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Abstract. In this paper, we consider the linear optimization models’ application problems in the 
research processes and in the didactics processes. Our target is to convince the colleagues about 
preferences of Eduard Stiefel’s method comparing with widespread George Bernard Dantzig’s 
simplex method. Indeed, the Stiefel’s method provides researchers and teachers with clear and 
pithy interpretations of linear model. Our pedagogical praxis during long time period conclusively 
confirms that Stiefel’s method makes the theory of linear optimization match easier for 
understanding and for active employing to students especially in the specialities with limited 
mathematical education. We offer in this paper also some new theoretical concepts and methods 
adapted for the linear model information analysis (the concept of general optimal plan, the 
methods of the profounder sensitivity analysis), and we appeal economists to interpret simplex 
predicates as productions functions in a broad sense.
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INTRODUCTION

Linearity postulate often holds in the relations between economic, financial, 
technological indicators. For example, financial accounting and managerial accounting 
mostly use linear functions. That is the reason why in spite of relative simplicity linear 
models allow us to describe interdependence between indicators in the different 
scientific areas rather adequately and satisfactorily for practical application. As result, 
the linear programming or linear planning (LP) is one of the most widely applied 
quantitative decision making approach techniques in Management Science. Since the 
very beginning linear programming was successfully applied also in agro metrics. Well-
known and included in the education courses are such linear programming models of 
agriculture as land utilizing planning problem, problem of the rational structure of the 
live-stock breeding, problem of the rational nutrition for domestic animals.

Let us mention only two lately examples published in the international Journal 
‘Agronomy Research’. Significant model ‘Optimization of arable land use to guarantee 
food security in Estonia’ was elaborated by Põldaru, R, Viira, A.H. & Roots, J. (2018). 
The authors point out: ‘The supply side of the model is a typical agricultural production 
model that guarantees the consistency of crop and livestock farming. The objective of 
the model is to minimize the use of arable land for field crops to ensure fodder for animal 
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feed, and food for human food consumption. The model is used to analyse various land 
use strategies’.

The linear programming can be applied in different modified forms. For example, 
Žgajnar & Kavčič (2009) offer ‘Multi-goal pig ration formulation’ using weighted goal 
programming supported by a system of penalty functions.

In current paper, we more rigorously will analyse the model ‘Decision Making in 
Agriculture with Linear Programming Approach’ presented by N. A. Sofi, Aquil 
Ahmed, Mudasir Ahmad & Bilal Ahmad Bhat (2015). The authors assert that ‘Linear
programming technique is relevant in optimization of resource allocation and achieving 
efficiency in production planning particularly in achieving increased agriculture 
production of food crops (rice, maize, wheat, pulses, and other crops)’. The authors applied
linear programming technique to determine the optimum land allocation of 5 food crops 
by using agriculture data, with respect to various factors for the period 2004–2011. This 
model seems to us appropriate example in order to demonstrate shortly the comparative 
advantages of the Stiefel’s method and some innovations of authors as well.

The fact that the linear models satisfactorily adequately reflect real links between 
indicators is a crucial reason for wide applications of linear optimal planning. Besides 
that linear programming owes its popularity due to George Bernard Dantzig's simplex 
method (Dantzig, 1949; Dantzig, 1951; Dantzig et al., 1955; Dantzig, 1963; Cottle & 
Dantzig, 1968; Cottle & Dantzig, 1970; Dantzig & Thapa, 1977; Dantzig & Thapa, 2003) 
extensively embodied in the efficient software. For example, handy tool ‘Analytic Solver 
Upgrade’ (formerly ‘Premium Solver Pro’) solves larges problems – up to 2,000 
variables 100 times faster than the standard Solver. By the way the problem 
‘Optimization of arable land use to guarantee food security in Estonia’ (contains 
163 variables and 178 constraints in form of linear equations) was solved by authors 
with help of ‘Premium Solver Pro’.

