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Abstract. The vibration-assisted lifting of sugar beet roots from the soil has been gaining 

increasingly wide use worldwide and the majority of sugar beet harvesting machinery 

manufacturers produce beet harvesters equipped with just such kind of lifting units. In such units 

the priorities are low tractive resistance, the high quality of harvesting in terms of undamaged 

side surfaces of beet root bodies and intact tail parts as well as the high degree of their initial 

cleaning from the stuck soil. However, the parameters of the oscillatory processes generated by 

the vibrational lifting units used on the majority of sugar beet harvesting machinery in the market 

have rather average values appropriate for relatively favourable harvesting conditions (soft loose 

soil, beet root sizes close to the average, properly lined up planting rows etc.). But when the 

harvesting conditions deviate from their favourable values (especially in case of dry and strong 

soil), the vibrating lifters start performing the digging process with significant damage to the beet 

roots (breaking and tearing off the tail parts), their power consumption rises excessively sharply, 

the unit vibration drives prove to be unreliable. The literature source analysis has shown that any 

sufficiently detailed, comprehensive and dependable theory of direct beet root lifting from the 

soil is virtually absent. Thus, the aim of this research study has been to work out such a theoretical 

basis for the process of vibration-assisted beet root lifting, which will allow to calculate, in 

accordance with the harvesting parameters, the optimal design and kinematic parameters of the 

process ensuring the high quality of harvesting. A new theory has been developed, which 

describes the process of direct vibration-assisted beet root lifting performed under the effect of 

the vertical disturbing force and the pulling force, imparted to the root by the lifting unit. The 

obtained system of differential equations has made it possible to establish the law of motion of 

the beet root in the process of its direct vibration-assisted lifting and perform PC-based numerical 

calculations, which provide the basis for determining optimal kinematic modes of operation and 

design parameters of vibrational lifting units subject to the condition of maintaining sugar beet 

roots intact when harvesting them. 

 

Key words: harvesting machinery, sugar beet root, vibration, lifting unit, modelling, elastic 

medium, differential equations. 

 

INTRODUCTION 

 

The harvesting of sugar beet roots with the use of vibrational lifting units has a 

number of advantages in comparison with other methods of digging them out (Sarec  

et. al., 2009; Lammers, 2011; Lammers & Schmittmann, 2013; Gu et al., 2014). For 
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example, this way of retrieving sugar beet roots from the soil exhibits a lesser extent of 

root body damage and loss, a relatively low draught resistance and the more intensive 

clean-up of the root side surfaces from the adhering soil already at the lifting stage. 

However, the said advantages of the vibrational method of beet root lifting are 

observed only under relatively favourable harvesting conditions, when the soil in the 

beet plantation is medium strong and not dry (especially at the depth of unit running in 

the soil). In addition, the beet root planting rows need be straight and the root body sizes 

– close to the average values (Vermeulen & Koolen, 2002). 

Hence, the further research into the work process of the vibration-assisted lifting of 

beet roots from the soil and the development of improved lifting units basing on the 

results of such research is one of the topical challenges in the sugar beet growing industry 

(Gruber, 2005). 

Problem. Fundamental theoretical research into the vibration-assisted beet root 

lifting enables the scientific substantiation of the design and kinematic parameters of 

vibrational lifting units. Such research is needed first of all for the theoretical analysis of 

the operation of vibrational lifting units specifically in unfavourable harvesting 

conditions, on heavy, strong and dry soils, when sugar beet harvesting becomes 

associated with increased power consumption and the reduced durability of beet 

harvesting machinery. 

In its turn, sound theoretical analysis of any work process (including a vibrational 

one) is possible only after developing appropriate mathematical models representing that 

process. Moreover, numerical modelling with the use of the developed mathematical 

models (numerical experiment) allows to reduce significantly the time and resources 

spent for the experimental study and full-scale testing of new units (Bulgakov, 2005; 

Bulgakov, 2011). 

A fundamental theoretical and experimental study of the vibration-assisted sugar 

beet root lifting was presented in the work (Vasilenko et al., 1970). In that study the 

sugar beet root was modelled as a body with elastic properties approximated by a rod 

with a variable cross-section and one end fixed, which was under the effect of the 

perturbing force applied in the vertical and transverse plane. But the process of direct 

sugar beet root lifting from the soil was virtually left aside in that work, it only stated 

that, using additionally generated kinetostatic equations, it is possible to find out the 

terms of the complete lifting of a beet root from the soil. 

The effectively first monograph on the theory of sugar beet harvesting machinery 

(Pogorely et el., 1983), regrettably, also does not examine theoretically the direct process 

of root lifting from the soil with the use of vibrating lifting units. 

A significant amount of the results of scientific (mostly experimental) research into 

the lifting units of beet harvesters has been published for the recent years, but no results 

has appeared on the vibration-assisted root lifting. 

The further development of the theory of vibration-assisted sugar beet root lifting 

can be found in the works (Bulgakov, 2005; Bulgakov et al., 2005; Bulgakov et al., 2014; 

Bulgakov et al., 2015a). For example, the paper (Bulgakov, 2005) formulates a new 

theory of the natural and forced longitudinal oscillations of the beet root body induced 

by the action of the vertical perturbing force. The said theory was developed in order to 

assess the effect the mentioned oscillations had on the process of breaking the bonds 

between the beet root and the soil and find the terms of maintaining the beet root intact 

during its lifting from the soil. 



1167 

The same aim was pursued in the works (Bulgakov, 2005), which examined the 

transverse natural and forced oscillations of the beet root body occurring under the effect 

of a perturbing force acting along the line of motion of the lifting unit. 

The paper (Bulgakov & Ivanovs, 2010) considers the process of lifting the beet root 

from the soil in the most general case – when the vibrational lifting unit grips the root 

non-symmetrically. The process is described using kinematic and dynamic Euler 

equations. The differential equation system obtained in the study characterizes the 

process of the three-dimensional oscillations of the root fixed in the soil, placed in elastic 

medium with one fixed point. 

Meanwhile, the process of vibration-assisted beet root lifting from the soil is 

studied in the said work presuming the symmetrical gripping of the root by both 

vibrational lifting unit shares, since the non-symmetrical gripping of the root by one 

share goes on only for a short while. As a consequence of the translational movement of 

the vibrational lifting unit and the tapering of the working passage, the unit will further 

grip the root on both sides. But if the beet root is located on the vibrational lifting unit’s 

symmetry axis, then the root is gripped on both sides straight from the beginning. And 

that is just the mode of beet root gripping by the digging shares, which enables the 

process of direct vibration-assisted lifting of the root from the soil. 

The aim of this study is to develop the fundamentals of a theory of the direct 

vibration-assisted beet root lifting from the soil under the effect of the vertical perturbing 

force imparted to the root by the vibrational lifting unit and the pulling force generated 

by the unit’s translational movement. 

 

MATERIALS AND METHODS 

 

To make an analytical description of the above-mentioned work process of beet 

root lifting from the soil it is necessary first to define the equivalent schematic 

representation and choose the required systems of coordinates (Vasilenko, 1996). 

