Tag Archives: photosynthesis.

445-454 K. Balina,, M. Balode, L. Muzikante and D. Blumberga
Impact of synthetic hormone 17α-ethinylestradiol on growth of microalgae Desmodesmus communis
Abstract |
Full text PDF (359 kB)

Impact of synthetic hormone 17α-ethinylestradiol on growth of microalgae Desmodesmus communis

K. Balina¹,*, M. Balode²⋅³, L. Muzikante² and D. Blumberga¹

¹Riga Technical University, Institute of Energy Systems and Environment, Azenes Str. 12/1, LV1048 Riga, Latvia; *Correspondence: karina.balina@rtu.lv
²Latvian Institute of Aquatic Ecology, Daugavgrivas 8, LV1048 Riga, Latvia
³University of Latvia, Faculty of Biology, Department of Hydrobiology, Kronvalda Boulevard 4, LV1010 Riga, Latvia

Abstract:

Microalgae has recently attracted much attention as a feedstock for biogas. Using wastewater as microalgae nutrition is a way how to produce algal biomass with low cost and minimum impact on environment. However, wastewater often is polluted with chemicals like pharmaceuticals which are among the commonly used chemicals in everyday life. The present study was aimed at the toxicity evaluation of a commonly used synthetic hormone, 17α-ethinylestradiol, using freshwater green algae Desmodesmus communis as a biotest organism. Parameters like healthy cell number and photosynthetic activity were determined and used to assess the toxicity. Lowest Observed Effect Concentration (LOEC) and 50% Effective Concentration (EC50) values were calculated for the parameters at different incubation times. It was found out that 17α-ethinylestradiol affects algal cell ability to grow, inhibits cell division and reduce photosynthetic processes in algal cells. Our research shows that inhibitory effect on growth of green algae D. communis start on concentration below 10 µg L-1 (4–8 µg L-1). Concentrations in the range of concentration 80–100 reduce growth by 50%, but concentrations 100–500 µg L-1 induce 100% reduction of growth rate and even calls initial algal cell destruction. Presence of EE2 in wastewater used for algal growth can affect productivity of a microalgae aquaculture.

Key words:

, , , ,




1202-1214 M. Golabadi, P. Golkar and B. Bahari
Remobilization assay of dry matter from different shoot organs under drought stress in wheat (Triticum aestivum L.)
Abstract |
Full text PDF (503 kB)

Remobilization assay of dry matter from different shoot organs under drought stress in wheat (Triticum aestivum L.)

M. Golabadi¹*, P. Golkar² and B. Bahari¹

¹Department of Agronomy and Plant Breeding, Collage of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, P.O. Box: 81595-158 Isfahan, Iran
²Institute of Biotechnology and Bioengineering, Isfahan University of Technology, P.O. Box: 84156-2781 Isfahan, Iran
*Correspondence: m.golabadi@khuisf.ac.ir

Abstract:

Remobilization of dry matter during the grain filling period in wheat is capable of helping the plant recover its grain yield under drought stress. In this study, the genotypic variation of different traits related to dry matter remobilization were measured in seven genotypes of wheat under the three different environment conditions of well-watered, drought stress at heading stage with application of extra nitrogen fertilizer (30%), and drought stress in Isfahan, Iran. Analysis of variance showed that the genotypes were different not only in their dry matter remobilization from the spike, the stem, the peduncle, and the leaf sheath but also in their current photosynthesis. Different environmental conditions were found to affect dry matter remobilization from the leaves and sheath, current photosynthesis, grain yield, and the relative contributions by the stem and the spike to grain yield. The highest values of spike and stem contribution to grain yield were obtained under drought stress while current photosynthesis was found to be the sole supplier for grain filling in normal conditions. Application of extra nitrogen fertilizer under drought stress was found to reduce the loss of grain yield in some genotypes as a result of enhanced vegetative growth, reserve accumulation, and dry matter remobilization to the grain.

Key words:

, , , ,