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Abstract. Different studies by numerous researchers were carried out recently to describe 

different heat flux components of heat balance equations for radiation frost condition in plants. 

The aim of most of the papers was to present more simple and clear mathematical algebra to show 

the plant heat balance formulas. To achieve this aim several simplifications were made. 

Nevertheless there are studies reporting different flower damage rates during spring frost sessions 

that mentioned studies cannot explain. This leads us to the need to find the temperature 

distribution inside the flower to understand why during the similar energy flux conditions the 

flowers act against frost stress differently. It’s easy to measure the flower surface temperature but 

rather difficult to measure temperature distribution inside the flower head due to very small 

flower head scale compared to sensor sizes. To help to overcome these difficulties the authors 

make simplification by substituting the strawberry flower head with spherical homogeneous body 

though it is clear that the flower head is not homogeneous because of varying flower structure. 

The aim of this study is to present mathematical formulas for temperature distribution calculation 

inside the spherical body in terms of heat transfer conditions characteristic to radiation frost. 

Transient numerical methods are implemented for different conditions in case of spherical body. 

This approach enables us to decide if suggested mathematical solution is usable for non-

homogeneous body. Computer program was prepared to analyse the results. 
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INTRODUCTION 

 

In this paper the plant under the observation is strawberry and the specific plant 

part is the flower. In spring time the plants may be endangered by night frost in any part 

of the World depending on weather conditions. ‘Freezing is a major environmental 

stress, inflicting economy ic damage on crops and limiting the distribution of both wild 

and crop species’ (Pearce, 2001). Despite the numerous studies in this field by several 

generations of researchers of both engineering and botanical experience this is still 

continuing to be a problem in our days. In this paper the authors handle this subject from 

general and thermal engineering points of view starting by how it was evolving 

historically. As the subject is of practical nature there is a long history of scientific 

publications developing different aspects of it. A number of authors (Businger, 1965; 

Gerber & Harrison, 1964; Barfield et al., 1981; Hamer, 1986; Perry, 1986; Perry, 1998) 

have tried to compose the radiation night-frost heat balance equation for the bud or 

flower taking into account different members of the heat balance. The second objective 

was to change the mathematical expressions so that these would be solved simply and 
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swiftly. Martsolf (1992b) summarized previous results by night-frost general protection 

theory in his handbook ’Energy in Farm Production’. Heinemann et al. (1992) suggested 

the prototype of the computer program meant to support the farmer in his decision 

making process for night-frost protection strategy selection. One of the four program 

modules predicts the temperatures for the following night, using the night-frost statistics 

from previous years weather reports giving the user the possibility to define the ‘night-

frost windows’. The program allows also saving measurement data from the specific 

field, creating thus more exact statistical database. Despite the previous publications 

Martsolf (2000) tries once more to explain the differences of night-frost protection 

strategies because Ferguson & Isreal (1998) publish surprising results of questioning by 

which the citrus growers in America use commercial weather forecasts to get the 

information about possible night-frost threat. 

The earlier research performed by (Gerber & Harrison, 1964; Businger, 1965; 

Barfield et al., 1981; Hamer, 1986; Perry, 1986; Perry, 1998; Hollender et al., 2012; Issa, 

2012; Maughan et al., 2015) and the theory, according to which the damage in plants by 

night-frost is a result of the nucleation and ice growth (Pearce, 2001) still lacks the 

possibility to produce the information about the time when the ice crystals start forming 

in the specific part of the plant it is necessary to observe the temperature distribution 

in it. 

The idea to supply the consumers with the computer program supporting the 

decision making process (Heinemann et al., 1992) is very good, but too general for real-

time applications. The further development would have been needed, but it has not been 

done in these years. 

The radiation night-frost phenomenon is observed as a rule at dusk or night time on 

a large area, so, to react on time and in a most appropriate way, the farmer has to know, 

what kind of thermal processes are going on at his field. That information could be 

produced by a thermal processes simulation computer program with the possibility to 

predict the temperature changes of the specific parts of the plants and the ambient 

environment. 

