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Abstract. Natural vibrations of elastic circular arches are studied. The arches are assumed to be 

of constant width and piece wise constant height. It is assumed that at the re-entrant corners of 

steps stable surface cracks are located. The aim of the paper is to assess the sensitivity of the 

eigenfrequencies on the geometrical and physical parameters of the arch including the length and 

location of each crack. 
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INTRODUCTION 

 

The problems of vibration and stability of beams, plates and shells have a great 

importance in the civil and engineering. Vibration of curved beams is studied by several 

researches (see Vinson & Sierakowski, 2002; Qatu, 2004; Reddy, 2004). The natural and 

forced vibrations of beams weakened with the crack-like defects have been investigated 

by Rizos at al. (1990), Dimarogonas (1996), Nandwana & Maiti (1997), Chondros et al. 

(1998), Kisa & Brandon (2000) and others. Lellep & Kägo (2011; 2013) investigated the 

influence of cracks on eigenfrequencies of elastic stretched strips and plates. 

In the previous papers by Lellep & Liyvapuu (2015a; 2015b) vibrations of elastic 

arches made of homogeneous and laminated materials were studied. 

Due to the practical needs the investigations of the free and forced vibrations of 

beams, arches, plates and shells are carried out by many investigators (see Qatu 2004; 

Soedel 2004). During last years new approach to the free vibration analysis are 

developed in the papers by Eroglu (2015), Wu & Chiang (2004) for the case of in-plane 

vibrations. While Ishaguddin et al. (2016) and Kawakami et al. (1995) accounted for the 

out-of-plane vibrations in their studies, Sadeghpour et al. (2016) considered the effect of 

debonding during the process of natural vibrations. 

In the paper by Wu & Chiang (2004) the effect of both, the shear deformation and 

rotatory inertia are included in the analysis using finite arch elements. 

Although usually the in-plane and out-of-plane vibrations of beams and bars are 

tackled separately the approach by Wu and Chiang admits to consider the both versions 

from the common point of view. 
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In the present paper we are interested in the evaluation of the influence of cracks 

on the natural frequencies of arches. That is why the simplest theory of vibration of 

beams is employed. 

Here results of the previous study Lellep & Liyvapuu (2015b) are extended to the 

case of a stepped arch weakened with non-penetrated surface cracks. The cracks are 

assumed to be stable surface cracks. The problems of propagation of cracks are outside 

the scope of the present paper. 

 

MATERIALS AND METHODS 

 

Problem formulation 

Let us study the free vibrations of a circular arch of radius . It is assumed that the 

arch has rectangular cross section with dimensions  (the width) and the total height . 

The total height is assumed to be piece wise constant, e.g. 

 (1) 

for  
In (1) stands for the current angle (Fig. 1.) and and  are given 

constants. 
 

 
 

Figure 1. Simply supported stepped arch with a crack. 

 
Here  and . 

The arch is simply supported at  and . 
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The arch is weakened with cracks located at the re-entrant corners of steps. It is 

assumed that the crack located at the position  has the length . Evidently, the 

eigenfrequencies of the arch depend on the geometry of the arch and on the geometry of 

the crack. 

The aim of the paper is to determine the eigenfrequencies of the arch and  to study 

the sensitivity of the eigenfrequencies on the geometrical and physical parameters of the 

arch. 

 

Basic equations and assumptions 

Treating the equilibrium of an element of the vibrating arch one can conclude that 

(see Soedel 2004; Lellep & Liyvapuu 2015a; Lellep & Liyvapuu 2015b). 

 (2) 

for . Here  stands for the bending moment,  is the 

transverse displacement (deflection) and  is the material density. In the case of a 

composite or laminated material the quantity  is the average of densities of the layers 

(see Reddy 2004; Qatu 2004). 

Here and henceforth 
 

 (3) 

 

 standing for time. 

According to the Hook’s law one has (see Lellep & Liyvapuu 2015a; Lellep & 

Liyvapuu 2015b) 

 (4) 

 

for .  Here 
 

 (5) 

 

Because we are interested in evaluation of the influence of cracks on the natural 

frequencies we need the simplest theory of vibration. That is why it is assumed herein 

that the axial extension  and therefore, . 

Here  stands for the axial displacement. Note that in the case of any homogeneous 

material 

 (6) 

 

where   is the Young modulus and  – the Poisson ratio. 

Assuming that both ends of the arch are simply supported one can present the boundary 

conditions as 

 (7) 
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and 

 (8) 

 

Substituting (4) and (5) in the equilibrium equation (2) leads to the equation 
 

 (9) 

 

for . 