Observation. We have suspicion that paper (Põldaru et al., 2018) contains a fallacy. 
If linear model contains 163 variables and 178 constraints in form of linear equations 
than there is a big chance to have empty set of feasible solutions because rank of system’s 
matrix is less or equal 163. If feasible solution exists than equations of system are linear 
dependent and it is worth to investigate connections between constraints.

Therefore, linear programming is one of the most successful tools to implement 
quantitative approaches to management decision making. A large number of applications 
has been published in various industries including agro metrics. Let us mention such 
models as Production Scheduling, Multiperiod Production and Inventory Planning, 
Work Force Assignment and Staff Scheduling, Environmental problems, Transportation, 
Assignment and Transshipment problems, Blending Problems what occur, for example, 
in the food industry. In our opinion, the very significant role linear programming plays 
through its connection with Input-Output analysis. For example, Data Envelopment 
Analysis (DEA) is used to compare the relative efficiency of operating units whose input 
and output vectors have identical structure. We must mention the Goal programming and 
Multicriteria decision problems. High actuality keeps classical problem of Tchebycheff 
Approximation in case when linear model has not feasible solutions.

The classic of Mathematical Economics professor of London School of 
Economics R. G. D. Allen already in 1956 in the world famous book (Allen, 1956) 
‘Mathematical Economics’ wrote about linear model (chapter ‘Marginal Analysis v. 
Linear Programming of the Firm’, 620 page): ‘The linear programming approach seems 
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very well adapted for application to decision-taking at the level of the firm. It provides, 
trough emphasis on technology, just the link required between the problems of interest 
to the economist and those which engage the attention of entrepreneur and engineers’.

So, there exist a lot of conceptual models in different areas of management science. 
No doubt that proper academic course can be formed as extremely rich and interesting 
for students because students with help of Microsoft Solver study simulated virtual 
problems. But for all that, each researcher perfectly knows that sufficient difficulties 
arise in the practical implementation of mentioned conceptual models. In all scientific 
conferences we took part the researchers agreed that the estimation of the linear 
expressions’ coefficients as a rule is the most difficult task in the construction of the 
relevant mathematical model.

Generally speaking, the relevant linear programming models are expensive. 
Therefore self-evident is the desire to obtain from constructed model as far knowledges 
as possible.

How to obtain more knowledge about problem utilizing expensive linear 
programming model?

A wide overview of scientific and educational literature persuasively shows that 
G. B. Dantzig's simplex method till the nowadays is the mainstream method for solving 
linear programming problems. The mentioned linear programming applications in 
‘Agronomy Research’ also are made with help of Dantzig’s method. In the same time 
already in the year 1960 Professor of Mathematics Eduard Stiefel (Swiss Federal 
Institute of Technology in Zurich) in the article (Stiefel, 1960) ‘Stiefel, E., Note on 
Jordan Elimination, Linear Programming and Tchebycheff Approximation, Numerische 
Mathematik, Vol. 2, 1960, 1–17)’ offered another approach to the investigation of linear 
programming problem based on pivot transformations of the system of linear equations.

The goal of this paper is to conduct the comparative analysis of two different linear 
programming solving and analysis methods: well-known Dantzig’s simplex method and 
Eduard Stiefel’s method. We are going to explore the comparative advantages of
Stiefel’s method and demonstrate that Stiefel’s method furnishes more information 
easily obtained from linear programming model. Moreover, on the ground of Stiefel’s 
method we offer new concepts and constructive approaches in the linear problem 
investigation with help of linear programming. The new approaches are illustrated 
through five applications.

MATERIALS AND METHODS

Pivot transformation (often called as Jordan-Gauss elimination) is algorithmized 
equivalent transformation of the system of linear equations and simultaneous equivalent 
transformation of corresponding dual system of linear equations. Both are interpreted as 
predicates. Idea of pivot transformation as simultaneous equivalent transformation of 
two pairs of predicates is absolutely simple but incredibly fruitful in linear algebra.

