous sandstones with higher content of 

coarse silt and lower content of clay particles and clay. The value of cation exchange 

capacity in the top layer containing clay is 20–35%. The soil profile is neutral and the 

sorption capacity is from saturated to fully saturated. Content of available minerals is 

from good to very good. In the slope positions and in loess loam profiles of Luvisols 

with remnants of alluvial horizon can be found. Some parts where the topsoil directly 

overlays the parent material of loess loam are strongly eroded. The average precipitation 

is 526 mm per year and the average temperature is 7.9 °C. 
The second field (Vendolí) was located near to Vendolí in Eastern Bohemia (49°43' 

47.94"N, 16°24' 14.21"E), Czech Republic, and it has 26.4 ha. The plot is undulated with 
the average slope approximately 6%. The elevation ranges from 543 to 571 m a.s.l. The 

soil of this experimental plot can be classified as modal cambisols lying on calcareous 

sandstone. Some parts, on sloppy terrain especially, are strongly eroded, while big 

amount of stones is lying on the top parts of the field. The average precipitation is 

700 mm per year and the average temperature is between 6–7 °C. 
Conventional arable soil tillage technology based on ploughing was used on these 

fields. Crop rotation system, based on wheat, barley and oilseed rape crops alternation, 

is common practice in the Czech Republic. Our experiment included the data from the 

year 2007 and 2015 for Ruzyně with winter barley and 2015 only for Vendolí with spring 
barley. 

 

Field data 

A combine harvester Sampo 2070 equipped with an LH 500 yield monitor (LH 

Agro, Denmark) with a DGPS receiver with EGNOS correction measured yield in 

Ruzyně location. The horizontal and vertical accuracy of this system was ± 0.1 to 0.3 m 

and ± 0.2 to 0.6 m, respectively. Measured yield data were processed by an on-board 

computer on the combine harvester and saved together with the location data every 3 s. 

An axial combine harvester New Holland CR9080 equipped with New Holland factory 

yield monitor and DGPS receiver with correction measured yield in Vendolí location. 
The precision of this system horizontally was ± 0.1 to 0.3 m and vertically it was ± 0.2 

to 0.6 m. The data were saved with the coordinates every 1 s. The grain moisture content 

was measured continuously in the case of both fields and the yield was recalculated to 

14% moisture content. The yield values were corrected using a common statistical 

procedure; all values that exceeded the range defined as mean ± 3 standard deviations 

were removed. Because of the large amount of data for both location studied (more than 

8,000), the Method of Moments (MoM) was used to compute the experimental 

variograms. Experimental variograms of yield were computed and modelled by 

weighted least-squares approximation in GS+ software (Gamma Design Software, 

St. Painwell, MI, USA). A detailed description of this method can be found in 
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Kumhálová et al. (2011). Ordinary punctual kriging was done using the relevant data 
and exponential variogram model parameters for yield data visualisation. 

NDVI values from GS handheld crop sensor were collected during the winter barley 

growth in April 23rd, and May 19th 2015 at Ruzyně location, and May 8th, May 30th and 

June 30th at Vendolí location. Experimental variograms of NDVI values were computed 
by common procedures using an exponential and spherical model (see Table 1). The data 

were processed in ArcGIS 10.3.1 software (Esri, Inc., Redlands, CA, USA). 

 
Table 1. Summary statistics, variogram model parameters and the methods of interpolation used 

for yield and GS in the experimental field 

 Yield GS – NDVI 

Crop 
Winter  

barley 

Spring 

barley 

Winter  

barley 

Spring  

barley 

Location Ruzyně Vendolí Ruzyně Vendolí 
2015 2015 

23-april 19-may 8-may 30-may 20-june 

Count 8,808.0 10,974.0 18,537.0 103.0 103.0 110.0 110.0 110.0 

Mean 5.618 5.322 4.049 0.779 0.802 0.321 0.697 0.672 

Median 5.481 5.385 4.111 0.790 0.810 0.310 0.715 0.680 

Standard deviation 1.373 0.836 1.377 0.062 0.030 0.076 0.083 0.068 

Minimum 1.109 1.391 0.204 0.390 0.670 0.190 0.440 0.510 

Maximum 10.149 9.254 8.733 0.890 0.850 0.580 0.850 0.830 

Skewness 0.015 -0.666 -0.025 -2.946 -2.206 0.458 -0.693 -0.567 

Methodofinterpolation Kriging 

Methodofestimation Method of Moments (MoM) 

Variogram model Exponential Spherical 

Distance parameter (r) 22.9 11.0 72.30 205.7 610.9 210.9 297.0 215.9 

Approximaterange 

= 3 x r 

68.7 33.0 216.9 617.1 - -  - 

Nugget variance 0.3170 0.4200 0.5390 0.0025 0.0005 0.0044 0.0038 0.0047 

Sill variance 1.0100 0.5900 1.9140 0.0051 0.0012 0.0063 0.0077 0.0026 

 

Total monthly precipitation and temperature data were provided by the agro-

meteorological station at the Crop Research Institute in Prague-Ruzyně and from 

weather station Davis in Vendolí. Precipitation and temperatures for the observed year 
are also provided in Table 2. 

