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Abstract. Quenching as a heat treatment method is commonly used to control the mechanical 

properties of steels. This article deals with the modelling and simulation of quenching of steel 

chisel using a multi–phase model. The process of the heat treatment is non stationary phase due 

to temperature variation with time. In this study, the problem of heat transfer in three dimensional 

phase was transformed into a two dimensional axisymmetric case. ElmerFem solver was used for 

the heat transfer through different cooling media such as water, oil and salt bath. The results from 

heat solver were used for austenite transformation modelling by applying Johnson–Mehl–
Avrami–Kolmogorov equation in TTT diagram. The Scheill's decomposition was used for 

anisothermal transformation of austenite. The hardness prediction was done according to simple 

mixture rule where total hardness of the steel was calculated based on volume of the phases and 

their Vickers hardness. 
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INTRODUCTION 

 

Quenching is used as a heat treatment method for controlling the mechanical 

properties of steel such as tensile strength, toughness and hardness. The quenching 

process promotes the formation of different microstructures namely ferrite, pearlite, 

bainite and martensite that depend on the cooling rate as well as the chemical 

composition of the steel. The quenching application of the material is subjected to heat 

treatment above the austenitization temperature (approximately 900 °C) which involves 
continuous and rapid cooling in a quenching media such as water, air and oil. During 

quench hardening process, heat flux is rapidly transfered to the coolant which varies in 

time hence the HTC (heat transfer coefficient) cannot be calculated or measured by 

standard techniques. In such cases, the effective procedure is the formulation of the 

boundary inverse heat conduction (Telejko, 2004; Buczek & Telejko, 2013). 

Constitutive modelling of the quenching process can be performed within the scope 

of standard generalized materials under the assumption that the thermodynamic state of 

the material can be completely defined by a finite number of state variables 

(Archambault & Azim, 1995; Fall et al., 2011; Hasan et al., 2010). Phase transformation 
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from austenite to martensite is non diffusive process meaning that the amount of volume 

fraction is only a function of temperature which can be described by the Koistinen–
Marburger law (Eq. 1). On the other hand, microstructures such as ferrite, pearlite and 

bainite formations are diffusion controlled transformation which are time dependent. 

The diffusive transformation kinetics are described by Johnson–Mehl–Avrami–
Koglomorov (JMAK) equation (Eq. 2). The evolution of these phases transformation can 

be predicted through an approximate solution using data from Time–Temperature–
Transformation diagrams (TTT). 
 

 (1) 

 

 (2) 

 

where: α and Ms are both constants determined by material type, k is the overall rate 

constant that generally depends on temperature, n is the Avrami’s exponent 
(Kolmorgorov, 1937; Avrami, 1939a; Avrami, 1939b; Johnson & Mehl, 1939; Avrami, 

1940a; Avrami, 1940b; Marder & Goldstein, 1984; Kirkaldy, 2007; Sinha et al., 2007). 

This article describes the modelling and simulation of quenching of steel chisel 

using a multiphase constitutive model proposed by (Çetinel et al., 2000; Ferguson et al., 
2005; Carlone et al., 2010). 

 

MATERIALS AND METHODS 

 

The process of heat transfer during quenching of a steel chisel (Fig. 1) is 

nonstationary due to the variation of temperature with time. In this work the problem of 

heat transfer in a three dimensional phase was examined. 

 

 
 

Figure 1. Real chisel computerization. 

 

The nonstationary problem of heat transfer within a component in the quenching 

process is described mathematically by simple differentiation with respect to the volume. 

Based on that the heat transfer equation (Eq. 3) was derived as follows: 

 

 (3) 

 



631 

where:  k – thermal conductivity; Q – is the inner heat–generation rate per unit volume; 

T – temperatuure; q – heat transfer coefficiente;  – densitye; c – heat capacitye; t – time. 

 

The Neumann boundary conditions were used for the simulation of the heat cycles 

in quenching media like air, water and oil whiles the heat flux was determined 

experimentally in cylinder shape samples by inverse methods (Telejko, 2004). 

The equilibrium transformation temperatures during cooling were also determined 

experimentally by thermal analysis. The ferrite transformation started below the Ac3 

temperature whiles the pearlite transformation occurred at the Ac1 temperature when 

a volume fraction of pro–eutectoid ferrite reached an equilibrium volume fraction. The 

bainite and martensite transformations occurred below bainite and martensite 

temperatures respectively. Table 1 gives the transformation temperatures of different 

steel samples. 
 

