The effect of CO₂ and temperature combinations on *Chenopodium album* L. early growth

V. Pilipavicius¹, R. Romaneckiene¹, A. Ramaskeviciene² and A. Sliesaravicius²

 ¹Lithuanian University of Agriculture, Dept. of Soil Management, Studentu 11, LT-53067 Akademija, Kaunas r., Lithuania; tel.: +370 37 75 22 66; fax: +370 37 75 22 93; e-mail: vytautas.pilipavicius@lzuu.lt, romanr@one.lt
²Lithuanian University of Agriculture, Dept. of Plant Science and Animal Husbandry, Studentu 11, LT-53067 Akademija, Kaunas r., Lithuania; tel.: +370 37 75 23 14;

fax: +370 37 75 22 93; e-mail: astara@info.lzuu.lt, algir@nora.lzua.lt

Abstract. Vegetative pots experiments were carried out at the Phytotron of the Lithuanian Institute of Horticulture in the period between January and September 2005. Four levels of CO₂ concentration: 350 ppm (control treatment), 700 ppm, 1500 ppm, 3000 ppm and two levels of temperature regimes: $21^{\circ}C/17^{\circ}C$ (control treatment) and $25^{\circ}C/21^{\circ}C$, photoperiod of 16/8 h, and their combinations were used in testing *Chenopodium album* L. early growth. The level of radiation (PAR) was 170 micro-mol m⁻² s⁻¹.

Experimental data proved that the concentration of CO₂, which had been gradually increasing and reached 1500 ppm, added to the length of *Chenopodium album* L. sprouts and increased the biomass of sprouts and roots. *Chenopodium album* L. was not able to adapt to further increase of CO₂ concentration and had a tendency to retard the early growth. Increase of the environment temperature to $25^{\circ}C/21^{\circ}C$ initiated more intensive early growth of *Chenopodium album* L. increasing sprout length and quantity of the accumulated biomass. However, under the conditions of $25^{\circ}C/21^{\circ}C$, the 700 ppm concentration of CO₂ already had a negative impact on the early growth of *Chenopodium album* L.

Key words: Chenopodium album L., CO2, temperature, early growth

INTRODUCTION

Climate change and environmental pollution have become the significant factors determining plant growth, development and productivity (Hoffmann & Persons, 1997; Duchovskis, 1998). These factors generate plant stress affecting physiological processes according to plant species, variety, duration of influence time and its intensity (Larcher, 1995; Vassilev, 2002; Alexieva et al., 2003). Anthropogenic factors are continuously changing our environment. Exhaust of CO₂ gases is increasing the temperature of the environment which is likely to have reached $5,5^{\circ}$ C by the end of this century (Houghton et al., 2001). This could result in global climate change. Plants react to the increased concentration of CO₂, therefore, this can trigger the processes of plant biomass accumulation (Rogers et al., 1994). Such a change could have an impact on microbiological variation of the rizosphere as well (Niklaus, 1996).

Various plant species differ in their sensitivity and adaptation with reference to intensified anthropogenic factors that may determine their distribution and interrelation in agro-ecosystems. Therefore, it is purposeful to investigate the ability of not only cultural plants but also weeds to adapt to and grow under the influence of various environmental factors. The ability of plants to survive under unfavourable conditions depends on the intensity and character of the unfavourable factors (Bluzmanas et al., 1991). The investigated weed species – *Chenopodium album* L. – is widely spread in Europe and Asia; it even belongs to the cosmopolitan group of plants. *Chenopodium album* L. is spread in agricultural lands and set–aside all over the world (Aleksandraviciute et al., 1961; Holm et al., 1979). However, there is a lack of data about the abilities of *Chenopodium album* L. seedling growth under the conditions of different CO_2 concentrations and temperature levels.

The aim of this work was to evaluate the influence of CO_2 concentrations and temperature level combinations on the early growth stage of *Chenopodium album* L.

MATERIALS AND METHODS

The experiment was conducted at the Lithuanian Institute of Horticulture. The seeds of the investigated weed species white goosefoot *Chenopodium album* L. were collected at the Research Station of the Lithuanian University of Agriculture in the summer and autumn of 2004. The seeds were cleaned and stored in darkness at room temperature until use. Research-- was carried out in two stages at the Phytotron of the Lithuanian Institute of Horticulture during 2005.

The experimental factor was the environment of contrasting carbon dioxide (CO₂) concentrations and temperature level combinations. Four levels of CO₂ concentration: 350 ppm (control treatment), 700 ppm, 1500 ppm, 3000 ppm and two levels of temperature regimes: 21° C/17°C (control treatment) and 25° C/21°C, photoperiod of 16/8 h, and their combinations were tested in the Phytotron vegetative pot experiments. The concentration of CO₂ was regulated using CO₂ cylinder-reservoir controlled by CO₂ measurer "CO₂RT-5" (produced by Regin, Sweden). Photoperiod was achieved using high-pressure sodium (HPS) lamps SON-T Agro (Philips). The level of background radiation (PAR) made 170 micro-mol m⁻² s⁻¹. PAR was measured with RF-100 Radiometer-Fotometer with G.PAR-100 detector cell (produced by Sonopan, Poland).

