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Abstract. The need to optimize the trajectory of vehicles is still highly topical, regardless weather 

the means of transport are robots, forklifts or road vehicles. It is not only important the safety by 

passing obstacles, but also the energy balance, i.e. the energy expended on the movement of the 

vehicle and on the change of its direction. This paper presents a mathematical approach to solving 

this problem through interpolation and approximation curves. 
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INTRODUCTION 

 

Movement of vehicles only rarely proceeds in a straight line. On the contrary – 

regardless weather transporting material or people into smaller or larger distances, it is 

almost always necessary to deal with obstacles on the path. This includes both safe 

avoiding obstacles and selecting the best possible trajectory from several possible 

options. Choosing the optimal trajectory makes thus the movement safer, may reduce 

the transportation costs and last but not least it may also save time. 

Mathematically it is possible to perform an interpolation or an approximation of the 

trajectory. These mathematical procedures are used in this case as generating principles, 

which allow to model continuous arcs of the line. While by an interpolation the curve 

always passes all the associated points, by an approximation the curve passes only the 

first and last point, and does not have to include necessarily other associated points, 

which depends particularly on the given approximation function. From the mathematical 

point of view, it does not matter weather it is about a movement of a mobile robot in a 

production hall, a forklift in a storehouse or a road vehicle on a street (Kvasnová, 2008). 

 

MATERIALS AND METHODS 

 

Ferguson interpolation curve 

Ferguson interpolation curve of third degree allows an easy following of individual 

sections. The mathematical description of Ferguson curve bases on the position vectors 
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curve at these points. Ferguson curve is then given by equation (1) (Farin, 1993), 
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expressed by four equations (2), (3), (4) a (5) 
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Ferguson curve can also be expressed in form: 
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where: )(vA , )(vB , )(vC  a )(vD  are third degree polynomial, for which is true: 
 

132)( 23 +-= vvvA  (7) 

23 32)( vvvB +-=  (8) 

vvvvC +-= 23 2)(  (9) 
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If we select in equation (7), (8), (9) and (10) the parameter v of the interval {0,1}, 

then we obtain a smooth curve that starts at point G and ends at point H. This type of 

curves is relatively suitable for modeling the trajectory of vehicles, since it ensures – due 

to appropriate choice of control points – safe passing of obstacles, although the length 

of the trajectory may increase. 
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Bezier interpolation curve 

Bezier interpolation curves allow simple networking of following segments 

because the first two and the last two control points define a tangent to the curve at the 

endpoints. The touch vectors at the endpoints are determined by equations (11) and (12) 

(Pavlovkin & Jurišica, 2003a): 

)()0(' 01 BBnC -=  (11) 

)()1(' 1--= nn BBnC ,  (12) 

where: n is the degree of the curve. 

 

On the other hand, Bezier interpolation curve may cause – by selecting identical 

control points as by Ferguson curve – a risk of collision with an obstacle, moreover, the 

length of the trajectory increases. 

 

Interpolation B-Spline curve 

B-Spline curves exhibit many useful properties, in particular the parametric 

continuity C2 of third degree curves, so that they can also be used as interpolation curves. 

The parametric continuity Ci defines in which way are the respective curves connected; 

the index of the continuity indicates the equality of respective i-derivates of the end-

points of the individual curves; i.e. the continuity C0 indicates that the curves are 

connected with an edge (the first derivatives are not equal), the continuity C1 enables a 

smoother connection of the curves (as the first derivatives are equal) but with different 

convexity or concavity and thus with an abrupt change of centripetal acceleration. The 

continuity C2 ensures that the connected curves have the same convexity (concavity), as 

the both second derivates are equal. 

The computation can be performed by means of two methods – matrix inversion or 

searching for Bezier’s control points. 

Matrix inversion is a general method which can be used for all curves. If we can – 

based on the control points – calculate the coordinates of some points on the curve, then 

it is possible by the inverse procedure to determine the control points from known 

curve’s points, too. The point, where the respective segments are continuing, lies in the 

anti-centroid of the triangle, defined by three consecutive control points. 