One of the essential phases in development of such a program is creation of 

temperature calculation algorithm for most endangered parts of plants, which is the main 

purpose of this paper. 

 

MATERIALS AND METHODS 

 

General description of plant part as a model 

In this paper the plant under the observation is strawberry and the specific plant 

part is the flower. 

The temperature changes and nucleation (ice crystals forming) assume the model 

where the cell solute temperature alteration of plant parts is observed in different 

aggregate states. The nucleation inside and between the cells is very complicated 

phenomenon because the cell solute temperature may often fell below 0 °C without the 

freezing which increases the ability of the plant to withstand the influence of chill 

(Pearce, 2001). The processes on the surface of the plant are also quite complicated as 

there may be found different nucleators, for example, INA (ice nucleation-active) 

bacteria species which produce a protein able to nucleate freezing (Warmund & English, 

1998). There is no clear theory suggested describing the conditions, when the nucleation 



175 

occurs and when not at the cell solute temperatures below 0 °C. Because of that in this 

paper for simplification purposes the process of temperature change is observed only 

until the beginning of nucleation. Suggested algorithms do not handle the aggregate state 

changes of the cell solute and temperature alteration after ice formation. Depending on 

the plant species and corresponding differences in cell solutes concentration the 

nucleation may occur at different temperatures: –0.6°C…–2.6 °C (Pearce 2001). In the 

model algorithm suggested here the temperature limit is chosen at 0 °C. In different 

research papers the thermal balance is analysed for different plant parts: the flower bud 

of the apple tree (Hamer, 1986), the plant leave (Businger, 1965), (Gerber & Harrison, 

1964), (Barfield et al., 1981). 

At the time when the strawberry flower may need frost protection its form may be 

different, depending on the stage of development. The authors presume the flower to be 

fully open as shown on Fig. 1. 
 

 
 

Figure 1. The cross-section of fully open strawberry flower. 
 

The strawberry flower central part (receptacle) is practically entirely covered by 

spherical-shape ovaries (carpels) the number of which may vary between 100 and 400 

depending on the species (Hollender et al., 2012). The ovaries have styles connected to 

them with the stigma at the end and are the most frost-endangered parts of the plant. 

Defining as purpose the protection of the strawberry flowers from the night-frost it 

is necessary to provide the conditions that prevent the nucleation in the tissue of 

spherical-type ovaries. 

 

Theory and modelling 

Theory of spherically shaped body 

In spring-time in case of radiation night-frost the surface layer temperature of the 

spherical-shape ovary of the flower changes first of all due to the radiative heat 

exchange. But for this theoretical approach it is not important, of what character are the 

heat flows influencing the surface layer, as much more important is to know how the 

temperature changes in time between the inside layers of the spherical ovary. 

For more clear explanation of the essence of mathematical algorithm of the process 

the most frost-endangered part of the plant, the ovary, is looked at as a spherically shaped 

body, devided for analysis purposes to large number of spherical layers with 

homogenious density (Fig. 2), where layer counting starts outside-in from outer radius 

R. The total number of layers is N. Here it is important to notice that in further 
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calculations rn–1 is the radius of the layer n–1, rn is the radius of the current layer n and 

rn+1 is the radius of the layer n+1. 
 

 
 

Figure 2. The description of the radiuses 
1-nr , nr and rn+1 of the body. 

 

From these layers so small parts are chosen that it is possible to handle them as 

having not spherical but plain surfaces. Adjacent layers influencing each other are shown 

on Fig. 3. 