For that purpose, we represent the vibrational lifting unit by two wedges (digging 

shares or planes): A1B1C1 and A2B2C2, each of them being inclined at the angles α, β, γ 

and positioned relative to each other so as to form a working passage tapering rearwards 

(Fig. 1). The said wedges A1B1C1 and A2B2C2 oscillate in the longitudinal vertical plane 

(the digging share oscillation drive mechanism is not shown). The direction of the lifting 

unit’s translational movement is shown by an arrow. The projections of the points B1 

and B2 on the axis O1y1 are designated by the points D1 and D2 respectively. 

It is assumed that the beet root approximated by a cone-shaped body interacts at the 

respective points with the surfaces of the wedges A1B1C1 and A2B2C2 and also the 

vibrating lifter grips the root on two sides. Further we suppose that the working surface 

of the wedge A1B1C1 makes direct contact with the cone-shaped beet root body at the 

point K1 the surface of the wedge A2B2C2 – at the point K2. Following that, the right lines 

drawn through the beet root contact points K1 and K2 and the points B1 and B2, when 

crossing the sides of the wedges A1C1 and A2C2, generate the corresponding points M1 

and M2. 
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Hence, δ is the dihedral angle (B1M1D1) between the lower base A1D1C1 and the 

wedge working surface A1B1C1 or the same dihedral angle between the lower base 

A2D2C2 and the second wedge working surface A2B2C2. 
 

 
 

Figure 1. Equivalent schematic model of interaction between vibrational lifting unit and sugar 

beet root during its lifting from the soil. 

 

Now we are going to associate with the vibrational lifting unit the orthogonal 

Cartesian coordinate system x1O1y1z1, the centre O1 of which is placed in the middle of 

the unit’s necked-in passage, the axis O1x1 is in line with the direction of the unit’s 

translational movement, the axis O1z1 is vertically pointing up, and the axis O1y1 is 

pointing to the right. 

Thus, the displacement of the beet root during its direct lifting from the soil shall 

be viewed with reference to the fixed system of coordinates x1O1y1z1. Further, we 

introduce the moving system of coordinates xcOyczc rigidly bound to the beet root, its 

origin being placed at the root’s centre of mass (point C), the axis Czc being in line with 

the beet root symmetry axis, the axes Cxc and Cyc lying in the plane that is perpendicular 

to the axis Czc. 
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Let’s examine the process of beet root lifting from the soil with the use of the 

vibration method in detail from the physical point of view. As the process of oscillation 

of the beet root itself in the soil as an elastic medium progresses, the bonds between the 

root and the soil break at a high rate and, accordingly, the restoring forces start sharply 

decreasing. Following that, the oscillatory process transforms into the process of 

continuous displacement of the beet root along O1x1 and O1z1 as well as the continuous 

angular displacement (turning) of the root around its centre of mass (point C) through 

some angle  without the root returning to its initial position. 

Accordingly, we arrive to the stage of direct lifting of the beet root from the soil. 

The process of transition from the beet root oscillatory motion to its continuous 

displacement in the soil can be described in more detail as follows. Under the effect of 

the vertical perturbing force the beet root performs translational oscillations together 

with the surrounding soil, and also the closer the soil is to the beet root, the more these 

soil oscillations are synchronized with the beet root oscillations. And vice versa – the 

further the soil is away from the beet root, the less its oscillations copy the beet root 

oscillations, due to the elastoplastic properties of the soil. Finally, there exists such a 

distance from the beet root, at which the soil does not oscillate at all, but the limits of the 

soil area that can oscillate together with the beet root are not outlined quite exactly (all 

depends on the soil’s mechanical-and-physical properties). It is most likely that smooth 

transition from the soil area oscillating together with the root to the area with no 

oscillation takes place, and therefore the breaking of the soil at the interface of these 

areas is unlikely. Supposedly, the most probable scenario is the soil breaking in 

immediate proximity to the root body surface or even on the beet root body surface itself. 

This provides the most believable explanation to the fact that during the vibration-

assisted sugar beet root lifting a considerably smaller amount of soil remains stuck to the 

root’s sides than in case of the similar lifting with the use of conventional share (or disc) 

lifting units. As the lifting of the root from the soil can take place, as it was shown earlier, 

only in case the vibrational lifting unit grips the beet root symmetrically, so, 

simultaneously with the beet root’s translational oscillations, its oscillations through a 

certain angle about the conditional point of its fixation O take place. 

At the first stage of the beet root lifting from the soil, especially during the first 

oscillations, the restoring force that acts during the angular oscillations and, of course, 

its moment about the fixation point O are maximal. Therefore, it is most likely that the 

beet root tilt angle will be insignificant and so full restoration of the root’s vertical 

position or partial restoration of such a position due to the translational movement of the 

vibrational lifting unit can be expected. But, under the effect of the translational 

oscillations of the beet root itself together with the surrounding soil the density of the 

surrounding soil will decrease, so, the restoring force during the angular oscillations will 

decrease as well. Thus, with each new oscillation the beet root tilt angle will increase, 

while its restoration to the initial position will decrease. In practice, the beet root will get 

looser and looser swinging about its conditional fixation point O with the gradual growth 

of the angle of its tilt forward along the lifting unit’s line of motion. This will promote 

the breaking of bonds between the beet root and the soil along the axis O1x1, starting 

from the upper part of its conical surface situated in unbroken soil and gradually 

proceeding towards the fixation point O. Thereby, the above-said implies that the 

breakup of bonds between the beet root and the soil occurs simultaneously in two 

directions: along the axes O1x1 and O1z1. In such a case, the forces binding the beet root 
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with the soil and the elastic forces in the soil will be gradually decreasing until they reach 

such a minimum level that the oscillatory (vibration) processes will transform into the 

process of continuous displacement of the beet root upwards along the axis O1z1 and 

forward along the axis O1x1 and continuous rotation of the root body around the centre 

of mass (point C) through certain angle   up to the complete lifting from the soil. 

Meanwhile, the elastic forces will just transform into the loosened soil resistance force 

during the beet root’s movement in the working passage of the vibrational lifting unit. 

In order to represent the described physical process of the beet root lifting from the 

soil we show in the equivalent schematic model the forces generated by the interaction 

between the beet root and the inside surface of the lifting unit working passage. 

Now we assume that the vibrational lifting unit exerts, as it was indicated earlier, 

the vertical perturbing force �̅�p, which varies according to the following harmonic law: 
 

Qp = Hsin(ωt), (1) 
 

where H – amplitude of perturbing force; ω – frequency of perturbing force; t – time. 

 

This force plays the main role in the process of loosening the soil in the vibrational 

lifting unit working passage area and lifting the beet root from the soil. 

The denoted perturbing force �̅�p is applied to the beet root on both sides of it, 

therefore, it is represented in the equivalent schematic model by its two components �̅�p1 

and �̅�p2. These forces are applied at the points K1 and K2, respectively, at a distance of h 

from the conditional fixation point O and they are exactly the forces inducing the beet 

root’s oscillations in the longitudinal and vertical plane as well as breaking the bonds 

between the beet root and the soil and providing the conditions needed for lifting the root 

completely from the soil. 