 
Table 2. Precipitation and temperatures in different growth stages by BBCH scale recorded on 

the experimental fields in the year 2015 for winter and spring barley 

 Precipitation (mm) Temperature (°C) 
2007 2015 2015 2007 2015 2015 

Ruzyně Vendolí Ruzyně Vendolí 
Plant Winter barley Spring barley Winter barley Spring barley 

BBCH 0-19 32.0 48.7 30.4 10.9 11.0 5.5 

BBCH 20-29 90.4 100.4 7.6 5.7 3.8 9.7 

BBCH 30-59 2.4 43.7 35.8 12.8 12.3 13.0 

After BBCH 60 146.6 64.6 132.6 18.1 17.1 18.6 

Sum 271.4 189.5 206.4 - - - 

Mean 90.5 63.2 51.6 12.6 10.9 11.7 
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Remote sensing data 

Landsat satellite images were downloaded directly from the USGS Global 

Visualization Viewer (http://earthexplorer.usgs.gov/), as free remotely sensed 

data.Images from Landsat 5 (L-5), Landsat 7 (L-7) and Landsat 8 (L-8) were used for 

this study. WV-2, QB and SPOT-7satellite images were purchased from the ArcDATA 

Company. Table 3 provides the bandwidths of red visible (RED) and near infrared (NIR) 

range of sensors used in this study. For atmospheric correction, the Fast Line-of-sight 

Atmospheric Analysis of Hypercubes was used (Li et al., 2014; Dominguez et al., 2015). 

All image pre-processing was implemented with ENVI SW (ENVI; version 5.3, Excelis, 

Inc., McLean, VA, USA). 

NDVI were computed for every image with ENVI SW. All images were then 

exported into ArcGIS SW for further processing. Very high resolution (VHR) images 

(WV-2, QB and SPOT-7) were resampled according to Landsat satellite image outputs 

to 30 m. Yield data were resampled according to satellite images to spatial resolution of 

0.6 m, 2 m, 6 m and 30 m. Data from GS were resampled according to Landsat images 

to 30 m spatial resolution for further processing. 

Pearson's correlations between the yield maps and NDVI derived from satellite 

images and GS sensor were calculated using Statistica 13 (StatSoft Inc., Tulsa, USA) 

procedure. 

 
Table 3. Bandwidths of red visible (RED) and near infrared (NIR) range of selected satellites and 

sensors 

Satellite Sensor RED range (nm) NIR range (nm) 

L-5 TM 630–690 760–900 

L-7 ETM+ 630–690 750–900 

L-8 OLI 640–670 850–880 

QB  590–710 715–918 

SPOT-7  625–695 760–890 

WV-2  630–690 705–895 

 GS 660, ~25 nm FWHM 780, ~25 nm FWHM 

 

RESULTS AND DISCUSSION 

 

Correlation coefficients (R) between NDVI (from original and resampled data sets 

of Landsat, QB, WV-2 and SPOT-7 satellite images) and yield were calculated for 

individual image data and plant species in selected locations (see Table 4). Correlation 

matrices between NDVI from GS crop sensor, Landsat satellite images and yield were 

then calculated for individual data sets (see Table 5). Summary statistics for NDVI 

calculated from original and resampled satellite images for selected crops are in Table 6. 

Summary statistics of crop yield and GS for selected dates only for 2015 provides 

Table 1. 

Winter barley was grown in 2007 and 2015 in Ruzyně location. The year 2007 was 
drier up to BBCH 60 phenological stage in comparison with the year 2015 in Ruzyně 
location (see Table 2). Low precipitation in the growth stage BBCH 30-59 (2.4 mm) can 

cause a significant displacement of relatively higher yield to water-accumulating 

depressions. This fact is confirmed also by correlations presented in Table 4, where 

R between NDVI a yield had average value 0.856. The movement of higher yield to 
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terrain concave areas in 2007 was also validated by summary statistics presented in 

Table 1, whereby both standard deviation and min-max range were higher than in 2015. 

In our previous articles (Kumhálová et al., 2011; Kumhálová et al., 2014), the influence 
of topography to yield in drier years was also found. 