Table 1. Transformation temperatures of different steel samples 

Temperature phase change Ac3=TF (°C) Ac1=TP (°C) TB (°C) TM (°C) 

High boron steel – B1 810 741 606 382 

High boron steel – B2 830 743 593 411 

Boron27 840 675 525 335 

 

Table 2. Chemical composition of different steel samples 

Chemical composition C Si Ni Cr Mn Mo Cu 

High boron steel – B1 0.6 0.3 0.05 0.4 0 0.01 0 

High boron steel – B2 0.3 0.3 1 1.5 0 0.05 0 

Boron27 0.2 0.2 0.1 0.3 1.3 0 0 

 

The ElmerFEM solver (CSC – IT Center for Science (CSC), 2013) was used for 

calculation of thermal field of the steel samples. The simulation results were obtained as 

matrix of nodes and temperatures. Two kinds of mathematical models were used for 

deducing microstructure field from temperature field based on TTT (Time, Temperature, 

Transformation) curve which is used for kinetic transformation of austenite at constant 

temperature. In addition, CCT (Continuous Cooling Transformation) curve was used for 

kinetic transformation of austenite in water and oil quenching media (Smoljan, 2006; 

Malinowski et al., 2012). 

The diffusional transformation reaction was based on equation (Eq. 2). The 

constants for these equations were determined from a nonlinear optimization of the 

experimental data. Table 2 shows the values used for the three transformation products 

resulting from a diffusion–controlled reaction of ferrite, pearlite and bainite. The 

temperature dependencies of constants were fitted by Gaussian function and these 

dependencies were used as input algorithm (Marder & Goldstein, 1984; Çetinel et al., 
2000; Ferguson et al., 2005). The C–curves of a calculated IT diagram for boron steel 

using equation (Eq. 2) for each product structure and the data points indicate the 

determined experimental values for the starting and final transformations during 

isothermal heat treatments. 

The actual temperature variation is continuous cooling rather than isothermal 

variation. But austenite transformation under Ms temperature can develop a partial 
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transformation of bainite. By applying Scheil superposition principle (Scheil, 1935), the 

actual continuous cooling transformation can be calculated by isothermal transformation 

model. Here the time period was discretized based on the assumption that within each 

time step is Δt at constant temperature involving isothermal transformation. For the 

corresponding constant Ti, were parameters bi, ni and τi (transformation starting time, i.e. 

incubation period). By dividing the time step Δt by incubation period τi, increment of 

inoculation rate ΔEi was the volume transformation during the former time step Vi. By 

substituting it into equation (Eq. 4) then the time period was obtained for the volume 

transformation reaching Vi under Ti+1 isothermal transformation condition that is virtual 

time ti+1 as described below. 
 

 (4) 

 

The microstructures were calculated from arrays {T (t)} and {V (t)} during the 

simulation period. Equations (Eq. 5 to Eq. 9) described below were included in the 

computer algorithm. 

 

 (5) 

 

 (6) 

 

(7) 

 

(8) 

 

(9) 

 

where: Vf is the volume of ferite phase, Vp is the volume of pearlite phase, Vb is the 

volume of bainite phase, Vm is the volume of martensite phase, Kf (Kp and Kb) are the 

overall rate constant of feritic, pearlitic and bainitic transformation that generally 

depends on temperature, Nf (Np and Nb) are the Avrami’s exponent for feritic, pearlitic 
and bainitic transformation that depends on temperature, t is the time, T is the 

temperature, Tmstart is the temperature martensite start transformation and β is the 

coefficient of martensite transformation volume that depends on temperature. 
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The structure composition of steel cooling depends on the actual hardness defined 

as: 

(10) 

 

Amount of phases proportion is an equal unity defined by (Li et al., 2001; Liu et 

al., 2003; Pietrzyk & Kuziak, 2011; Xie et al., 2013) as: 

 

(11) 

 

(12) 

 

(13) 

 

where: C, Si, Mn and others represent different kinds of chemical elements respectively 

(wt.%); Vr represents cooling speed at 700 °C (°C h-1). 

 

From Eq. 10, it is not difficult to predict fraction of phases if the hardness of cooling 

microstructure and the hardness of microstructure constituents’ are separately known 
(Eq. 11 to 13). Results of austenite decomposition depend on the chemical composition 

and steel history. The characteristic cooling time relevant for structure transformation 

for most steel is the time t8-5. The characteristic cooling time was determined through 

series of algorithm where an average value of heat gradient between500 °C and 800 °C 
was found as illustrated in (Fig. 2). 

