Tag Archives: maize straw

1191–1198 T. Schnabel, H. Huber, A. Petutschnigg and A. Jäger
Analysis of plant materials pre-treated by steam explosion technology for their usability as insulating materials
Abstract |

Analysis of plant materials pre-treated by steam explosion technology for their usability as insulating materials

T. Schnabel¹*, H. Huber¹, A. Petutschnigg¹² and A. Jäger³

¹Salzburg University of Applied Sciences. Department of Forest Products Technology & Timber Constructions. Marktstraße 136a, AT5431 Kuchl, Austria
²BOKU University of Natural Resources and Life Sciences, Konrad Lorenz-Straße 24, AT3430 Tulln, Austria
³University of Applied Sciences Upper Austria, Faculty of Engineering, Department of Bio & Environmental Technology, Stelzhamerstr. 23, AT4600 Wels, Austria
*Correspondence: thomas.schnabel@fh-salzburg.ac.at

Abstract:

Raw materials of annual plants fibres are not easily usable for industrial production applications. Pre-treatment of the annual plant fibres is necessary to increase the homogeneity of the material and to improve the material properties. This study deals with the influence of steam explosion treatment on the quality of annual plant fibres used as insulating material.
Maize and wheat straw were selected for production of insulating panels. To clarify the changes within the structure of the plants due to the pre-treatment process material analysis was carried out using FT-IR spectroscopy and raster electron microscope. Furthermore, the bulk density and the thermal conductivity were analysed as important values for insulating materials.
The results showed that the pre-treatment process homogenizes the materials and the processes could be used for the production of bulk insulation.

Key words:

, , ,




474-482 M. Križan, K. Krištof, M. Angelovič, J. Jobbágy and O. Urbanovičová
Energy potential of densified biomass from maize straw in form of pellets and briquettes
Abstract |
Full text PDF (809 KB)

Energy potential of densified biomass from maize straw in form of pellets and briquettes

M. Križan, K. Krištof*, M. Angelovič, J. Jobbágy and O. Urbanovičová

University of Agriculture in Nitra, Faculty of Engineering, Department of Machines and Production Biosystems, Tr. A. Hlinku 2, SK94976 Nitra, Slovakia
*Correspondence: koloman.kristof@uniag.sk

Abstract:

The aim of the study was the evaluation and comparison of energy potential of briquettes and pellets produced from the maize straw and woody biomass based on various diameters of pellets. By experimental measurements a calorific value and ash content was observed. Calorific value was measured by laboratory calorimeter IKA C 6000 (IKA® Works, Inc., USA) and laboratory combustion chamber Lindberg/Blue M (Thermo Fisher Scientific, Inc., USA). Individual calorific values and ash content was observed and subsequently confronted to obtain differences with replication. The analysis showed that calorific value of pellets with diameter 6 mm ranged from 16.99 MJ kg-1 to 17.80 MJ kg-1. Calorific value of pellets with 8 mm diameter ranged from 16.63 MJ kg-1 to 17.20 MJ kg-1. However, compared calorific value of briquettes ranged from 14.99 MJ kg-1 to 15.66 MJ kg-1. Further analysis showed that ash content of samples varied as well and it’s even affected by diameter of pellets. While ash content of pellets with diameter 6 mm was observed as 4.9% of total volume in case of pellets with 8 mm it was observed at value 5.5%. Briquettes produced from maize straw have ash content at value 5.4%. In contrary, ash content of woody biomass was significantly higher, 11% of volume, specifically. At the basis of observed parameters it can be concluded that maize straw densified in form of briquettes and pellets have a great energy potential which is comparable and competitive with currently used materials for production of briquettes and pellets.

Key words:

, , , , ,