Since the beet root gripping is symmetrical, obviously, the following relation is 

going to be observed: 
 

)sin(
2

1
21 tHQQ pp  . (2) 

 

We resolve these perturbing forces into the normal components 
1

N  and 
2

N  and 

tangential components 
1

T  and 
2

T , as shown in Fig. 1. The compositions of the forces 

will be as follows: 
 

111 TNQp  , (3) 

 

222 TNQp  . (4) 

 

 

Apparently, the lines of the force vectors 
1

T  and 
2

T  will be parallel to the right 

lines B1M1 and B2M2, respectively. 
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As the vibrational lifting unit advances linearly along the axis O1x1 with respect to 

the beet root fixed in the soil, so at the moment, when the unit grips the root, there are 

also moving forces 
1

P  and 
2

P  acting along the axis O1x1. As we did earlier, we resolve 

the moving forces 
1

P  and 
2

P  into the normal components 
1

L  and 
2

L  and tangential 

components 
1

S  and 
2

S  with reference to the planes A1B1C1 and A2B2C2, respectively, 

i.e.: 

111
SLP  , (5) 

 

222
SLP  . (6) 

 

The force vectors 
1

S  and 
2

S  act along the vector lines of speed of the shares 

relative to the root surface during the translational motion of the vibrational lifting unit. 

Thus, the lifting wedges A1B1C1 and A2B2C2 exert on the sugar beet root the 

following forces at the contact points K1 and K2: 
 

 
111

LNN
K

 ,  (7) 

 

222
LNN

K
 , (8) 

 

which act along the normal to the planes A1B1C1 and A2B2C2, respectively. 

 

Obviously, the magnitudes of these forces are as follows: 
 

111
LNN

K
 , (9) 

 

222
LNN

K
 . (10) 

 

Besides that, at the contact points K1 and K2 the friction forces 
1K

F  and 
2K

F , 

respectively, are applied, which counteract the slipping of the beet root body on the 

working surfaces of the wedges A1B1C1 and A2B2C2, when the lifting unit grips the root. 

The vectors of these forces have the directions that are opposite to the directions of the 

vectors of the relative speed of the beet root slipping on the surfaces of the said wedges. 

At the root’s centre of gravity (point C), the root weight force 
k

G  is applied. The 

forces of resistance exerted by the loosened soil during the beet root’s movement in the 

working passage of the vibrational lifting unit along the axes O1x1 and O1z1 are 

designated 
1x

R  and 1z
R , respectively. 

During the direct beet root lifting from the soil, the rotation of the root around its 

centre of mass С takes place under the effect of the couple of resistance forces exerted 

by the loosened soil. The moment of the couple of forces will be designated M. 
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Now we are going to find the magnitudes of the forces shown in Fig. 1. The 

tangential components 
1

T  and 
2

T  of the perturbing forces �̅�p1 and �̅�p2, respectively, and 

the tangential components 
1

S  and 
2

S  of the moving forces 
1

P  and 
2

P , respectively, 

do not have any direct effect on the beet root, they only produce loosening of the soil 

around the root. 

It should be noted, taking into account the symmetry of the beet root gripping by 

the vibrational lifting unit, that the same name forces generated on the two share working 

surfaces during their interaction with the beet root will have equal magnitudes and 

symmetrical lines of action with respect to the symmetry plane x1O1z1 (Fig. 1). 

Accordingly, from the schematic model of forces we derive the formulae for finding the 

normal components 
1

N  and 
2

N  and the tangential components 
1

T  and 
2

T  of the 

perturbing forces 1pQ  and 2pQ . They have the following values: 
 

𝑁1 = 𝑁2 = 𝑄𝑝1 cos 𝛿,  (11) 

 

𝑇1 = 𝑇2 = 𝑄𝑝1 sin 𝛿. (12) 
 

From the same schematic force model the formulae for finding the normal 

components 
1

L  and 
2

L  and tangential components 
1

S  and 
2

S  of the moving forces 

1
P  and 

2
P , respectively, can be derived: 

 

sin  
121

PLL  , (13) 

 

cos  
121

PSS  . (14) 
 

The magnitudes of the forces 1K
N  and 2K

N  are as follows, taking into account the 

expressions (9), (11) and (13): 
 

 sincos 11p21 PQNN KK  , (15) 
 

or, considering the expression (2), we come to the following: 
 

 sin)sin(cos
2

1
121 PtHNN KK  . (16) 

 

Hence, the magnitudes of the friction forces 
1K

F  and 
2K

F  are: 
 

  sincos 11121 PQfNfFF pKKK  , (17) 
 

or, considering the expression (2), we come to: 
 

 sin)sin(cos
2

1
121 PftHfFF KK  , (18) 

 

where f – coefficient of friction.  
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Apparently, during the immediate contact between the wedges A1B1C1 and A2B2C2 

and the beet root surface, the friction force vectors �̅�K1 and �̅�K2 always lie in the wedge 

planes A1B1C1 and A2B2C2, respectively. Besides that, due to the soil resistance forces, 

the slipping of the beet root on the surfaces of the wedges along the lines of action of the 

forces �̅�1, �̅�2 (parallel to the lines B1M1 and B2M2) and in the direction opposite to the 

forces 𝑆̅1 and 𝑆̅2 is possible. 

Therefore, the vector of the relative speed of the beet root slipping on the surfaces 

of the wedges can be resolved into components in the above said directions. Thus, the 

friction force �̅�K1 can also be resolved into two components: �̅�1 – in the direction 

opposite to the vector �̅�1, and �̅�1 – in the direction of the vector 𝑆̅1, i.e.: 
 

111
EFF

K
 . (19) 

 

Similarly, the friction force �̅�K2 can as well be resolved into two components: �̅�2 – 

in the direction opposite to the vector �̅�2, and �̅�2 – in the direction of the vector  

𝑆̅2, i.e.: 

222
EFF

K
 . (20) 

 

Obviously, F1 = F2, E1 = E2. 

Now let’s find the magnitudes of the components of the forces �̅�1 and �̅�1, and 

consequently �̅�2 and �̅�2. Basing on the above considerations and expression (16), a 

deduction can be drawn that in the intervals [2kπ, (2k + 1)π], k = 0, 1, 2, …, particularly 

in the interval [0, π], the magnitude of the friction force �̅�K1 (�̅�K2) shall be determined in 

accordance with the formula (18), moreover, in the interval [0,
𝜋

2
] it rises from its 

minimum value: 
 

sin
1min2min1

PfFF
KK

 , (21) 
 

to the maximum value: 

 sincos
2

1
1max2max1 PfHfFF KK  , (22) 

 

While in the interval [
𝜋

2
, 𝜋] it decreases from �̅�K1max (�̅�K2max) to �̅�K1min (�̅�K2min). 

Besides that, the direction of the friction force vector in the interval [0,
𝜋

2
] also changes. 

The vector �̅�K1min (�̅�K2min) has the same direction as the friction force vector of a usual 

share lifter (in the absence of any perturbing force), i.e. parallel to the right lines A1O1' 

(A2O2'), while O1'A1M1 = O2'A2M2 = γ (Bulgakov, 2005). The vector �̅�K1max (�̅�K2max) 

deflects from the vector �̅�K1min (�̅�K2min) through a certain angle 𝛼𝐾1𝑚𝑎𝑥(𝛼𝐾2𝑚𝑎𝑥) , while 

𝛼𝐾1𝑚𝑎𝑥 = 𝛼𝐾2𝑚𝑎𝑥. 