Theorem. Pivot transformation (Jordan-Gauss elimination) as simultaneous 
equivalent transformations of two pairs of predicates: direct and dual.
Let E, F vector spaces. Let a, b, c, d  R; a ≠ 0; X1, X2, Y1, Y2  E; U1, U2, V1, V2  F.
Direct system of equations { Y1 = a X1 + b X2; Y2 = c X1 + d X2 } can be transformed as 
system { X1 = a-1 Y1 – b a-1 X2; Y2 = c a-1 Y1 + (a d – b c) a-1 X2 }.
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Dual system of equations { U1 = a V1 + c V2; U2 = b V1 + d V2 } can be transformed as 
system { –V1 = a-1 (–U1) + c a-1 V2; U2 = b a-1 (–U1) + (a d – b c) a-1 V2 }.

Proof of this theorem is omitted because it is based only to the elementary 
algebraic transformations of equations’ systems.
We offer to consider these four systems of equations as predicates. Condition a ≠ 0 is 
sufficient and necessary for equivalency of direct system and it’s transformed system with
respect to variables a, b, c, d  R; X1, X2, Y1, Y2  E, and for equivalency of dual system 
and it’s transformed system with respect to variables a, b, c, d  R; U1, U2, V1, V2  F
as well.

It is handy to write both systems in a table form (Table 1).

Table 1. Pivot transformation as algorithmized 
equivalent transformation

X1 X2 Y1 X2

Y1 a b V1 X1 a-1 –b a-1 –U1

Y2 c d V2 Y2 c a-1 (a d – b c) a-1 V2

U1 U2 –V1 U2

Remark. We demonstrated just (2×2) –
matrix in order to be simple. Of course,
number of vectors Xi  E and number 
of vectors Yj  F are arbitrary.

Idea of Eduard Stiefel − goal-directed equivalent transformations (so called pivot 
transformations) of simplex predicate. What was reaction?

Let us observe, that articles of Dantzig & Thapa (Dantzig & Thapa, 1977; Dantzig 
& Thapa, 2003) contain references to the Hestenes & Stiefel’s paper (Hestenes & Stiefel, 
1952). The method of Eduard Stiefel was positively appraised by Albert Tucker and 
Michel Balinski, and widely used in Princeton University (Tucker, 1962; Balinski & 
Tucker, 1969). The article (Balinski & Tucker, 1969) ‘Balinski, M.L., Tucker, A.W., 
Duality Theory of Linear Programs: A Constructive Approach with Applications, SIAM 
Review, Vol. 11, No. 3 (Jul., 1969), 347377’ contains the reference to the article of 
Eduard Stiefel (Stiefel, 1960).

In the Baltic States method of Eduard Stiefel mostly was known during the book 
(Zukovitskii & Avdeeva, 1967) ‘Зуховицкий С. И., Авдеева Л. И. Линейное и 
выпуклое программирование. (Серия ‘Экономико-математическая библиотека’) 
Москва, 1967’. In the preface of this book Зуховицкий С. И. wrote: ‘Вычислитель-
ным аппаратом в этой книге служит аппарат жордановых исключений, большие
удобства которого убедительно продемонстрированы в статье Э. Штифеля 'Stiefel, 
E., Note on Jordan Elimination, Linear Programming and Tchebycheff Approximation, 
Numerische Mathematik, Vol. 2, 1960’.

Andrejs Jaunzems was active supporter of the Stiefel’s method in Latvia (see, for 
example, the books (Jaunzems, 1981; Jaunzems, 1990; Jaunzems, 1993; Jaunzems, 2011;
Jaunzems, 2013). In the book Jaunzems (1993) ‘Mathematics for Economic Sciences. 
General course’ theory of linear operator was based on the pivot transformations. 
Professor of Latvia University of Agriculture Alberts Krastiņš, which was good friend 
of Leonid Kantorovich (winner of the Stalin Prize in 1949 and the Nobel Memorial Prize 
in Economics in 1975), supported Stiefel’s method through for a long time period widely 
used book (Krastiņš, 1976) ‘Alberts Krastiņš. Matemātiskā programmēšana’.