Based on The Law of Conservation of Energy we can describe the heat balance 

equation for the layer n (Fig. 3) as 
 

( ) ( ) tt dttFkdttFkdtcm nnnnnnnnnnn ×-××-×-××=×× +-- 111 , (1) 
 

where:  n  is the number of the layer; nm  – layer mass, kg; nc  – specific heat capacity 

of layer material, J (kg °C)–1; ndt  – layer temperature change, °C; nk  – heat transfer 

coefficient of the layer, W·(m2·°C)–1; nF  – spherical surface area, m2, separating layers 

n and n+1; 1-nF  – spherical surface area, m2, separating layers n–1 and n; 1-nt  – layer 

n–1 temperature, °C; tn+1– layer n+1 temperature, °C; nt  – layer n temperature, °C;  

td  – time step, s. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3. The heat-flows model of spherical-shape ovary layers at strawberry flower receptacle. 
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The layer mass definition expression looks like 
 

nnn Vm ×= r ,     (2) 

 

where: nr  is the density of the layer, kg m-3; nV  – the volume of the layer, m3. 

 

The heat transfer coefficient for the layer is: 
 

n

n
nk

d
l

= , (3) 

 

where: nd  is the thickness of the layer, m; nl  – thermal conductivity of the layer 

material, W·(m·°C)–1. 
 

As we noticed earlier that spherical surfaces are replaced with plain surfaces we 

can declare 
 

nn FF =-1 . (4) 

 

Transforming the formula (1) in appropriate way we get 
 

11 2 +- +-=×
×

×
nnn

n

nn

nn ttt
d

dt

Fk

cm

t
. (5) 

 

In the expression (5) let 

nn

nn
n

Fk

cm
T

×

×
= , (6) 

 

where nT  is the heating or cooling time constant of the layer, s. 

 

The differential equation for temperature nt  change is 

 

02 11 =--+× +- nnn
n

n ttt
d

dt
T

t
. (7) 

 

As the functions ( )nn tft =-1  and ( )nn tft =+1  are not defined, we shall not try to 

find the analytical solutions for the differential equation but concentrate on numerical 

methods. 

To define the equation (7) term 
 

tt d

tt

d

dt jnjnn ,1, -
= +

, (8) 

 

we have to introduce the index j to formula (7), characterising the time dependence, 

which also enables the definition of calculation time interval length 
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jjd ttt -= +1
. (9) 

 

Substituting the term in differential equation (7) by expression (8) we get 
 

02 ,1,1,
,1, =--+

-
× +-

+
jnjnjn

jnjn
n ttt

d

tt
T

t
. (10) 

After alteration  
 

jnjnjnjn
n
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d

T
t

d

T
,1,1,,1, 2 +-+ ++-×=×

tt
. (11) 

 

Extracting the term 
1, +jnt , we get 

 

jn
n
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n

jnjn
n

jn t
T

d
t

T

d
tt

T

d
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and finally, 
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d
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T

d
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T

d
t ,1,,11, 21 +-+ ×+×÷÷

ø

ö
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è

æ
×-+×=

ttt
. (13) 

 

The calculation method here is based on the equality of time constant Tn for all 

layers. In this case looking at the terms in equation (13), we can see that if the values in 

ratio 
nT

dt
 are chosen so, that 

2

1
=

nT

dt
, (14) 

 

then expression (13) is reduced to arithmetic mean 
 

2

,1,1
1,

jnjn
jn

tt
t

+-
+

+
= . (15) 

 

That is the n-layer temperature at the next time-step (j+1) equals to the mean 

temperature of the previous layer (n–1) and next layer (n+1) temperatures at given time-

step j. 

Expression (15) describes the situation, where temperature change ndt  has maximal 

possible increase 
 

jnjnn ttdt ,1, -= + . (16) 
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In case of 

2

1
>

nT

dt
, (17) 

 

the multiplier of jnt ,  in expression (13) becomes negative. In this circumstances the 

equation (3) describes the situation when the heat energy has to move from the body 

with lower temperature to the body with higher temperature which is conflictng with 

heat exchange laws. From that we can conclude that the term 
nT

dt
 in expression (13) 

should always be 

2

1
£

nT

dt
. (18) 

 

The condition (18) becomes important when the temperature change in time is 

beeing sought. 