So, in the interval [0,
𝜋

2
] the force vector �̅�K1 (�̅�K2) changes from the vector �̅�K1min 

(�̅�K2min) to the vector �̅�K1max (�̅�K2max), and in the interval [
𝜋

2
, 𝜋] – from the vector �̅�K1max 

(�̅�K2max) to the vector �̅�K1min (�̅�K2min). Hence, the angle 𝛼𝐾1(𝛼𝐾2) of the deflection of the 

vector  �̅�K1 (�̅�K2) from the vector �̅�K1min (�̅�K2min) changes in the interval [0, π] under the 

following law: 
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)sin(max112 tKKK   . (23) 
 

Apparently, the value 
max1K

  (
max2K

 ) depends first of all on the ratio 
𝐻

𝑃1
 (
𝐻

𝑃2
) and 

the greater the ratio is, the greater the value grows. Therefore, in the interval [0, π] the 

magnitude of the friction force vector �̅�K1 (�̅�K2) changes according to the law (18), while 

its direction – according to the law (23). 

So, in the interval [0, π] we have the following values of the component forces �̅�1 

(�̅�2) and �̅�1( �̅�2): 
 

 
1121

sin
KK

FFF   , (24) 
 

 1121 cos KKFEE   , (25) 
 

then, taking into account (18) and (23), we obtain: 
 

 )sin(sinsin)sin(cos
2

1
max1121 tPftHfFF K  








 , (26) 

 

 )sin(cossin)sin(cos
2

1
max1121 tPftHfEE K  








 . (27) 

 

The formulae (26) and (27) are effective in any of the intervals [2kπ, (2k + 1)π],  

k = 0, 1, 2, … 

Obviously, within the intervals [(2k + 1)π, 2kπ], k = 0, 1, 2, …, the friction forces 

�̅�K1 (�̅�K2) are as follows: 
 

sin
1min121

PfFFF
KKK

 . (28) 
 

Hence, the following is observed in the denoted intervals: 
 

 2

11min121
sinsinsinsin PfPfFFF

K
 , (29) 

 

 2sin
2

1
cossincos

11min121
PfPfFEE

K
 . (30) 

 

It can be assumed that the loosened soil resistance forces during the direct beet root 

lifting from the soil are a function of the speed, with which the beet root travels in the 

loosened soil. However, as a first approximation, the magnitudes of these forces can be 

regarded constant. Hence, overall, in order to simplify the mathematical model, we 

consider the forces �̅�x1, �̅�z1 and the moment of couple М to be constant. 
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THEORY AND MODELLING 

 

Taking into account the equivalent schematic model (model of forces) drawn 

above, the differential equations of motion of the beet root’s centre of mass during its 

direct lifting from the soil in the vectorial form will be as follows: 
 

1121212121 xzkk
RRGEEFFLLNNam  , (31) 

 

where mk is the beet root mass; a  is the acceleration of the beet root’s centre of mass. 

 

Further, we are going to derive the differential equations of motion of the beet root’s 

centre of mass (point C) during its translational movement along the axes O1x1 and O1z1. 

As the process of beet root lifting from the soil occurs in case of the lifting unit 

symmetrically gripping the root body, so the root’s movement along the working passage 

effectively takes place in the longitudinal and vertical plane (plane x1O1z1), therefore, 

the vector equation (31) is reduced to differential equations in the projections on the axes 

Ox1 and Oz1 of the following form: 
 









.

,

11211121112111

112111211121112111

zkzzzzzzk

xxxxxxxxxk

RGFFLLNNzm

REEFFLLNNxm




 (32) 

 

Let’s determine the values of the force projections on the axes Ox1 and Oz1 used in 

the system of equations (32). Taking into account the formulae derived in (Bulgakov et 

al., 2015b), the projections of the normal components �̅�1 and �̅�2 on the axis O1x1 are 

determined as follows: 
 





22

1
1211

tan1tan

tan




N
NN xx , (33) 

 

or, taking into account the expression (11), we obtain: 
 





22

1

1211

tan1tan

tancos




p

xx

Q
NN . (34) 

 

The projections of the normal components �̅�1 and �̅�2 on the axis O1x1 have the 

following values: 





22

1
1211

tan1tan

tan




L
LL xx , (35) 

or, taking into account the expression (13), we obtain: 
 





22

1
1211

tan1tan

tansin




P
LL xx . (36) 
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For the projections of the friction force components �̅�1 and �̅�2 the following 

expressions are obtained: 
 

 sincos
11211

FFF
xx
 , (37) 

 

or, taking into account the expression (26), we have: 
 

𝐹1𝑥1 = 𝐹2𝑥1 = [
1

2
𝑓𝐻 cos 𝛿 sin(𝜔𝑡) + 𝑓𝑃1 sin 𝛾] ×

× sin[𝛾 + 𝛼𝐾1𝑚𝑎𝑥 sin(𝜔𝑡)] cos 𝛿 sin𝛾, 
 

ωt   [2kπ, (2k + 1)π], k = 0, 1, 2,... 

(38) 

 

Taking into consideration the formula (29), we come to: 
 

 

3

1 1 2 1 1 sin cos ,

2 1 , 2 , 1, 2,...

x xF F f P

t k k k

 

  

 

    

 
(39) 

 

The projections of the friction force components �̅�1 and �̅�2 on the axis O1x1 will be 

as follows: 
 

cos11211 EEE xx  , (40) 

 

or, taking into account (27), we have the following expression: 

 

𝐸1𝑥1 = 𝐸2𝑥1 = [
1

2
𝑓𝐻 cos 𝛿 sin(𝜔𝑡) + 𝑓𝑃1 sin 𝛾]

× cos[𝛾 + 𝛼𝐾1𝑚𝑎𝑥 sin(𝜔𝑡)] cos 𝛾, 
 

ωt  [2kπ, (2k + 1)π], k = 0, 1, 2,... 

(41) 

 

Taking into account the expression (30), we obtain: 
 

 

1 1 2 1 1

1
sin 2 cos ,

2

2 1 , 2 , 1, 2,...

x xE E f P

t k k k

 

  

 

    

 
(42) 

 

The projections of the friction force components �̅�1 and �̅�2 on the axis O1z1 are 

equal to zero in any interval, i.e. E1z1 = E2z1 = 0.  