In spite of the sufficient advantages of Stiefel’s LP method comparing with 
Dantzig’s method the method of Eduard Stiefel due to different reasons (probably, 
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sometimes even due to peculiar reasons) does not belong to mainstream and is rarity in 
science and education.

For example, carefully elaborated teaching text (Border, 2004) ‘Border, K. M., The 
Gauss–Jordan and Simplex Algorithms’ published in California Institute of Technology 
utilizes traditional Dantzig’s method instead Stiefel’s LP method what is matched more 
suitable for teaching in the Division of the Humanities and Social Sciences. The 
characteristic example is also the book (Seo, 1991) ‘Seo, K.K. Managerial economics. 
Text, problems, and short cases, – Seventh edition, Irwin, 1991’ where solving of the 
extreme simple LP problem with help of Dantzig’s simplex method is demonstrated on 
the four (!) pages. In the same time, this book is presented as one of the most popular 
MBA textbooks of managerial economics in USA.

RESULTS AND DISCUSSION

Since a long period of time, we employ in our scientific and didactic praxis five 
kinds of Stiefel’s linear programming method applications what partly contain 
innovation elements. We would like to hope that our experience can be useful for many 
teachers and researchers.

Application 1. Duality.
Application 2. The concept of general optimal plan.
Application 3. Direct and dual simplex predicate as production functions.
Application 4. Sensitive analysis. Serious criticism of Microsoft Solver.
Application 5. Vectorial form.

Application 1. Duality
Let us examine LP standard model and it’s dual model.

max {C  X | AX  B, X  O} or max {C  X | U = AX + B, X  O, U  O};
A  Rm, n; X, C  Rn, 1; U, B  Rm, 1.
min {B  Y  ATY  C, Y  O} or min {B  Y  V = ATY  C, Y  O, V  O};
Y  Rm, 1, V  Rn, 1.
Let X and Y are the corresponding sets of feasible solutions for direct and dual problem.
To solve those problems means to find the corresponding sets of optimal plans:
X*:= { X* | X*  X, C  X*  C  X X  X }.
Y*:= { Y* | Y*  Y, B  Y*  B  Y Y  Y }.

Both systems of equation can be inscribed in the initial simplex table (Table 2).

Table 2. Direct and dual linear 
problems in the initial table form

X 1
U A B Y
z C 0 1

−V W

The direct problem is inscribed horizontally: 
U = AX + B, z = C  X + 0  1.
The dual problem is inscribed vertically:
V = ATY + C, w = B  Y + 0  1.
We must take in account that 
X ≥ O, U ≥ O; Y ≥ O, V ≥ O.

In order to investigate in a versatile manner this optimization problem we must 
make goal-oriented pivot transformations what mean simultaneous equivalent 
transformations of both systems – direct and dual. Duality means, that each pivot 
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transformation of the system: uixj, xkul, uiuj, xkxl simultaneously is the 
modified pivot transformation of the dual system: vjmyi, ylmvk, yjmyi, vlmvk.

Our target is to obtain such table, where z expression contains only non-positive 
coefficients but w expression contains only non-negative coefficients. Regular case is 
when coefficients in both expressions are not equal zero. Then both problems have 
unique solution because z has maximal value and w has minimal value then and only 
then if all variables in the final expressions of z and w equals zero.

Application 2. The concept of general optimal plan
If z expression in the final table contains some zero coefficients than z can take 

maximal value also by non-zero values of proper variables. In this case set of optimal 
solutions of the direct problem X* (generally speaking) is infinite. If w expression 
contains some zero coefficient than set of optimal solutions of the dual problem Y* 
(generally speaking) is infinite. If z expression and w expression both contains some 
zero coefficients than sets X*, Y* are infinite.