The real body of spherical shape in our case is divided into layers so that the time 

constant is equal for all layers excluding the last, innermost one. The heat-balance for 

that layer differs from the equation (1): 
 

( ) tdttFkdtcm nnnnnnn ×-××=×× -- 11
. (19) 

 

After mathematical alterations similar to formulas (5) – (13) we get the differential 

equation 
 

01 =-+× -nn
n

n tt
d

dt
T

t
. (20) 

 

Defining the term 
1, +jnt  for the core layer, we get 

 

jn
n

jn
n

jn t
T

d
t

T

d
t ,,11, 1 ×÷÷

ø

ö
çç
è

æ
-+×= -+

tt
. (21) 

 

The second special case is the surface layer of the sphere, the heat balance 

conditions for which are described by following expression: 
 

( ) ( ) tt dttFkdttFkdtcm nnnnnnnnnnn ×-××-×-××=×× +--- 1111 . (22) 

 

This result is similar to the equation (1) but the essence of the terms 1-nk  and 1-nt  

here should be described in more detail. As in this paper we are describing an algorithm 

for defining the temperature change of the inner layers of the spherical body, the ambient 

environment is looked at as a solid body with an initial temperature 001 ==- ttn °C, 

which stays constant during the whole process. The heat-exchange between the 

environment and the surface layer n of the sphere is considered to be conductive. 
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In case of spherical body we have to take into account some conditions: 
 

nn FF ¹-1 , (23) 

 

,constn =l Nn ...1= , (24) 

 

where N  is a number of layers for which the body is divided. 

 

Then the mathematical modifications of formula (1) differ from ones described 

above: 
 

1111 +--- ××+××-××-××=×× nnnnnnnnnnnn
n
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d

dt
cm

t
. (25) 

 

Opening the term ndt , we get 
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(26)  
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and extracting the variable 1, +jnt , we have 
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After grouping by jnt ,1-  , jnt ,  , jnt ,1+   we get 
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Writing the formula (13) as 
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n
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T

d

T

d
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T

d
t ,1,,11, 1 +-+ ×+÷÷
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ö
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è

æ
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tttt
 (29) 

 

we see, that expressions (28) and (29) have similar structure. Therefore, we have to find 

an answer to the question: can the parameters of the body layers correspond to the next 

relationship 
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×× -
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cm

dFk tt
. (30) 

 

We can see that this relationship is not correct as 
 

nn rr ¹-1 , (31) 

 

where:  rn–1 is the radius of the layer n–1, m; rn is the radius of the layer n, m (Fig. 2). 
 

In equation (29) the condition 01 1 =÷÷
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ö
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æ
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determining the arithmetical mean likewise in formula (15), is fulfilled when 
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In this case from  
 

11 =
×

××+×× -

nn

nnnn

cm

dFkdFk tt
 (33) 

 

we get 
 

nnnnnn cmdFkdFk ×=××+×× - tt1 . (34) 

 

After substituting surface area in (34) we have 
 

( ) nnnnn cmrrdk ×=+×××× -
22

14 tp  (35) 

 

and then replacing heat transfer coefficient and mass as follows 
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we get finally 
 

( )( ) tl
r

d
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nnnn
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××
×

=
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--
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333
11

22
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In the expression (37) the function of the term nr  exists in implicit form. To resolve 

the problem the computer program is written for searching the suitable values of rn. The 

term 1-nr  acts as a constant, because it is always already defined before rn (at the first 

run Rrn =-1 , where R is the radius of sphere). The members on the right side of equation 
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(37) are constants that express the physical parameters of the body and the process time 

td . Giving different values to the radius nr  we search such value for it in case of which 

the equality (37) is valid with sufficient accuracy. 

The equation (37) is suitable also for the body with layers of different physical 

properties that is nonhomogeneous body. It is possible to describe the density nr , 

specific heat capacity nc  and thermal conductivity nl  for each layer n. These calculated 

rn values take into account physical parameters of nonhomogeneous body and the 

condition (37). 