Searching for Bezier’s control points is basically an extension of Cardinal curves 

method, allowing to obtain a continuous C2 curve. Bezier’s control points Vi are located 

at the distance di from the interpolation points Pi; this ensures C1 continuity. If the curve 

C2 is to be continuous, it must be satisfied (13): 

1112200111 )(2)()()(2 PdPdPdPdPP ++--=++--  (13) 

The sections d0 and dn we have to choose. Subsequently, we calculate the 

coefficients Ai and Bi and then we recursively calculate also the remaining sections  

dí-1 = Aí-1 + Bi-1.di, thus obtaining the Bezier’s control points. The possibility to choose 

the tangential vectors at the endpoints is a great advantage by vehicles, since the initial 

vector should have the same direction, as the vehicle is oriented. Thus it will not be 

necessary to turn the vehicle before starting the movement along the trajectory. 



865 

B-Spline curves obtained by both of these methods are almost the same (as we are 

looking for the same control points), and they differ only at the edges (different choice 

of tangential vectors at the endpoints). However, the method of searching for Bezier’s 

control points is more preferred, as it is significantly faster than the matrix inversion 

method. Additionally, interpolation B-Spline curves are like Bezier curves susceptible 

to creating ‘loops’ and therefore they are used only where the development of such 

drawbacks does not mind or is excluded (Demidov, 2003; Pavlovkin & Jurišica, 2003a; 

Boonporm, 2012). 

 

Bezier approximation curves 

General Bezier curves allow an approximation of 1+n  given points by an n-degree 

curve. The curve is described by the equation (14): 
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The basis functions of Bezier curves )(tBn
i  constitute Bernstein base polynomials: 
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General Bezier curves have a relatively high smoothening ability, so that they are 

only marginally nearing to the individual control points. This is considerably 

disadvantageous in some applications, but elsewhere it may be useful; it depends on the 

specific conditions in which the vehicle is moving. 

The general disadvantage of Bezier curves is the non-locality of changes – each 

point of the curve is influenced by all control points; i.e. changing an individual control 

point changes the shape of the whole curve. Therefore Bezier curves often consist of 

shorter segments. This way it is possible to obtain the locality of changes and to simplify 

the difficulty of the calculation, while maintaining all the advantages of the curves. To 

connecting individual sections, Bezier curves of third degree are mostly used. Basis 

functions can be determined in advance, since the order of the curve is always known at 

the beginning (Hwang et al., 2003). 

 

B-Spline 

Classic B-Spline curve is formed by linking Coons curves in such a way that the 

last three control points of one segment are identical to the first three points of the next 

section. In most cases there are used Coons curves of the third degree. The first segment 

is then determined by the points P0, P1, P2 and P3, the second segment by the points P1, 

P2, P3 and P4. The last point of the first segment and the first point of the second segment 

are identical, as they lie in the anti-centroid of the same triangle; thus the C0 continuity 

is ensured (Demidov, 2003). 

Joining of the individual sections is very smooth. B-Spline curves ensure the 

continuity Ck-1 in the joint point, where k means the degree of the curve; i.e. B-Spline 

curve of the third degree guaranties a C2 continuity. Using a Bezier curve, only the C1 

continuity is ensured. B-Spline curve therefore retains all the advantages of Bezier 

curves and it is a lot smoother when connecting the individual sections. B-Spline curve, 
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however, has one major disadvantage – it does not pass the outermost points of the 

control polynomial. It can be removed by any of the control points will be multiple 

(Demidov, 2003). 

If one control point is double, then the curve is significantly closing to that control 

point, and in a certain section it may even overlap the control polynomial. If the control 

point is triple, then the curve passes directly through this control point and it in the 

surroundings of such point it is identical with the control polynomial; however, this 

feature is useful only for the endpoints. So if the endpoints of the control polynomial are 

triple, the curve will interpolate the endpoints. The disadvantage is that near the 

endpoints the curve degenerates into line segments and it loses its smoothness. Another, 

more efficient method is to use different basis functions for the first two and the last two 

sections of the curve so that the curve passes through the endpoints. However, this 

method requires at least seven control points, so it cannot be used for simpler trajectories 

(Elbanhawi et al., 2015). 