We never meet the concept of general optimal plan in the literature available for us. 
Therefore, until the opposite is not proved, the concept of general optimal plan first is 
offered in the paper (Jaunzems, 2013): ‘Jaunzems A. Singulārā lineārā programmēšana 
menedžmenta ekonomikā’. Let us examine application in the managerial accounting: the 
break even set in case of multiproduct output. The modified simple example from book 
(Coenenberg, 1997) ‘Adolf G. Coenenberg. Kosten-rechnung und Kostenanalyse’ is used.

The start of modified citation:
Example. Two products P1, P2, two machines with working time limits 200, 300 

hours. Contribution margins are 300 DM, 280 DM. Fixed costs = 8,400 DM. Find the 
break even set.
Product P1 P2

First machine (hours per unit of product) 2 1
Second machine (hours per unit of product) 2 3
The model is: 300 x1 + 280 x2  max with respect the constraints 2 x1 + 1 x2  200, 
2 x1 + 3 x2  300, x1  0, x2  0. The end of modified citation.

We offer the simplex predicate method. Table 3 shows the initial system, Table 4 
shows the final system of equations.

Table 3. Initial table

x1 x2 1
u1 -2 -1 200
u2 -2 -3 300
CMFC 300 280 -8,400
CM 300 280 0
CM − contribution margin, FC − fixed costs.

Table 4. Final table. Break even set

CMFC x1 1
u2 -0.0107 1.2143 210
x2 0.0036 -1.0714 30
u1 -0.0036 -0.9286 170
CM 1 0 8,400

We get points on the break even set, if x1  0, x2  0; u1  0, u2  0, CM  FC = 0.
The break even set predicate is the system of equations:
u1 = −0.929 x1 + 170; u2 = 1.214 x1 + 210, x2 = −1.071 x1 + 30, 0 ≤ x1 ≤ 28.
Answers to different ‘what if’ questions.
For example, let us assume, that CM  FC = 0, x1 = 10.
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Then x2 = 19.29; u1 = 160.71; u2 = 222.14.
The point (10; 19.29) belongs to the break even set.

Application 3. Direct and dual simplex predicate as production functions
In order to be clear and short we utilize agro metrics example from article (Sofi et al., 

2015). We are not responsible for quality of this article more or less correctly reflecting 
optimal land structure planning problem. We are going with help of this example to show 
Stiefel’s method in action. The authors of this article tried to find the optimal land 
utilizing structure in order to get the maximum output of the major food crops under 
land, capital and two kinds of labour availability constraint. In this model the 5 variables 
(rice, maize, wheat, pulses and other crops) are included. The authors used linear 
programming – simplex method. We decided to utilize the following long citation from 
article (Sofi et al., 2015) as example to explain the essence of applications 3, 4, and 5.

The start of citation: The objective function is the output of various agriculture 
productions of food crops, inequalities is the Land / Capital/Labour (A) and Labour (B) 
and requirement is total. Now, our objective is to find the optimum land of food crops. 
Table 5 represents in simplified manner the basic information necessary in order to 
construct a linear programming model of land utilization.

Table 5. Output per acre and the requirements

Variable food 
crops

Output/acre
Lakh

Land (acre) Capital/acre Labour (A) 
Man day

Labour (B) 
working hours

Rice 102.85 773.40 22.03 10.08 13.09
Maize 114.84 941.84 45.74 14.10 12.07
Wheat 263.50 823.13 63.47 17.33 18.08
Pulses 34.13 124.99 6.67 0.80 2.16
Other crops 98.26 89.20 19.91 7.32 9.07
Requirements 2,752.56 2,409.00 1,069.70 111.00