The calculation of hardness was done by retrieving the temperature of nodes file. 

The analysis was performed for N nodes corresponding to the mesh of model. The 

temperature parameters of the nodes of the model were introduced (inlet) into the 

calculation of the volumetric representation of ferrite, pearlite, bainite and martensite. 

In each step the temperature difference between the node in time was compared 

with the possible formation (or can be written as nuclei) parameters relevant phase 

(temperature and time dependence of TT diagram, for the structure formation) Fig. 2. 

The volume phase of the lower temperature node of ferrite formation (Ac3) was 

described by Eq. 6 whiles if that of pearlite formation (Ac1) with higher temperature 

node but higher than bainite formation was given by Eq. 7. On the other hand, the volume 

phase of bainite formation with temperature node higher than martensite was defined by 

Eq. 8 and that of volume phase of martensite formation with lower temperature node 

was given by Eq. 9. Equation (Eq. 10) was used to calculate the total hardness of 

individual phases. Data were saved to a new file that has the same format as the source 

file which can be opened in the program Paraview. This cycle was repeated for each 

temperature nodes file to the last file with nodes. 
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Figure 2. Schematic of computer algorithm. 

 

 

RESULTS AND DISCUSSION 

 

A mathematical model for the prediction of temperature of nonstationary heat 

transfer in relation to time of a quenched steel chisel was used. The initial properties of 

the steel and the boundary conditions were used in the model to verify the results using 

ElmerFem software. The temperature distribution and curves are illustrated in Figs 3 and 

4 respectively. 
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a)    b)    

 

Figure 3. Temperature distribution of a quenched chisel at 5 (a) and 15 (b) sec cooling in water. 

 

 
 

Figure 4. Cooling curve of modeled chisel in two positions (near to hole – position 1 and far from 

hole – position 2). 

 

Distribution of microstructure fields of the quenched chisel is presented in Fig. 5 

whiles the hardness fields of the quenched chisel is shown in Fig. 6. The results showed 

a good distribution of softer microstructure around a hole in chisel, where their sharp 

notches were often placed by cracked initiation (Liu et al., 2003; Liu et al., 2004; Guo et 

al., 2009; Chen et al., 2012). The problem with low fracture toughness of the martensite 

structure was solved using lower heat flux around hole as well as technological solution 

using ceramics holders in hole and around hole. 
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Figure 5. Distribution of microstructure fields of the quenched chisel – high boron steel B1. 

 
Using models of steel B2 and Boron 27 

produced two microstructure mixtures namely 

martensitic and ferritic. These mixtures are non 

homogenous because ferrite is usually acicular 

on the boundary of austenite (Liu et al., 2004). 

They are also more brittle than other mixtures 

of microstructure in the steel and they have a 

high degree of damage of the intercrytalline 

fracture (Jam et al., 2014). Therefore the 

martensitic structure get better wear resistant 

properties than softer microstructures 

(Chotěborský, 2013; Chotěborský & Hrabě, 
2013). Samples of chisel were not analyzed on 

microstructure. In this article are discussed 

only circle sample (3 pieces of each steel) 

tested steels after heat treatment cycle of 

similar properties like modeled microstructure. 

 
 

Figure 6. Hardness field of high boron 

steel B1 after quenching in water. 

 

But microstructure volume of tested steel was different after heat treatment in 

comparison with modeled samples. Errors were observed from the modeling of the 

specific heat coefficient, heat flux, computed transformation diagrams. Equations 

(Eqs 10 to 13) increased the difference between modeling and experimental results. Also 

real chemical composition, grain size, number of crystal lattice and thermal history 

directly influenced the results of experimental steel as well as the difference between 

modeling and experimental results. These analyses showed errors around 15% volume 

of microstructure phases similar to published results (Liu et al., 2003; Huiping et al., 

2007; Lee et al., 2010; Lee et al., 2013). 
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CONCLUSIONS 

 

A simply method for axisymmetric modeling of heat FEM in agriculture tools is 

possible. 

JMAK equation can be used for prediction of microstructure. 

A relatively good relationship between modeled and measured microstructures was 

observed compared to modeled and measured volume of microstructural phases. 

Experimental and modeled results showed errors around 15% of predicted 

hardness. Hardness is one of the interested mechanical properties but the presented errors 

were very high. These models setup can be useful for different technological procedures 

with heat cycle during processing and for prediction of microstructure. 
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