 
Table 4. Correlation coefficients between normalised difference vegetation index (NDVI) (from 

original and resampled L, QB and WV-2 satellite images with different spatial resolution (SR)) 

and yield of selected crops and years (levels of statistical significance: * p < 0.05; ** p < 0.01; 

*** p < 0.001) 

 

The year 2015 was drier year in sum of precipitation than the year 2007, but the 

precipitation distribution was more balanced during the growth stages (see Table 2). On 

the contrary, the precipitation distribution in BBCH 30–59 (43.7 mm) could probably 

cause the later crop beaten. In this year, harvesting losses caused by crop beating 

decreased the yield (see Table 1). This fact was confirmed by low R values between yield 

and NDVI (see Table 5); although the NDVI values were relatively high during BBCH 

21–22 and crops were in a good condition (see Table 6). GS measurements on April 23rd 

(BBCH 31) and May 19th (BBCH 55) and comparisons between NDVI from GS and 

Landsat images and yield in Table 5 are in good accordance with previous statements. 

Nevertheless, R between NDVI from GS and Landsat images were weak (see Table 5). 

Spring barley was grown in 2015 in Vendolí location. The precipitation distribution 
during the growth stages were balanced except the BBCH 20–29. The precipitation 

distribution was lower during these growth stages (7.6 mm) – see Table 2. Nevertheless, 

this weather running could lead to higher R (0.613) between yield and NDVI calculated 

from Landsat image in 30th May (see Table 5). It is validated by summary statistics 

presented in Table 1 as well, whereby standard deviation reached higher value. The 

precipitation distribution over the all growth stages could cause displacement of higher 

yield to places with better growth conditions. GS measurements were carried out on 

May8th (BBCH 35), May 30th (BBCH 55) and June 20th (BBCH 65). R between NDVI 

from GS and Landsat images was weak in early growth stage (8th May). On the contrary, 

the R value reached 0.679 between these two (GS and Landsat satellite) measurement 

methods in 30th May. The last measurements NDVI on 20th June with GS and on 20th 

Year Yield Growth stage     NDVI  

2007 Ruzyně BBCH 59          Winter barley 

Satellite L-5 TM QB L-5  QB QB 

SR 30 m 0.6 m 30 m 0.6 m 30 m 

Date May 24 May 22 May 24 May 22 May 22 

Yield 1 1 0.861*** 0.861*** 0.835*** 

2015                                                                   BBCH 21-22  

Satellite L-8 OLI WV-2 L-8 WV-2 WV-2 

SR 30 m 2 m 30 m 2 m 30 m 

Date March 18 March 23 March 18 March 23 March 23 

Yield 1 1 0.264** 0.133*** -0.018 

2015 Vendolí BBCH 75          Spring barley 

Satellite L-8 OLI SPOT L-8 SPOT-7 SPOT-7 

SR 30 m 6 m 30 m 6 m 30 m 

Date July 1 July 4 July 1 July 4 July 4 

Yield 1 1 0.341** 0.565*** 0.501*** 
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with Landsat were similar in comparison with yield, but the R between the measurement 

methods reached the value 0.453 only. These differences can be caused by other 

measurement method used and other spatial distribution of values measured. SPOT-7 

image, acquired on 1st July, was chosen for crop evaluation. Very high resolution image 

in late date was available only, because of very cloudy scene during the crop growth. 

The R between yield and Landsat and SPOT-7 images was different. The Landsat image 

was cloudy in northern part of the experimental field. That is why 38 pixels from this 

part of field had to be removed (see Table 6). 

 
Table 5. Correlation coefficients between normalised difference vegetation index (NDVI) from 

GS sensor, Landsat images and crop yield (levels of statistical significance: * p < 0.05; 

** p < 0.01; *** p < 0.001) 

Winter barley – Ruzyně 

2015 Date/SR  GS NDVI  GS NDVI  L-8 NDVI L-8 NDVI 

Date   April 23 May 19 April 19 May 14 

Yield 30m  0.011 0.022 0.260** 0.145 

L-8 NDVI  April 19  0.310* - - - 

L-8 NDVI May 14  - 0.359*** - - 

Spring barley – Vendolí   

2015 Date/SR  GS NDVI  GS NDVI  GS NDVI L-7 NDVI L-8 NDVI L-8 NDVI 

Date   May 8 May 30 June 20 April 29 May 30 June 24 

Yield 30m  0.323*** 0.458*** 0.387*** 0.001 0.613*** 0.415** 

L-7 NDVI April 29  0.035 - - - - - 

L-8 NDVI  May 30  - 0.679*** - - - - 

L-8 NDVI June 24  - - 0.453*** - - - 

L-8 – Landsat 8 OLI image; L-7 – Landsat 7 ETM+; SR – spatial resolution. 

