Tag Archives: GHG

123–133 A. Lēnerts, D. Popluga, K. Naglis-Liepa and P. Rivža
Fertilizer use efficiency impact on GHG emissions in the Latvian crop sector
Abstract |
Full text PDF (348 kB)

Fertilizer use efficiency impact on GHG emissions in the Latvian crop sector

A. Lēnerts¹, D. Popluga¹*, K. Naglis-Liepa¹ and P. Rivža²

¹Latvia University of Agriculture, Faculty of Economics and Social Development,
Institute of Economics and Regional Development, Svetes street 18, LV-3001, Jelgava,
Latvia
²Latvia University of Agriculture, Faculty of Information technologies, Liela street 2,
LV-3001, Jelgava, Latvia
*Correspondence: dina.popluga@llu.lv

Abstract:

Within increasing production activity Latvian agricultural sector has become one of the main sources of greenhouse gas emissions (GHG) in Latvia. In 2013, agricultural sector contributed 21.0% of the total GHG emissions originated in Latvia (2310.1 Gg CO2eq). Analysis of agricultural GHG emissions by sources shows that direct N2O emissions from agricultural soils through the usage of synthetic fertilizers are one of the most significant GHG source in Latvia. The usage of synthetic fertilizers is one of the most common widespread agricultural practices in Latvian cropping systems and according to statistical data usage of synthetic fertilizers is constantly increasing, for example, in 2013 it increased by 6.9% if compared with 2012. Taking into account that over-fertilization can lead to negative economic and environmental consequences, such as high production costs, depletion of energy resources, and increased GHG emissions, this research aims to estimate how effective usage of synthetic fertilizers are in Latvian crop farms. In order to achieve the set aim an N fertilizer usage were estimated in four crop farms by giving insight into N balance and N use efficiency (NUE) rate in these farms. Research results suggest that improved N efficiency can be selected as GHG mitigation measure as it reduces N surpluses and the use and production of mineral fertiliser while maintaining yield levels. It was also concluded that improved N efficiency reduces direct N2O emissions from fertilized soils and indirect N2O emissions that occur by the release of NH3.

Key words:

, , ,