This model, which in the interests of simplicity ignores livestock, is as follows:
Maximize 102.85 x1 + 114.84 x2 + 263.50 x3 +34.13 x4 + 98.26 x5 subject to constraints
Land: 773.40 x1+ 941.84 x2 + 823.13 x3 + 124.99 x4 + 89.20 x5  2,752.56
Capital: 22.03 x1+ 45.74 x2 + 63.47 x3 + 6.67 x4 + 19.91 x5  2,409.00
Labour A: 10.08 x1+ 14.10 x2 + 17.33 x3 + 0.80 x4 + 7.32 x5  1,069.70
Labour B: 13.09 x1+ 12.07 x2 + 18.08 x3 + 2.16 x4 + 9.07 x5  111.00
x1  0, x2  0, x3  0, x4  0, x5  0.
x1 = Rice; x2 = Maize; x3 = Wheat; x4 = Pulses; x5 = Other Crops.
Applying the simplex procedure for obtaining the optimum land of Food Crops through 
LINGO computer-based software Global optimal solution found.
Objective Value: 1,375.996
Variable Value Reduced cost Rows Lack or surplus Dual price
x1 0.000000 106.5676 1 1375.996 1.000000
x2 0.000000 102.2864 2 0.000000 0.1050571
x3 2.565066 0.000000 3 2168.462 0.000000
x4 0.000000 0.1500135 4 973.0925 0.000000
x5 7.124985 0.000000 5 0.000000 9.791170
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The solution to this model yields the following information: x3 = 2.57 acres of wheat and 
x5 = 7.11 acres of other food crops. The ultimate aim is to produce realistic agriculture 
planning model for the regions in order to examine in detail the effect of variations in 
prices and quantities. The end of citation.

Now we demonstrate Stiefel’s method. In the initial table (Table 6) two systems 
of equations are inscribed. We offer to interpret such systems as productions functions 
in a broad sense because of these systems reflect interdependence between different 
indicators of the definite economic unit.

After two pivot transformations, we get final table (Table 7) which contains two 
systems properly equivalent to initial systems. Let us stress that absolutely all 
numbers in both of tables can be clearly and pithy interpreted as slope coefficients trough 
their role in the linear equations. We appeal colleagues to provide themselves the proper 
calculations in order to check correctness of all 11 equations inscribed in the Table 7.

Table 6. The initial table for the optimal land utilizing structure model

0 x1 x2 x3 x4 x5 1
u1 -773.40 -941.84 -823.13 -124.99 -89.20 2,752.56 y1

u2 -22.03 -45.74 -63.47 -6.67 -10.91 2409 y2

u3 -10.08 -14.10 -17.33 -0.80 -7.32 1,069.70 y3

u4 -13.09 -12.07 -18.08 -2.16 -9.07 111 y4

Z 102.85 114.84 263.5 34.13 98.26 0 1
-v1 -v2 -v3 -v4 -v5 w

Table 7. The final table for the optimal land utilizing structure model

u1 x1 x2 u4 x4 1
x3 -0.00155 -0.99898 -1.27555 0.01524 -0.16077 2.573788 v3

u2 0.064653 35.39533 21.99719 0.567024 2.635808 2168.098 y2

u3 0.004244 3.220009 -0.86584 0.765323 1.383494 973.0686 y3

x5 0.003089 0.548141 1.211895 -0.14063 0.082326 7.107597 v5

z -0.1048 -106.522 -102.186 -9.80284 -0.14318 1376.586 1
-y1 -v1 -v2 -y4 -v4 w

Both problems have a unique solution because z has maximal value and w has 
minimal value then and only then if all variables in the final expressions of z and w equal 
zero.

Therefore, u1* = 0, u4* = 0, x1* = 0, x4* = 0; v3* = 0, v5* = 0, y2* = 0, y3* = 0.
z* = 1,376.59 = w*; X* = (0; 0; 2.5738; 0; 7.1076)T, U* = (0; 2,168.10; 973.07; 0)T,
Y* = (0.1048; 0; 0; 9.8028)T, V* = (106.522; 102.186; 0; 0.143; 0)T.