 

Special cases 

The temperature change in the core layer of the sphere can be found from the heat-

balance equation (19). 

After mathematical modifications shown in (5) – (13) we get 
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More complicated is temperature change definition for the surface layer of the 

sphere. Very thin surface layer is allocated for that, which participate in the radiative, 

convective and sensible heate-exchange. The mathematics describing these three heat-

exchange types is of complex nature and has been handled by many authors: 

(Gerber & Harrison, 1964; Businger, 1965; Barfield et al., 1981; Hamer, 1986; 

Perry, 1986; Perry, 1998; Martsolf, 1992b). Taking into account the scope of this paper, 

we do not elaborate on these heat-exchange processes and in such case, the form of 

equation (1), suitable for surface layer temperature change definition, similarly to the 

equation (28) takes the specific form 
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where vkt  is the surface temperature of the sphere, °C. 
 

Thus, the mathematical algorithm describing temperature change inside the 

strawberry flower spherically shaped ovary, devided to n = 1...N layers, can be described 

for different layers by following system of equations: 
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RESULTS AND DISCUSSION 
 

To implement the algorithm, described by equations (40) the spherical body (in our 

case with strawberry flower ovary properties) has to be divided previously to virtual 

layers. Example results of such division defining the number of virtual layers depending 

on time-step length, which was performed using the equation (37), are shown in Table 1. 

To implement the algorithm, the computer program was composed. 

 
Table 1. The numerical results for body division to spherical layers (body radius R = 0.5 mm, 

number of spherical layers N , calculation time-step td , density rn = 400 kg m–3, specific heat 

capacity  cn = 3,800 J˖kg–1
˖K–1, thermal conductivity ln = 0.8 W˖m–1

˖K–1) 

Time-step Number Outside radius r of layer n, mm 

dτ length, s of layers N 1 2 3 4 5 

0.01 5 0.5 0.3969 0.2936 0.1894 0.0818 

0.05 2 0.5 0.2636       

0.10 2 0.5 0.1476       

0.50 1 0.5         

 

On Fig. 4 the change of temperatures in the body is shown with starting temperature 

5° C and final temperature 0 °C. In reality, so rapid temperature changes are possible at 

some specific conditions, e.g. sunset or the change of atmospheric radiation heat flux 

depending on the cloudiness. 

As the results of the modelling show that the temperature change is very fast 

process it could be useful to specify more precisely the physical properties of the 

strawberry flower ovary – the density, specific heat capacity and thermal conductivity. 

But in any case, as the internal temperatures change is much faster process than the speed 

of change of the heat fluxes producing this temperature alteration it will not have great 

influence. 
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Figure 4. The calculated temperature change of different layers of strawberry flower ovary. 
 

Choosing different time intervals in equation (37) we get different number of 

layers. If the interval is so long that the number of layers is small (2…5), the condition 

of the expression (32) is fulfilled with comparatively large error. Because of that it is 

important to select the time interval so short, that the number of layers would be larger 

than 15. The analysis of model errors due to the calculation method needs further 

investigation. 

 

CONCLUSIONS 

 

The strawberry flower freezing or the ice crystals forming in the ovaries covering 

the flower receptacle is thermally very quick process. If this process is really so fast, then 

it is difficult to understand, how the strawberry flowers can survive in the night-frost 

conditions in spring. As a result of this analysis the phenomenon of ‘super cooling’ of 

cells solute needs more attention at radiative night-frost. Mathematical algorithm for the 

heat transfer analysis inside the ovaries is now available. 

Further analysis of temperature distribution inside the ovary of strawberry flower 

is needed in the situation, when the surface layer of the ovary participate in real radiative, 

convective and sensible heate-exchange. The results of analysis presented in this paper 

enable us to suggest a new point of view on the night-frost problem. Instead of asking, 

when the flower will freeze, we should rather have to ask, is it really possible, that the 

flower will not freeze at night-frost? 

 

Layer 16 

Layer 16 
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