 

Interpolation by Ferguson curve 

The interpolation by Ferguson curve, which is depicted in Fig. 1, is a suitable 

method for optimizing specific vehicles’ trajectory, but it must be expected that the 

length of the trajectory gets extended compared to the direct path. The vehicle does not 

have to stop at the edges of the control polynomial; it has only to slow down sufficiently 

respected to the radius of turn. With this option of control points, the trajectory passes in 

a safe distance from individual obstacles and thus the risk of collision with one of the 

obstacles is eliminated. 
 

  
 

Figure 1. Interpolation by Ferguson curve. a) for a pointwise vehicle; b) for a real vehicle. 
 

The calculation of the interpolation is always performed every second point. An 

element of the array has the coordinates of the point (x, y); an empty element of the array 

has the coordinates (-1, -1). The drawing of the interpolation curve is solved by means 

of the C++ graphics program Borland Delphi 2.0. This program draws the Ferguson 

curve basing on two given points and respective direction vectors at these points. 

 

a) b) 
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Interpolation by Bezier curve 

Interpolation by Bezier curve, shown in Fig. 2, is by the specified setup of control 

points inappropriate for generating the trajectory of a vehicle, as it causes collisions with 

obstacles. Total length of the path is also substantially greater than by the interpolation 

by Ferguson curve. For use in a real environment, it would be necessary to the change 

are the coordinates of points 3, 4, 5 and 6 to achieve the desired path. The collision-free 

path of the vehicle for this way changed points is demonstrated in Fig. 3. From the 

comparison of trajectories in Fig. 2 and Fig. 3 it is apparent that the selection of the 

supporting points affects significantly the length and the shape of the trajectory. 

However, a suitable arrangement of the individual control points enables creating a 

usable trajectory, provided it is possible in respect to the location of the obstacles. 
 

  
 

Figure 2. Interpolation by Bezier curve. a) for a pointwise vehicle; b) for a real vehicle. 
 

 
 

Figure 3. Interpolation by Bezier curve after changing the coordinates of the control points. 
 

Approximation by Ferguson curve 

Unlike the preceding interpolation cases, by an approximation the trajectory does 

not necessarily include the control points along the path. Approximation by Bezier curve, 

which is depicted in Fig. 4, is more convenient and shorter than the preceding two cases, 

but a large-size vehicle may interfere with an obstacle, as shown in Fig. 4b. The 

possibility of such a conflict can be avoided by changing the coordinates of the control 

a) b) 
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point 4; the subsequent change in trajectory is demonstrated in Fig. 5. In such setup of 

control points, it is also possible by an appropriate shifting of the point 6 to shorten the 

overall length of the trajectory. 

 

  
 

Figure 4. Approximation by Ferguson curve. a) for a pointwise vehicle; b) for a real vehicle. 
 

 
 

Figure 5. Approximation by Ferguson curve after changing the control point 4. 
 

Approximation by Cubic B-Spline 

By approximation of a piecewise linear trajectory by means of Cubic B-Spline 

curve we obtain a trajectory, which is shorter and smoother, and thus less time- and 

energy-consuming. The vehicle moves smoothly along such trajectory, i.e. with a 

smooth change of direction and speed of its movement, as depicted in Fig. 6 (Pavlovkin 

& Sudolský, 1999; Demidov, 2003). 

The basic principle of generation of B-Spline curves is that we define Bezier curves 

of degree n at intervals (ui, ui+1); where n is the degree of the polynomial of the respective 

B-Spline curve and L is the number of segments of the B-Spline. So we create a sequence 

of points, namely the sequence u0 … uL+2n-2. Not all points ui, however, are different; if 

ui = ui+1 then it is a multiple point. 

 

a) b) 
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Figure 6. Approximation by Cubic B-Spline. a) for a pointwise vehicle; b) for a real vehicle. 
 