Application 4. Sensitivity analysis. Serious criticism of Microsoft Solver
Elementary sensitivity analysis means:

A. Constraint ui  0 is substituted with ui  ; i  {1, 2, 3, 4},   R.
B. Constraint xi  0 is substituted with xi  ; i  {1, 2, 3, 4, 5},   R.
C. Objective CX is substituted with CX +  ui; i  {1, 2, 3, 4},   R.
D. Objective CX is substituted with CX +  xi; i  {1, 2, 3, 4, 5},   R.
We must find z*(), X*(), U*(), Y*(), V*() or z*(), X*(), U*(), Y*(), V*().
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Example 1. The authors of the paper (Sofi et al., 2015) write: ‘Applying the 
simplex procedure for obtaining the optimum land of Food Crops through LINGO 
computer-based software reported that value of the variable x1 equals 0, reduced cost 
equals 106.57’.

The Microsoft Solver reports that optimal value for rice x1* = 0 but corresponding 
reduced cost is 106.52.

It is not our purpose to give in this paper the detail list of comparison between 
LINGO software and Microsoft Solver. We would like only to show the preferences of 
the Stiefel’s interpretation of the simple table as direct and dual systems of equations.

We are proud to report that our students are able to receive from final table a lot of 
information about rice production in the concrete land utilizing economy not
furnished by Solver.

For example, let us substitute the constraint x1  0 with x1  . Than from final 
table (Table 7) we obtain u1* = 0, u4* = 0, x1* = , x2* = 0; x4* = 0.
z* = 106.52  + 1,376.59; X* = (; 0; 0.9990  + 2.5738; 0; 0.5481  + 7.1076)T, 
U* = (0; 35.3953  + 2,168.10; 3.2200  + 973.07; 0)T,
Remark. We consider here only the direct problem and do not examine the changes in 
the dual problem.

As far as x3, u2, u3, x5 remain non-negative this table gives us optimal solution for 
each value of . Solving the system of inequalities
x3 = 1.00  + 2.57  0
u2 = 35.40  + 2,168.10  0
u3 = 3.22  + 973.07  0
x5 = 0.55  + 7.11  0,
we get 12.97    2.58.

So, for each  ] 12.97; 2.58 [the unique optimal solution of problem is:
X* = (; 0; 1.00  + 2.57; 0; 0.55  + 7.11)T

U* = (0; 35.3953  + 2,168.10; 3.2200  + 973.07; 0)T

z* = 106.52  + 1376.59.
Remark. The border-values  = 12.97 and  = 2.58 have a special role.

Positive values of x1 have natural interpretations. However it is possible to interpret 
pithy also negative values of rice acres.

Let us stress: this result is not included in Microsoft Solver’s Sensitivity Report 
(Table 8). Moreover, there are labels of reduced cost in Solvers report ‘Allowable 
Increase’, ‘Allowable Decrease’, similar than labels of shadow prices, but misleading 
because of absolutely different sense.

Table 8. Part of the sensitivity report provided by Microsoft Solver

Variable Cells
Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficient Increase Decrease
$B$ x1 0 -106.52 102.85 106.52 1E+30
Constraints

Final Shadow Constraint Allowable Allowable
Cell Name Value Price R.H. Side Increase Decrease
$H$ SUMPRODUCT 2,752.56 0.1048 2,752.56 2,300.95 1,660.92
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Example 2. Interpreting the final simplex system as production function what 
describes post-optimized economics of the investigated unit, we can get answers to 
different ‘what if’ questions. Let, for example, u1  10, u4  20, x2  5.
Than we obtain the optimal plan X* = (0; 5; 1.31; 0; 8.18)T; z* = 1264.49.
Condition u1  10 means that land is available 2752.56 + 10 = 2762.56 units; condition 
u4  20 means that labour B is available 111  20 = 91 working hours; condition x2  5 
means that manager voluntary determines to produce 5 units of maize in spite of optimal 
plan not recommending to produce this product. It is also easy to interpret the values 
u2* = 2190.73; u3* = 972.97.
Important remark. We hope that with help of simple agro metrics example borrowed 
from article (Sofi et al., 2015) we clearly demonstrate sufficient difference between 
Dantzig’s method and Stiefel’s method. The Stiefel’s method allows us to interpret the 
content of Table 6 (Initial table for the optimal land utilizing structure model) and 
content of Table 7 (Final table for the optimal land utilizing structure model) as two pairs 
of production functions what characterizes concrete land utilizing economy. Of course, 
all other tables created during simplex process also can be interpreted as pairs of 
production functions. Our main assertion is that such interpretations are not possible 
using traditional Danzig’s method.