The projections of the normal components �̅�1 and �̅�2 on the axis O1z1, according 

to (Bulgakov et al., 2015b), are as follows: 
 





22

1

1211

tan1tan

tan




N
NN zz

, (43) 
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or, taking into account the expression (11), we come to: 
 





22

1

1211

tan1tan

tancos




p

zz

Q
NN . (44) 

 

The projections of the normal components �̅�1 and �̅�2 on the axis O1z1 will be equal 

to: 
 





22

1
1211

tan1tan

tan




L
LL zz , (45) 

 

or, taking into account the expression (13), we have: 
 





22

1
1211

tan1tan

tansin




P
LL zz . (46) 

 

The projections of the friction force components �̅�1 and �̅�2 on the axis O1z1 will be 

equal to: 
 

sin
11211

FFF
zz
 , (47) 

 

or, taking into account the expression (26), we have: 

 

𝐹1𝑧1 = 𝐹2𝑧1 = [
1

2
𝑓𝐻 cos 𝛿 sin(𝜔𝑡) + 𝑓𝑃1 sin𝛾]

× sin[𝛾 + 𝛼𝐾1𝑚𝑎𝑥 sin(𝜔𝑡)] sin 𝛿 , 
 

                      ωt  [2kπ, (2k + 1)π], k = 0, 1, 2,... 

(48) 

 

Taking into consideration the formula (29), we obtain: 
 

 

2

1 1 2 1 1 sin sin ,

2 1 , 2 , 1, 2,...

z zF F f P

t k k k

 

  

 

    

 
(49) 

 

By substituting the expressions (34), (36), (38) or (39), (41) or (42), (44), (46), (48) 

or (49) into the system of differential equations (32), we obtain the following system of 

differential equations: 
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𝑚𝑘�̈�1 =
2𝑄𝑝1 cos 𝛿 tan 𝛾

√(tan 𝛾)2 + 1 + (tan 𝛽)2
+

2𝑃1 sin 𝛾 tan 𝛾

√(tan 𝛾)2 + 1 + (tan𝛽)2

++2 [
1

2
𝑓𝐻 cos 𝛿 sin(𝜔𝑡)

+ 𝑓𝑃1 sin 𝛾] sin[𝛾 + 𝛼𝐾1𝑚𝑎𝑥 sin(𝜔𝑡)] cos𝛿 sin 𝛾

+ 2 [
1

2
𝑓𝐻 cos 𝛿 sin(𝜔𝑡)

+ 𝑓𝑃1 sin 𝛾] cos[𝛾 + 𝛼𝐾1𝑚𝑎𝑥 sin(𝜔𝑡)] cos 𝛾 − 𝑅𝑥1 

 

𝑚𝑘�̈�1 =
2𝑄𝑝1 cos 𝛿 tan𝛽

√(tan 𝛾)2 + 1 + (tan 𝛽)2
+

2𝑃1 sin 𝛾 tan 𝛽

√(tan 𝛾)2 + 1 + (tan𝛽)2

− 2 [
1

2
𝑓𝐻 cos𝛿 sin(𝜔𝑡)

+ 𝑓𝑃1 sin 𝛾] sin[𝛾 + 𝛼𝐾1𝑚𝑎𝑥 sin(𝜔𝑡)] sin 𝛿 − 𝐺𝑘 − 𝑅𝑧1, 

 

𝜔𝑡 ∈ [2𝑘𝜋, (2𝑘 + 1)𝜋], 𝑘 = 1, 2, … }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 (50) 

 

or: 
 

𝑚𝑘�̈�1 = 
2𝑃1 sin 𝛾 tan 𝛾

√tan2 𝛾 + 1 + tan2 𝛽
+ 2𝑓𝑃1 sin

3 𝛾 cos𝛿 + 𝑓𝑃1 sin2𝛾 cos 𝛾 − 𝑅𝑥1, 
 

                𝑚𝑘�̈�1 =
2𝑃1 sin 𝛾 tan 𝛽

√tan2 𝛾 + 1 + tan2 𝛽
− 2𝑓𝑃1 sin

2 𝛾 sin 𝛿 − 𝐺𝑘 − 𝑅𝑧1, 

 

             𝜔𝑡 ∈ [(2𝑘 − 1)𝜋, 2𝑘𝜋], 𝑘 = 1, 2, … }
 
 
 

 
 
 

 (51) 

 

In the systems of equations (50), (51) the magnitudes of the loosened soil resistance 

forces �̅�x1 and �̅�z1 acting during the beet root’s movement in the working passage of the 

vibrational lifting unit are regarded constant. 

Now we are going to establish the initial conditions for the differential equations 

(50), (51). Since the beet root prior to the start of its direct lifting from the soil performs 

oscillations about the equilibrium position, the following can be taken as the initial 

conditions for the coordinates of the root’s centre of mass (point C): 
 

at t = 0: 

101
xx  ,       k

hz
3

1
1

 , 

Where x10 is the distance from the vertical centreline of the beet root to the origin of 

coordinates (point O1) at the time point t = 0. 

An error, if any, can arise only within the limits of the beet root oscillation 

amplitude, which is very insignificant as compared with the length of the lifting unit 

working passage and the running depth in soil, where the root lifting is done. Considering 



1179 

further that during each oscillation, within the whole period, the instants exist, when the 

beet root displacement velocity is equal to zero, we take as the initial time point exactly 

such an instance during the last oscillation followed further by direct beet root lifting 

from the soil. 

Thus, the initial conditions for the systems of differential equations (50), (51) 

will be as follows: 

at t = 0: 

0,0 11  zx  ,           
k

hzxx
3

1
,

1101
 . (52) 

 

After substituting the expression (2) into the system of equations (50) and making 

certain transformations, we obtain the following system of differential equations: 
 

�̈�1 = 
1

𝑚𝑘
[

cos 𝛿 tan 𝛾

√tan2 𝛾 + 1 + tan2 𝛽
+ 𝑓 cos2 𝛿 sin[𝛾 + 𝛼𝐾1𝑚𝑎𝑥 sin(𝜔𝑡)] sin 𝛾

+ 𝑓 cos 𝛿 cos[𝛾 + 𝛼𝐾1𝑚𝑎𝑥 sin(𝜔𝑡)] cos 𝛾]  

× 𝐻 sin(𝜔𝑡)  

+
2

𝑚𝑘
 [

sin 𝛾 tan 𝛾

√tan2 𝛾 + 1 + tan2 𝛽
 

+ 𝑓 sin2 𝛾 sin[𝛾 + 𝛼𝐾1𝑚𝑎𝑥 sin(𝜔𝑡)] cos 𝛿

+ 𝑓 sin 𝛾 cos 𝛾 cos[𝛾 + 𝛼𝐾1𝑚𝑎𝑥 sin(𝜔𝑡)]] 𝑃1  −
𝑅𝑥1
𝑚𝑘

, 

 

}
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 (53) 

�̈�1 = 
1

𝑚𝑘
[

cos 𝛿 tan𝛽

√tan2 𝛾 + 1 + tan2 𝛽

− 𝑓 cos 𝛿 sin[𝛾 + 𝛼𝐾1𝑚𝑎𝑥 sin(𝜔𝑡)] sin 𝛿]

× 𝐻 sin(𝜔𝑡) +
2

𝑚𝑘
[

sin 𝛾 tan𝛽

√tan2 𝛾 + 1 + tan2 𝛽

− 𝑓 sin 𝛾 sin[𝛾 + 𝛼𝐾1𝑚𝑎𝑥 sin(𝜔𝑡)] sin 𝛿]𝑃1 −
𝐺𝑘
𝑚𝑘

−
𝑅𝑧1
𝑚𝑘

 , 

 

𝜔𝑡 ∈ [2𝑘𝜋, (2𝑘 + 1)𝜋], 𝑘 = 1, 2, … 

 

The system of differential equations (53) is nonlinear. It can be integrated only with 

the use of approximate numerical methods on a PC. First, we are going to make certain 

assumptions. As a first approximation, we assume that the friction force vectors  �̅�K1 and 
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�̅�K2 maintain a constant direction, i.e. the angle between the vectors  �̅�K1min and �̅�K1 is 

constant and equal to 
𝛼𝐾1𝑚𝑎𝑥

2
, similarly, the angle between the vectors �̅�K2min and �̅�K2 is 

also constant and equal to 
𝛼𝐾2𝑚𝑎𝑥

2
, while 

𝛼𝐾2𝑚𝑎𝑥

2
 = 

𝛼𝐾1𝑚𝑎𝑥

2
. 