 

Table 6. Summary statistics for NDVI calculated from original and resampled satellite images 

for selected years and crops 

Year  2007 – winter barley  2015 – winter barley 2015 – spring barley 

 Ruzyně Vendolí   

Satellite L-5 QB QB L-8 WV-2 WV-2 L-8 SPOT-7 SPOT-7 

SR 30 m 0.6 m 30 m 30 m 2 m 30 m 30 m 6 m 30 m 

Count 115 306704 115 102 26684 102 231 6311 269 

Mean 0.756 0.635 0.635 0.528 0.414 0.418 0.888 0.802 0.797 

Median 0.759 0.638 0.635 0.532 0.416 0.418 0.901 0.809 0.809 

Standard 

deviation 

0.077 0.041 0.039 0.046 0.057 0.056 0.095 0.044 0.055 

Minimum 0.556 0.477 0.544 0.315 0.185 0.269 0.519 0.623 0.531 

Maximum 0.876 0.799 0.721 0.626 0.619 0.559 1.087 0.886 0.876 

Skewness -0.664 -0.401 -0.138 -1.047 -0.153 -0.353 -0.413 -0.732 -0.763 

 

Summary statistics in Table 6 show that NDVI derived from Landsat images had 

higher mean and maximum values than NDVI derived from other satellites used in this 

study. This fact may support the conclusion, that Landsat images are more sensitive to 

crop biomass content. It can be explained by the differences in RED and NIR bandwidth 

among the sensors (see Table 3). QB, WV-2 and SPOT-7 have wider band range, than 

any of Landsat sensors. When comparing available Landsat sensors, L-5 and L-7 have 

similar calibration in contrast with L-8 (see Table 3). Studies dealing with this different 
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L-8 setting were also performed (Holden et al., 2016; Roy et al., 2016).GS handheld 

sensor and L-7 provide data in approximately same wavelengths. Nevertheless, there is 

a difference between GS and L-8. Despite this fact, L-8 data are very well correlated 

both with GS NDVI (R = 0.679, 30th May 2015 at Vendolí) and also with yield 
(R = 0.613, 30th May at Vendolí). However, this may be also caused by measuring date 
accordance. Differences in red band wavelengths are not so substantial in any case. 

Another cause of differences may be input data resampling. Apart from Landsat, 

all satellite data were resampled to 30 m spatial resolution. Table 6 shows summary 

statistics for both, original and resampled data. Resampling seems to have no influence 

on QB data, all categories of summary statistics differ very slightly and mean values are 

even equal. WV-2 and SPOT-7 original and resampled data differ more in summary 

statistics than other sources. Each sensor was used to evaluate different dataset. Results 

that are more accurate may be gained when evaluating selected sensors by calculating 

NDVI from the same dataset. In addition, Bégué et al. (2008) stated that single date 
images may be unsatisfactory for yield prediction. 

As mentioned above, there is the opinion that NDVI may be poor indicator of crop 

biomass when the canopy becomes denser (Huete et al., 2002). Gao et al. (2000) stated, 

that Enhanced Vegetation Index (EVI) tend not to be saturated over dense vegetation, 

like NDVI does, and seems to be sensitive enough to plant structural characteristics.In 

study by Zhu et al. (2016) similar issue was studied. L-5, L-7 and L-8 imagery were used 

to calculate NDVI and EVI for land cover changes evaluation in the city of Guangzhou, 

China. Due to the different wavelength setting, EVI was chosen as better indicator of 

greenness. Erdle et al. (2011) compared utilization of active and passive sensors. 

According to their study, made on seven wheat cultivars, active sensors disadvantage is 

that they are capable to measure limited number of VI. Conversely, passive sensors 

perform a possibility to develop different VI. Above that, GS measures only two fixed 

bands, while another active sensor Crop Circle is capable to capture three user 

configurable bands, e.g. green, red edge and NIR.As stated in Cao et al. (2015) study, 

indices derived from Crop Circle perform significantly better, than indices acquired by 

GS. Ali et al. (2014) examined the potential of yield prediction on dry direct-seeded rice 

using GS and then chlorophyll meter (SPAD) and simple leaf colour chart. Their result 

allegation was that all of these methods can be used for in-season yield prediction. Thus, 

according to that, GS is comparable with more simple measurement methods. 

 

CONCLUSION 

 

The results showed that all satellite images used in this study can sufficiently 

explain crop variability in given dates and can be used for yield prediction and crop 

growth evaluation. NDVI spectral index seemed to be good tool for simple and fast 

evaluation of the agriculture crop, because several data sourceswere possible to use for 

its calculation. Passive remote sensing sensors were compared with GS active sensor. 

Nevertheless, not very consistent results were acquired. VHR images were resampled to 

30 m spatial resolution according to Landsat images in order to examine possible 

influence of spatial resolution on information evaluated. However, various bandwidths 

in RED and NIR region of selected images made the correlations between yield and 

NDVI different. The greatest difference in such evaluation was found between L-8 OLI 

sensor and WV-2 and SPOT-7 sensors. On the base of the results obtained in this study, 
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it is necessary to undertake more research to define which of selected sensors is the most 

capable for yield prediction under conditions of the Czech Republic. 
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