Our recommendation to Microsoft is to perfect the Solver in order to have available 
full final simplex table.

Application 5. Vectorial form
Absolutely the same calculations can be interpreted in vectorial form (Table 9 and 

Table 10). As result we find the useful linear connections between gradient of direct 
problem’s objective C, rows of matrix A  Rm, n, and vectors of standard basis Ik in the 
space Rn, 1, and connections between gradient of dual problem’s objective B, columns of 
matrix A, and vectors of standard basis Jk in the space Rm, 1 as well.

Table 9. The initial table in the vectorial form

I1 I2 I3 I4 I5 O
−A1 -773.40 -941.84 -823.13 -124.99 -89.20 2,752.56 J1

−A2 -22.03 -45.74 -63.47 -6.67 -10.91 2409 J2

−A3 -10.08 -14.10 -17.33 -0.80 -7.32 1,069.70 J3

−A4 -13.09 -12.07 -18.08 -2.16 -9.07 111 J4

C 102.85 114.84 263.50 34.13 98.26 0 O
−A1 −A2 −A3 −A4 −A5 B

Table 10. The final table in the vectorial form

−A1 I1 I2 −A4 I4 O
I3 -0.0016 -0.9990 -1.2756 0.0152 -0.1608 2.5738 J3

−A2 0.0647 35.3953 21.9972 0.5670 2.6358 2,168.0980 A2

−A3 0.0042 3.2200 -0.8658 0.7653 1.3835 973.0686 A3

I5 0.0031 0.5481 1.2119 -0.1406 0.0823 7.1076 J5

C -0.1048 -106.5220 -102.1860 -9.8028 -0.1432 1,376.5860 O
−J1 −A1 −A2 −J4 −A4 B
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For example, Table 10 shows that
A2 = 0.0647 A1 + 0.5670 A4 − 35.3953 I1 − 2.6358 I4

A1 = −35.3953 A2 − 3.2200 A3 + 0.9990 J3 − 0.5481 J5.
These are the agro metric connections between vectors of economic indicators. To 
interpret these equations we have to keep in mind economical sense of each vector. For 
example, let us remember that vector A2· characterizes capital requirements and vector 
A1 characterizes rice production in the concrete land utilizing economy. Coefficients 
0.0647; 0.5670; −35.3953; − 3.2200 can be interpreted as slope coefficients in the proper 
linear equations.

CONCLUSIONS

1. The fact that linearity postulate holds in the interconnections between economic 
indicators in different areas leads to the wide applications of the linear models for 
quantitative approach to the decision making in management science.

2. Very important reason for linear planning popularity is also the comfortable 
possibility to solve big scale linear problems with help of effective software.

3. It is easy to observe that the linear programming mainstream applies Dantzig’s 
simplex method, but Stiefel’s method is in some kind of oblivion.

4. Of course, Dantzig’s method and Stiefel’s method operates with absolutely the 
same information and both methods differ only from interpretations point of view. For 
all that Hegel’s dialectics teaches us that form has influence to the content. Indeed, 
Stiefel’s method offers us the new interpretations and even new concepts, for example, 
the general optimal plan or simplex systems of equations as production functions.

5. The Stiefel’s method allows us to interpret the content of each simplex table as 
two pairs of production functions what characterizes concrete economic unit. Especially 
fruitful for economic analysis is the content of final table what characterizes concrete 
economy close by the received proper optimum. Such interpretations of the simplex 
tables are not possible using the traditional Dantzig’s method.

6. Absolutely no doubt that the Stiefel’s method has didactical preferences in 
teaching process. Especially it concerns non-mathematical specialities’ students, for 
example, the faculties of economics or agronomy.
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