Taking into account these assumptions, the system of differential equations (53) 

acquires the following form: 
 

�̈�1 = 
1

𝑚𝑘
[

cos 𝛿 tan 𝛾

√tan2 𝛾 + 1 + tan2 𝛽

+ 𝑓 cos2 𝛿 sin (𝛾 +
𝛼𝐾1𝑚𝑎𝑥
2

) sin 𝛾

+ 𝑓 cos 𝛿 cos (𝛾 +
𝛼𝐾1𝑚𝑎𝑥
2

) cos 𝛾]𝐻 sin(𝜔𝑡)

+
2

𝑚𝑘
[

sin 𝛾 tan 𝛾

√tan2 𝛾 + 1 + tan2 𝛽

+ 𝑓 sin2 𝛾 sin (𝛾 +
𝛼𝐾1𝑚𝑎𝑥
2

) cos 𝛿 

+ 𝑓 sin 𝛾 cos 𝛾  cos (𝛾 +
𝛼𝐾1𝑚𝑎𝑥
2

)] 𝑃1 −
𝑅𝑥1
𝑚𝑘

 , 

 

}
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 (54) 

�̈�1 = 
1

𝑚𝑘
[

cos 𝛿 tan𝛽

√tan2 𝛾 + 1 + tan2 𝛽
 − 𝑓 cos 𝛿 sin (𝛾 +

𝛼𝐾1𝑚𝑎𝑥
2

) sin 𝛿]

× 𝐻 sin(𝜔𝑡) +
2

𝑚𝑘
[

sin 𝛾 tan𝛽

√tan2 𝛾 + 1 + tan2 𝛽

− 𝑓 sin 𝛾 sin (𝛾 +
𝛼𝐾1𝑚𝑎𝑥
2

) sin 𝛿] 𝑃1 −
𝑅𝑧1
𝑚𝑘

− 𝑔  , 

 

𝜔𝑡 ∈ [2𝑘𝜋, (2𝑘 + 1)𝜋], 𝑘 = 0, 1, 2, … 
 
 

where g – gravitational acceleration. 
 

The system of differential equations (54) is a system of linear second-order 

differential equations. It can be solved by using the integration method.  

To reduce the expression of the system of differential equations (54), we introduce 

the following designations. 
 

1

𝑚𝑘
[

cos 𝛿 tan 𝛾

√tan2 𝛾 + 1 + tan2 𝛽

+ 𝑓 cos2 𝛿 sin (𝛾 +
𝛼𝐾1𝑚𝑎𝑥
2

) sin 𝛾

+ 𝑓 cos 𝛿 cos (𝛾 +
𝛼𝐾1𝑚𝑎𝑥
2

) cos 𝛾] = 𝜑1 , 

(55) 
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[
sin 𝛾 tan 𝛾

√tan2 𝛾 + 1 + tan2 𝛽

+ 𝑓 sin2 𝛾 sin (𝛾 +
𝛼𝐾1𝑚𝑎𝑥
2

) cos 𝛿

+ 𝑓 sin 𝛾 cos 𝛾 cos (𝛾 +
𝛼𝐾1𝑚𝑎𝑥
2

)] = 𝜓1 , 

(56) 

 

1

𝑚𝑘
[

cos 𝛿 tan𝛽

√tan2 𝛾 + 1 + tan2 𝛽
− 𝑓 cos 𝛿 sin (𝛾 +

𝛼𝐾1𝑚𝑎𝑥
2

) sin 𝛿] = 𝜑2 , (57) 

 

2

𝑚𝑘
[

sin 𝛾 tan𝛽

√tan2 𝛾 + 1 + tan2 𝛽
− 𝑓 sin 𝛾 sin (𝛾 +

𝛼𝐾1𝑚𝑎𝑥
2

) sin 𝛿] = 𝜓2 (58) 

 

Taking into consideration the expressions (55) – (58), the system of differential 

equations (54) assumes the following form: 
 

�̈�1 = 𝜑1𝐻 sin(𝜔𝑡) + 𝜓1𝑃1 −
𝑅𝑥1
𝑚𝑘

 , 

 

}
 
 

 
 

 

 

(59) 

�̈�1 = 𝜑2𝐻 sin(𝜔𝑡) + 𝜓2𝑃1 −
𝑅𝑧1
𝑚𝑘

− 𝑔 . 
 

 

Now we are going to integrate the system of differential equations (59). The first 

integral will be as follows: 
 

�̇�1 = −
𝜑1
𝜔
cos(𝜔𝑡) + 𝜓1𝑃1𝑡 −

𝑅𝑥1
𝑚𝑘

𝑡 + 𝐶1 , 

 

}
 
 

 
 

 

 

(60) 

�̇�1 = −
𝜑2
𝜔
cos(𝜔𝑡) + 𝜓2𝑃1𝑡 −

𝑅𝑧1
𝑚𝑘

𝑡 − 𝑔𝑡 + 𝐿1 , 
 

 

where C1 and L1 are arbitrary constants. 

 

The second integral of the system of differential equations (59) will be as follows: 

 

𝑥1 = −
𝜑1𝐻

𝜔2
sin(𝜔𝑡) +

𝜓1𝑃1𝑡
2

2
−
𝑅𝑥1𝑡

2

2𝑚𝑘
+ 𝐶1𝑡 + 𝐶2 , 

 

}
 
 

 
 

 (61) 

𝑧1 = −
𝜑2𝐻

𝜔2
sin(𝜔𝑡) +

𝜓2𝑃1𝑡
2

2
−
𝑅𝑧1𝑡

2

2𝑚𝑘
−
𝑔𝑡2

2
+ 𝐿1𝑡 + 𝐿2 , 

 

where C2 and L2 are arbitrary constants. 
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The arbitrary constants C1, L1, C2 and L2 are determined by the initial conditions 

(52). These arbitrary constants are equal to: 
 

1 2
1 1 2 10 2

1
, , ,

3
k

H H
C L С x L h

 

 
     . (62) 

 

By substituting the values of the arbitrary constants C1 and L1 into the system of 

differential equations (60), we obtain: 
 

�̇�1 = −
𝜑1𝐻

𝜔
cos(𝜔𝑡) + 𝜓1𝑃1𝑡 −

𝑅𝑥1𝑡

𝑚𝑘
+
𝜑1𝐻

𝜔
 , 

 

}
 
 

 
 

 

 

(63) 

�̇�1 = −
𝜑2𝐻

𝜔
cos(𝜔𝑡) + 𝜓2𝑃1𝑡 −

𝑅𝑧1𝑡

𝑚𝑘
+
𝜑2𝐻

𝜔
 . 