Until the emergence of *Chenopodium album* L. and for one week following,, pots were kept in the greenhouse, and then moved to the phytotron for 2 weeks. Emerged weeds were thinned out to 25 seedlings per pot. Results were evaluated after 21 days from weed emergence. The lengths of sprouts were measured (mm) and biomass (g per pot) was established oven-dried at 65° C. The experiment was conducted in three replications.

The collected data of *Chenopodium album* L. early growth, temperature regime and CO_2 concentration during 2005 was analysed by means of ANOVA. The treatment effects and standard errors (SE) were tested for significance using the 'Sigma Stat' software (SPSS Science, 1997). Evaluating data of the experiments, correlation – regression analysis was also used. Dependence reliability was evaluated by the *P* test. The data was processed using 'SigmaPlot 8.0' software (SPSS Science, 2000).

RESULTS AND DISCUSSION

The early growth of *Chenopodium album* L. depending on CO_2 concentration during the vegetative pot experiment is given in Table 1. The concentration of CO_2 , which had been gradually increasing and reached 1500 ppm, added to the length of *Chenopodium album* L. sprouts. Continual increase of CO_2 concentration, which topped 3000 ppm, retarded the growth of sprouts, however, sprouts were longer than in control treatment with standard CO_2 concentration (350 ppm) which is the same as the level in the atmosphere. Accumulation of green and air-dry biomass in sprouts and roots of *Chenopodium album* L. has a tendency to decrease by CO_2 concentration of 700 ppm. The biomass increases and reaches maximum by 1500 ppm whereas it starts gradually decreasing by 3000 ppm (Table 1). This showed that *Chenopodium album* L. was not able to adapt to further increase of CO_2 concentration and had a tendency to retard the early growth.

	Table 1. Chenopodium album L. accumulated biomass from a pot (g) and seedlings length	gth
(nm) under different CO_2 concentrations.	

	Above-ground plant part			Roots		
CO_2	Sprout	Sprout	Green	Air-dry	Green	Air-dry
concentration	length	length after	biomass,	biomass,	biomass,	biomass,
	before	treatment,	g pot⁻¹	g pot ⁻¹	g pot⁻¹	g pot⁻¹g
	treatment,	mm				
	mm					
350 ppm (control	9,13	24,91	68,58	6,49	6,36	0,73
treatment)						
700 ppm	10,54	28,61	75,87	5,51	6,52	0,59
1500 ppm	9,41	28,64	93,89	8,33	9,20	1,00
3000 ppm	9,12	26,96	82,33	8,21	8,36	0,69
\pm SE	0,176	0,440	4,646	0,556	0,587	0,070
Р	0,039	0,023	0,274	0,315	0,437	0,437

 \pm SE – standard error

Increase of the environment temperature (Table 2) to $25^{\circ}C/21^{\circ}C$ initiated more intensive early growth of *Chenopodium album* L., increasing sprout length and quantity of the accumulated biomass. However, in $25^{\circ}C/21^{\circ}C$ conditions, the 700 ppm concentration of CO₂ already had a negative impact on the early growth of *Chenopodium album* L. It was established that the most favourable conditions for *Chenopodium album* L. early growth were at the higher temperature regime - $25^{\circ}C/21^{\circ}C$ - with both CO₂ concentrations. However, for initiating root growth, especially, optimal conditions were with lower – 350 ppm – CO₂ concentration (Table 2). Higher CO₂ concentration 700 ppm with lower temperature regime $21^{\circ}C/17^{\circ}C$ showed the negative influence on the early growth of *Chenopodium album* L. The increase of temperature and CO₂ concentration has a negative tendency for *Chenopodium album* L. above-ground green biomass as well as for the air-dry biomass of the above-ground part and roots (Table 2).

(mm) under different combinations of temperature regimes and CO_2 concentrations.							
Temperature and CO_2 concentration	Abov	Roots					
	Longevity, mm	Green biomass, g pot ⁻¹	Air-dry biomass, g pot ⁻¹	(air-dry biomass, g pot ⁻¹)			
21°C/17°C + 350 ppm							
(control treatment)	30.40	61.50	6.51	1.10			
25°C/21°C + 350 ppm	41.04**	61.80	7.28	1.53*			
21°C/17°C + 700 ppm	34.44*	69.98	5.72	0.823			
$25^{\circ}C/21^{\circ}C + 700 \text{ ppm}$	36.18**	56.17	6.70	0.867			
\pm SE	± 0.597	± 3.116	± 0.333	± 0.093			
Р	0.001	0.534	0.480	0.002			

Table 2. *Chenopodium album* L. accumulated biomass from a pot (g) and seedlings length (mm) under different combinations of temperature regimes and CO₂ concentrations.