The arch under consideration has stable surface cracks at  It is well known 

that defects deteriorate the mechanical behaviour of structures. The influence of cracks 

on the natural vibrations of arches is modelled by the method suggested by Chondros at 

al. (1998) and Dimarogonas (1998). According to this method the slope of the deflection 

is considered as a discontinuous quantity at the cross sections with cracks. Let us denote 
 

 (10) 

 

It was shown in Lellep & Kägo (2013) and Lellep & Liyvapuu (2015b) that on can 

take  

 (11) 

where 

 (12) 

 

and 
 

 
(13) 

 

Solution of governing equations 

The equation (9) is a linear fourth order equation with partial derivatives. Making 

use of the method of separation of variables (see Soedel 2004; Lellep & Liyvapuu 2015a; 

Lellep & Liyvapuu 2015b) one can look for the solution of (9) in the form 
 

 (14) 

 

In (14) the first term in the right hand side of the equality is assumed to be a function 

of the variable . Substituting (14) in (9) leads to the ordinary differential equation of 

the fourth order 
 

 (15) 

 

for . 
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Evidently, the general solution of (15) can be presented as  
 

 (16) 

 

where  are arbitrary constants and  
 

 (17) 

 

According to (7), (8) and (14) one can present the boundary conditions for  as 
 

 (18) 

and 

 (19) 

 

The boundary conditions (18) with (16) furnish the relations 
 

 

 
(20) 

 

It immediately follows from (20) that 
 

 (21) 

 

provided  

The boundary requirements (19) lead to the equations 
 

 

 

 

 

(22) 

provided  

 

The particular solution of (15) must be constructed so that in each segment the 

solution is given by (16) and at the boundary the requirements (18), (19) are taken into 

account. 

Moreover, at  the quantities  and  must be continuous; the slope 

 must satisfy (10) — (13). Thus,  and  are continuous. 

Here 
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 (23) 

for each .  

 

The continuity conditions can be presented as  

 

NUMERICAL RESULTS AND DISCUSSION 

 

The system of equations (24) augmented with (21) and (23) present a system of 

equation for determination of unknown  where  and . This 

system consists of  equations with the same number of unknowns. Since the 

system is a linear homogeneous system a non-trivial solution exists if it determinant  

vanishes. 

 

 

(24) 
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The solution of equation  admits to define the eigenfrequencies. The solution 

procedure is implemented with the aid of the computer code MATLAB. The results of 

calculations are presented in Figs 2–5 for the arch with a single step ( )  

and  

The material of the arch is a mild steel with  

The natural frequencies of an arch without any defects compare favorably with 

those obtained by the finite element method  in the case of higher modes (see Zheng & 

Fan, 2003). For instance, according to the previous study  

whereasthe predictions obtained by the finite element method are 

. The discrepancies between these predictions are caused by 

the simplified model of the present problem. Due to the hypotheses made above the 

comparison has  no sense for the first mode. Evidently the method leads to crude 

approximations in the case of lower modes of deformation and deeper arches. 

The influence of the first natural frequency on the location of the step is illustrated 

in Fig. 2 for the elastic arch with . Different curves in Fig. 2 correspond to different 

values of the crack depth. The upmost curve in Fig. 2 correspond s to the arch without 

any defects. It can be seen from Fig. 2 that the highest values of the natural frequency 

are obtained in the case of arch which is free of cracks. 
 

 
 

Figure 2. Natural frequency of the arch vs. depth of the crack. 

 

The natural frequency versus the step location is depicted in Figs 3–5 for different 

values of the crack length. Different curves in Figs 3–5 correspond to the arches with the 

central angle  and  

respectively. Note that Fig. 3 is assotiated with the arch which has no any defect. It can 

be seen from Fig. 3 that the larger is the central angle of the arch, the lower is the natural 

frequency as might be expected. Note that similar relationship between the length and 
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the natural frequency takes place in the case of straight beams, as well. In the case of 

beams it reads: the longer is the beam the lower is the natural frequency. Similar results 

are presented in Fig. 4 and Fig. 5 for arches with crack lengthes   

and , respectively. 
 

 

 

Figure 3. Natural frequency versus step location (s = 0). 

 

 
 

Figure 4. Natural frequency versus step location (s = 0.6). 
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It can be seen from Fig. 5 that the upper curves associated with   

and  are decreasing in the range of small values of . If, however,  the 

function  are increasing everywere. In the particular case if  the 

natural frequency  decreases monotonically with increasing value of  (see Lellep & 

Liyvapuu 2015a; Lellep & Liyvapuu 2015b). 
 

 
 

Figure 5. Natural frequency versus step location (s = 0.8). 

 

 

CONCLUSIONS 

 

Natural vibrations of circular arches with piece wise constant thickness have been 

considered. An analytical method for determination of eigenfrequencies of arches with 

cracks was developed. Comparison of the results of the present study with the numerical 

predictions shows that the present model leads to more accurate predictions in the case 

of higher deformation modes. It was shown that the parameters of the crack essentially 

influence on the vibration of the arch. The highest value of the natural frequency 

corresponds to the arch with any defects. 
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