 

By substituting the values of the derived arbitrary constants C1, C2, L1 and L2 into 

the system of equations (61), we obtain: 
 

𝑥1 = −
𝜑1𝐻

𝜔2
sin(𝜔𝑡) +

𝜓1𝑃1𝑡
2

2
−
𝑅𝑥1𝑡

2

2𝑚𝑘
+
𝜑1𝐻𝑡

𝜔
+ 𝑥10 , 

 

}
 
 

 
 

 (64) 

𝑧1 = −
𝜑2𝐻

𝜔2
sin(𝜔𝑡) +

𝜓2𝑃1𝑡
2

2
−
𝑅𝑧1𝑡

2

2𝑚𝑘
−
𝑔𝑡2

2
+
𝜑2𝐻𝑡

𝜔
−
1

3
ℎ𝑘  . 

 

The systems of equations (63) and (64), respectively, characterize the laws of 

variation of the speed and displacement of the beet root’s centre of mass in the process 

of its direct lifting from the soil. From the second equation of the system (64) the time t1 

of the direct beet root lifting from the soil can be found. For that purpose we have to 

substitute the value z1 = 0 into the left member of the said equation and solve the resulting 

equation for t1. Since the equation is transcendental, it is impossible to derive any 

analytic expression for finding t1. However, it can be solved with the use of a PC 

applying the known methods. The computed value of t1 can be subsequently used for 

determining the productivity of the sugar beet root harvesting machine equipped with 

vibrational lifting units. 

Next we are going to give consideration to the system of differential equations (51). 

To reduce the expression of this system of equations, we again introduce the following 

designations: 

1

𝑚𝑘
[

2sin 𝛾 tan 𝛾

√tan2 𝛾 + 1 + tan2 𝛽
+ 2𝑓 sin3 𝛾 cos 𝛿 + 𝑓 sin(2𝛾) cos 𝛾] = 𝜓′1 (65) 

 

1

𝑚𝑘
[

2sin 𝛾 tan𝛽

√tan2 𝛾 + 1 + tan2 𝛽
− 2𝑓 sin2 𝛾 sin 𝛾 sin 𝛿] = 𝜓′2 (66) 
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Taking into account the expressions (65), (66), the system of differential equations 

(51) will take the following form: 
 

𝑀𝑦𝑐(𝐹1̅) = 𝑀𝑦𝑐(�̅�2)

= (
1

2
𝑓𝐻 cos 𝛿 sin(𝜔𝑡) + 𝑓 𝑃1 sin 𝛾)

× sin[𝛾 + 𝛼𝐾1𝑚𝑎𝑥 sin(𝜔𝑡)] cos 𝛾𝑘(−ℎ𝑘 + ℎ − 𝑧1) sin 𝜃 , 
 

𝜔𝑡 ∈ [2𝑘𝜋, (2𝑘 + 1)𝜋], 𝑘 = 0, 1, 2, … 

(67) 

 

After the first integration of the system of differential equations (67), we obtain: 
 
















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,

1121

1111

1

1

Lt
m

R
t

m

G
tPz

Ct
m

R
tPx

k

z

k

k

k

x









 (68) 

 

where C1 and L1 are arbitrary constants,  

 2 1 , 2 , 1, 2,...t k k k        
 

After the second integration of the system of differential equations (67), we obtain: 
 














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,
222

,
22

21

222

121

21

22

111

1

1

LtL
m

tR

m

tGt
Pz

CtC
m

tRt
Px

k

z

k

k

k

x





 (69) 

 

where C2 and L2 are arbitrary constants, 

 2 1 , 2 , 1, 2,...t k k k        
The arbitrary constants C1, L1, C2 and L2 are determined by the initial conditions 

(52). These arbitrary constants are equal to: 
 

k
hLxСLC

3

1
,,0,0

210211
 . (70) 

 

By substituting the values of the arbitrary constants C1 and L1 into the system of 

equations (68), we obtain: 
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 

1

1

1 1 1

1 2 1

,

,

2 1 , 2 , 1, 2,...

x

k

zk

k k

R
x Pt t

m

RG
z Pt t t

m m

t k k k





  


  



  



    

 
(71) 

 

By substituting the values of the arbitrary constants C1, L1, C2 and L2 into the system 

of equations (69), we obtain: 
 

 

1

1

22

1 1 1 10

22 2

1 2 1

,
2 2

1
,

2 2 2 3

2 1 , 2 , , 1, 2,...

x

k

zk
k

k k

R tt
x P x

m

R tt G t
z P h

m m

t k k k





  


   





    


    

 
(72) 

 

The systems of equations (71) and (72), respectively, characterize the laws of 

variation of the speed and displacement of the beet root’s centre of mass in the process 

of its direct lifting from the soil in the absence of the perturbing force action. 

Now we are going to derive the differential equation of the beet root’s rotation 

around its centre of mass (around the axis Cy, which passes through the beet root’s centre 

of mass (point C) parallel to the axis O1y1). According to (Dreizler & Lüdde, 2010), the 

said equation will have the following form: 
 

𝐼𝑦𝑐
𝑑2𝜃

𝑑𝑡2
= 𝑀𝑦𝑐

𝑒 , (73) 

 

where   is the angular displacement of the beet root around the axis Cyc; Iyc is the root’s 

moment of inertia with reference to the axis Cyc; 𝑀𝑦𝑐
𝑒  is the moment of rotation around 

the axis Cyc (total moment of all external forces applied to the beet root with reference 

to the axis Cyc). 

Further, let’s find the moments of all external forces with reference to the axis Cyc 

in accordance with the schematic model of forces presented in Fig. 1. As the movement 

of the beet root’s centre of mass is considered with reference to the coordinate system 

x1O1y1z1, so we will determine the positions of K1 and K2 – the points of contact between 

the root and the lifting shares’ working surfaces A1B1C1 and A2B2C2 with reference to 

the same coordinate system. As we can see in the schematic model in Fig. 1, the ordinate 

of the contact points K1 and K2 in the assumed coordinate system will be equal to: 

hhzz
kKK


21
, 

where h is the distance from the conditional fixation point O to the plane that extends 

through the contact points and is perpendicular to the beet root symmetry axis. 
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Since the movement of the vibrational lifting unit shares takes place at a certain 

depth, the value h for the specific beet root can vary only within the share oscillation 

amplitude, which is considerably smaller in comparison with the value h. Therefore, the 

value h for any specific beet root can be regarded constant. The ordinate of the beet 

root’s centre of mass (point C) at a random instant will be: 

1
zz

c
 , 

where z1 is determined by the second equation of the system (64). 

Thus, the ordinate of the points K1 and K2 varies from the ordinate of the point C 

by the value: 

1
zhh

k
 . 

So, for example, from the very beginning of the direct lifting 









3
1

k
h

z  we have:  

3

2

3

kk

k

h
h

h
hh  . 

