Tag Archives: blending

868–876 C. Nuortila, S. Heikkilä, R. Help, H. Suopanki, K. Sirviö and S. Niemi
Effects of storage on the properties of rapeseed oil and alcohol blends
Abstract |
Full text PDF (181 KB)

Effects of storage on the properties of rapeseed oil and alcohol blends

C. Nuortila*, S. Heikkilä, R. Help, H. Suopanki, K. Sirviö and S. Niemi

University of Vaasa, School of Technology and Innovations, P.O. Box 700, FIN-65101 Vaasa, Finland
*Correspondence: carolin.nuortila@univaasa.fi

Abstract:

Kinematic viscosity and density are important fuel properties because they influence fuel atomisation during injection into the engine cylinder. The viscosity and density of neat vegetable oils usually are too high to allow optimal use of these oils in compression ignition engines. Blending vegetable oils with alcohols can improve these properties, but it is not known whether the blend properties remain stable during storage. This study measured kinematic viscosity (at 40 °C), density (at 15 °C) and surface tension of rapeseed oil-alcohol blends that had been stored in closed borosilicate glass bottles at room temperature in the dark for 49 weeks. The values were compared with those of the fresh blends. Further measurements of oxidation stability for the rapeseed oil and the blends were taken after 72 weeks of storage. The blends consisted of rapeseed oil with ethanol at 5 vol–%, and rapeseed oil with 1–butanol at 5 vol–%, 10 vol–%, 20 vol–% and 30 vol–%. All in all, the observed changes during storage were small. Density values deviated by less than 1%, surface tension by no more than 3% and kinematic viscosity differed from the fresh blends’ values by 1% to 8%. Surface tension had increased in some blends and decreased in others. Kinematic viscosity rose in all blends, with the smallest increase measured for the rapeseed oil–butanol 30 vol–% blend. This blend also showed the best oxidation stability, which was close to six hours.

Key words:

, , , ,




1237-1246 K. Sirviö, S. Heikkilä, R. Help, S. Niemi and E. Hiltunen
Properties of local produced animal-fat based biodiesel and its blend with fossil fuel
Abstract |
Full text PDF (638 KB)

Properties of local produced animal-fat based biodiesel and its blend with fossil fuel

K. Sirviö*, S. Heikkilä, R. Help, S. Niemi and E. Hiltunen

University of Vaasa, Faculty of Technology, PL 700, FIN-65101 Vaasa, Finland
*Correspondence: katriina.sirvio@uva.fi

Abstract:

In the near future, more emphasis must be put on reducing greenhouse gas (GHG) emissions in road transportation, house heating, agricultural activities, marine transport etc. This study concentrated on the use of alternative fuels in engine-driven applications of non-road machineries and decentralized energy production. Today, the engines are mainly designed for crude oil derived fuels and liquid renewable fuels are blended with crude oil based fuels to fulfill the requirements of renewable energy usage. Due to the environmental reasons on one hand and to the agricultural needs, on the other hand, different blends of bio- and fossil fuels are becoming more popular. In Europe, the maximum FAME content in diesel fuel is 7 vol% according to the EN 590:2013 but higher percentages are also available and targeted around the world. For example in the United States, the 20% blend fraction is becoming more common. For these reasons, B20 fuels were chosen to be investigated in this study. Special emphasis was put on improving blending issues since fuel blending may cause some operating risks. The main aim was to research widely the properties of animal-fat based methyl ester (AFME) and B20 fuel blend produced from it. AFME is a waste based fuel and produced in Ostrobothnia region, Finland. The aim was to find out in which engine applications the fuels are feasible and investigate if the fuels fit in the quality of automotive fuel Standards. According to the results, AFME is a feasible option to increase self-sufficient energy production in Ostrobothnia.

Key words:

, , , , ,




1232–1241 K. Sirviö, S. Niemi, S. Heikkilä and E. Hiltunen
Effects of sulphur on the storage stability of the bio and fossil fuel blends
Abstract |
Full text PDF (371 KB)

Effects of sulphur on the storage stability of the bio and fossil fuel blends

K. Sirviö*, S. Niemi, S. Heikkilä and E. Hiltunen

University of Vaasa, Faculty of Technology, PL 700, FIN-65101 Vaasa, Finland
*Correspondence: katriina.sirvio@uva.fi

Abstract:

In this study, the aim was to find out if mixing two common fuels together could be beneficial for both the environment and storage stability of fuel. It is obvious, that adding biodiesel to fossil fuel will decrease its sulphur content and reduce its carbon monoxide and hydrocarbon, sulphur dioxide and soot emissions. But will the high sulphur content enhance the storage stability of the biodiesel? Four B20 samples were produced, consisting of 20 vol% biodiesel and 80 vol% fossil diesel. The samples were prepared from rapeseed methyl ester (RME), low sulphuric fossil diesel fuel and high sulphuric diesel solvent. The blends had different sulphur contents of 6, 76, 149 and 226 mg kg-1. For these B20 fuel samples, the parameters were compared that correlate with the storage stability of the fuel blends. The studied parameters were the oxidation stability (OSI, according to EN 15751:2015), acid number (AN, according to EN 14104:2003) and kinematic viscosity (KV, by Stabinger SVM 3000 rotational viscometer). The measurements were carried out straight after mixing the blends, and again after 4, 8 and 12 weeks. According to the results, the fuel containing less sulphur slightly lost its oxidation stability within three months. Instead, the oxidation stability of high sulphuric samples improved within the same time frame. As a conclusion, the study gave a reason to assume that – in spite of its known drawbacks – the sulphur may be favourable to fuel blends’ storage stability but the phenomenon and chemistry should be studied in more detail.

Key words:

, , , , , ,