To define B-Spline we use the interval (un-1, un+L-1) as its domain, these points are 

called domain points, while L means the potential number of segments of the curve. If 

all domain points are simple, then L is also the number of domain intervals. For every 

multiplicity of a domain point, the number of domain intervals reduces by one. The sum 

of multiplicity of all domain points corresponds with L, as it true that: 
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where: ri means the multiplicity of domain points ui. 

 

For generating the B-Splines we used De Boor’s algorithm. Let’s true that: 
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where rnk -= ,...,1  and 1,...,1 +-+-= IknIi   

which is the degree of B-Spline given the parametr u. 
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while ( ) .0 Cdud ii =
 

 

RESULTS AND DISCUSSION 

 

To analyze the wide range of described approximation and interpolation curves, we 

used our self-created computer program ‘VD’ (abbreviation for ‘path draw’ in Slovakian 

language). The graphical interface of this program and a comparison of some generated 

curves are depicted in Fig. 7. Within this program, we defined the known position of the 

obstacles as well as the control points of the trajectory. Then we selected a mathematical 

model of the trajectory by a preset approximation or interpolation curve formula, we 

a) b) 
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obtained a graphical and a numerical result. The results were subsequently analyzed 

graphically and numerically. 
 

 

Figure 7. Graphical interface of the program VD with examples of trajectories. 
 

The overall length of the trajectory between points P0 and Pn is defined by equation (19): 
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where: P0 , Pn – start and end point of the trajectory; ai – individual section of the 

trajectory; fi(x) is the respective mathematical function formula of the curve. 

To investigate the radius of turn for a selected point of the trajectory – which may 

be necessary due the specific limitations of the vehicles, the formula (20) is used: 
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where: R means the radius of curvature of the trajectory at a specicic point and; f(x) is 

the mathematical function formula of the curve. 

Basing on the graphical analysis of the curves and on calculations using the 

preceding formulas, an overall comparison of the various options optimizing of the 

vehicles’ movement between obstacles gave the best results for the approximation based 
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on Cubic B-Spline. The mathematical model of such trajectory exhibits fluency, both in 

terms of necessary speed changes, and regarding the smoothness of the change of 

direction. Important is also the fact that of all the analyzed trajectories this one is the 

shortest, which yields energy saves. Although the shortening of the trajectory need not 

be regarded as considerable, compared to other options, the total saving of energy may 

be high, in particularly over a longer period of time or if the same trajectory repeats 

regularly several times (stock houses, factories, agricultural activities) (Pavlovkin & 

Jurišica, 2003b). Finally, it has to be pointed out that the trajectory approximated by 

Cubic B-Spline exhibits relative high level of safety, as it passes all the obstacles – unlike 

some other trajectories – with sufficient distance and virtually eliminates any possibility 

of collision of the vehicle with an obstacle (Kvasnová, 2014). 

 

CONCLUSIONS 

 

We analyzed the trajectory of a vehicle along a defined path between obstacles. We 

used mathematical simulations of various approximation and interpolation curves by 

means of our own program ‘VD’. Based on the results, we concluded the most 

convenient method – considering the smoothness of the trajectory, its length, shape and 

obstacle clearance – using the approximation by Cubic B-Spline curve. 

The current development of defining and optimizing vehicles’ trajectories prefers 

a direct control through a system of sensors placed directly on vehicles. Sensors provide 

information about possible obstacles along the path; the information is evaluated by a 

computer installed in the vehicle, which controls the vehicle to change flexibly its 

trajectory (Fu et al., 2013). Although the technical level of sensors has considerably 

improved and their price has sunk, this method is, however, still technically more 

complicated, which poses an enhanced risk of malfunctions and increases acquisition 

and maintenance costs. Therefore, if the layout of obstacles is permanent, the 

approximation and interpolation methods described in the article to define its trajectory 

are still useful. In such a layout, vehicles may be equipped only with a simple 

‘emergency stop sensor’ to increase safety and to avoid unpredicted collisions. 
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