 \pm SE – standard error, * – significant differences in comparison with control treatment (350 ppm) at *P* < 0.05 and ** - at *P* < 0.01.

Therefore, conditions of higher temperature regime $25^{\circ}C/21^{\circ}C$, compared with $21^{\circ}C/17^{\circ}C$, were more favourable for this weed sprouts growth and biomass accumulation (Table 2).

Having evaluated *Chenopodium album* L. sprout length dependence on CO_2 concentration (Fig. 1) non-essential positive tendencies were identified. Weak positive correlative relationship between *Chenopodium album* L. above-ground green biomass and CO_2 concentration (Fig. 2) and between the above-ground airdry biomass and CO_2 concentration was established (Fig. 3). The influence of CO_2 concentration on *Chenopodium album* L. root green (Fig. 4) and air-dry (Fig. 5) biomass accumulation has the analogous tendency of weak increase in the above ground plant part.

Fig. 1. Chenopodium album L. seedlings sprout length (mm) depending on CO_2 concentration (ppm).

Fig. 2. Chenopodium album L. above-ground green biomass (g pot⁻¹) depending on CO_2 concentration (ppm).

Fig. 3. Chenopodium album L. above-ground air-dry biomass (g pot⁻¹) depending on CO_2 concentration (ppm).

Fig. 4. *Chenopodium album* L. root green biomass (g pot⁻¹) depending on CO_2 concentration (ppm).

Fig. 5. Chenopodium album L. root air-dry biomass (g pot⁻¹) depending on CO_2 concentration (ppm).

An increase of CO_2 concentration positively affected the early growth of *Chenopodium album* L. and reached the optimum at 1500 ppm.

Correlation-regression analyses showed the stimulation effect of CO_2 concentration on *Chenopodium album* L. sprout length, above-ground, and root green and air-dry biomass accumulation at the stage of early growth.

A higher temperature regime - $25^{\circ}C/21^{\circ}C$ compared with $21^{\circ}C/17^{\circ}C$ - compounded more favourable conditions for *Chenopodium album* L. early growth at both - 350 ppm and 700 ppm - CO₂ concentrations.

ACKNOWLEDGEMENTS. The Lithuanian State Science and Studies Foundation as a part of the research project 'Complex effect of anthropogenic climate and environment changes on the forest and agro ecosystem flora' supported this research.

REFERENCES

- Aleksandraviciute, B., Apalia, D., Brundza, K. & et al. 1961. In Minkevicius, A. (ed.): *Lietuvos TSR flora*, vol. III. Mokslas, Vilnius, pp. 234–236 (in Lithuanian).
- Alexieva, V., Ivanov, S., Sergiev, I. & Karanov, E. 2003. Interaction between stresses. *Bul. J. Plant Physiology*, **Special Issue**, 1–17.
- Bluzmanas, J., Borusas, S., Dagys, J. & et al. 1991. Augalu prisitaikymas prie aplinkos ir atsparumas. In Griniute, D. (ed.): *Augalu fiziologija*. Mokslas, Vilnius, pp. 372–401 (in Lithuanian).
- Hoffmann, A. & Persons, P. A. 1997. *Extreme Environmental Change and Evolution*. Cambridge university press: UK, 259 pp.
- Houghton, J. T. & et al. 2001. Climate change 2001: the scientific basis. Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK, 881 pp.
- Duchovskis, P. 1998. Problems of Resistance to Abiotic Factors of Horticultural Plant in Lithuania and their Solution. *Sodininkyste ir darzininkyste* **17** (3), 3–11.
- Holm, L.G., Pancho, J.V., Herberger, J.P. & Plucknett, D,L. 1979. *Geographical Atlas of World Weeds*. John Wiley & Sons, New York, USA.
- Larcher, W. P. 1995. Physiological Plant Ecology. Springer-Verlag: New York, USA, 506 pp.
- Niklaus, P.A. & Korner, C. 1996. Responses of soil microbiota of a late successional alpine grassland to long term CO₂ enrichment. *Plant Soil*. **184**, 219–229.
- Rogers, H.H., Runion, G.B. & Krupka, S.V. 1994. Plant responses to atmospheric CO₂ enrichment with emphasis on roots and rhizosphere. *Environmental Pollution*. **83**, 155–189.
- Vassilev, A. 2002. Physiological and agro-ecological aspects of cadmium interactions with barley plants: an overview. *Journal of Central European Agriculture* **4**(1), 65–75.
- SPSS Science. 1997. SigmaStat[®] Statistical Software Version 2.0. User's Manual. USA.
- SPSS Science. 2000. SigmaPlot[®] 2000 User's Guide.Exact Graphs for Exact Science. USA, 435 pp.