Then the moments of all external forces applied to the beet root at a random instant 

will be equal to: 
 

𝑀𝑦𝑐(�̅�𝑝1) = 𝑀𝑦𝑐(�̅�𝑝2) = −𝑄𝑝1(−ℎ𝑘 + ℎ − 𝑧1) sin 𝜃  (74) 
 

since the force vectors 
1pQ  and 

2pQ  are parallel to the plane x1O1z1. 

 

𝑀𝑦𝑐(�̅�1) = 𝑀𝑦𝑐(�̅�2) = −𝑃1(−ℎ𝑘 + ℎ − 𝑧1) cos 𝜃, (75) 
 

since the force vectors 
1

P  and 
2

P  are parallel to the plane x1O1z1. 
 

𝑀𝑦𝑐(�̅�1) = 𝑀𝑦𝑐(�̅�2) = 𝐹1 cos 𝛾𝑘 (−ℎ𝑘 + ℎ − 𝑧1) sin𝜃 , (76) 
 

or, taking into account the expression (26), we have: 
 

𝑀𝑦𝑐(�̅�1) = 𝑀𝑦𝑐(�̅�2)

= (
1

2
𝑓𝐻 cos 𝛿 sin(𝜔𝑡)

+ 𝑓𝑃1 sin𝛾) sin[𝛾 + 𝛼𝐾1𝑚𝑎𝑥 sin(𝜔𝑡)] cos 𝛾𝑘 (−ℎ𝑘 + ℎ

− 𝑧1) sin𝜃 , 
𝜔𝑡 ∈ [2𝑘𝜋, (2𝑘 + 1)𝜋], 𝑘 = 0, 1, 2, … 

(77) 

 

Then, taking into consideration the expression (29), we obtain: 
 

𝑀𝑦𝑐(�̅�1) = 𝑀𝑦𝑐(�̅�2) = 𝑓𝑃1 sin
2 𝛾 cos 𝛾𝑘 (−ℎ𝑘 + ℎ − 𝑧1) sin𝜃 , (78) 

𝜔𝑡 ∈ [(2𝑘 − 1)𝜋, 2𝑘𝜋], 𝑘 = 1, 2, … 
 

𝑀𝑦𝑐(�̅�1) = 𝑀𝑦𝑐(�̅�2) = 𝐸1 cos 𝛾 (−ℎ𝑘 + ℎ − 𝑧1) cos 𝜃 . (79) 
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Considering the expression (27), we obtain: 
 

𝑀𝑦𝑐(�̅�1) = 𝑀𝑦𝑐(�̅�2)

= (
1

2
𝑓𝐻 cos 𝛿 sin(𝜔𝑡) + 𝑓 𝑃1 sin 𝛾)

× cos[𝛾 + 𝛼𝐾1𝑚𝑎𝑥 sin(𝜔𝑡)] cos 𝛾𝑘(−ℎ𝑘 + ℎ − 𝑧1) cos 𝜃 , 
 

𝜔𝑡 ∈ [2𝑘𝜋, (2𝑘 + 1)𝜋], 𝑘 = 0, 1, 2, … 

(80) 

 

And after using the expression (30), we will come to: 
 

𝑀𝑦𝑐(�̅�1) = 𝑀𝑦𝑐(�̅�2) =
1

2
𝑓𝑃1 sin 2𝛾 cos 𝛾 (−ℎ𝑘 + ℎ − 𝑧1) cos 𝜃 , 

 (81) 

𝜔𝑡 ∈ [(2𝑘 − 1)𝜋, 2𝑘𝜋, ], 𝑘 = 1, 2, … 

 

For the remaining forces: 
 

𝑀𝑦𝑐(�̅�𝑘) = 0 , (82) 
 

𝑀𝑦𝑐(�̅�𝑥1) = 0 , (83) 
 

𝑀𝑦𝑐(�̅�𝑧1) = 0 , (84) 
 

since the vectors 
k

G , 
1x

R  and 
1z

R  intersect the axis Cyc. 

Hence, basing on the expressions (74), (75), (77) or (78), (80) or (81), (82), (83), 

(84) and the moment М of the couple of forces of the loosened soil’s resistance to the 

rotation of the beet root, we find the value of the rotation moment e

yc
M  of all external 

forces with reference to the axis Cy as follows: 
 

𝑀𝑦𝑐
𝑒 = −2𝑄𝑝1(−ℎ𝑘 + ℎ − 𝑧1) sin 𝜃 + 2𝑃1 cos 𝜃 (−ℎ𝑘 + ℎ − 𝑧1)

+ (𝑓𝐻 cos 𝛿 sin(𝜔𝑡) + 2𝑓 𝑃1 sin 𝛾)
× sin[𝛾 + 𝛼𝐾1𝑚𝑎𝑥 𝑠𝑖𝑛(𝜔𝑡)]  
× cos[𝛾 + 𝛼𝐾1𝑚𝑎𝑥 sin(𝜔𝑡)] cos 𝛾𝑘(−ℎ𝑘 + ℎ − 𝑧1) cos 𝜃 , 

(85) 

 

or, after some transformations: 
 

𝑀𝑦𝑐
𝑒 = 2𝑃1 cos 𝜃 (−ℎ𝑘 + ℎ − 𝑧1)

+ 2𝑓𝑃1 sin
2 𝛾 cos 𝛾𝑘 (−ℎ𝑘 + ℎ − 𝑧1) sin 𝜃

+ 𝑓𝑃1 sin 2𝛾 cos 𝛾 (−ℎ𝑘 + ℎ − 𝑧1) cos 𝜃 − 𝑀 , 

(86) 

𝜔𝑡 ∈ [(2𝑘 − 1)𝜋, 2𝑘𝜋], 𝑘 = 1, 2, … 
 

The moment of inertia Іус of the beet root with reference to the axis Cyc is 

determined with the use of the expression stated in (Bulgakov, 2011): 
 

𝐼𝑦𝑐 = (0.038 + 0.15 tan
2 𝛾𝑘) . (87) 
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By substituting the expressions (2), (87), (85) or (86) into the differential equation 

(73) we obtain the differential equation of the beet root’s rotation around the axis Cyc 

during its direct lifting from the soil, which has the following form: 
 

(0.038 + 0.25 tan2 𝛾𝑘)𝑚𝑘ℎ𝑘
2
𝑑2𝜃

𝑑𝑡2

= −𝐻(−ℎ𝑘 + ℎ − 𝑧1) sin 𝜃 sin(𝜔𝑡)
+ 2𝑃1 cos 𝜃 (−ℎ𝑘 + ℎ − 𝑧1)
+ (𝑓𝐻 cos 𝛿 sin(𝜔𝑡)
+ 2𝑓𝑃1 sin 𝛾) sin[𝛾 + 𝛼𝐾1𝑚𝑎𝑥 sin(𝜔𝑡)] cos 𝛾𝑘 (−ℎ𝑘
+ ℎ − 𝑧1) sin 𝜃 + (𝑓𝐻 cos 𝛿 sin(𝜔𝑡)
+ 2𝑓𝑃1 sin 𝛾) cos[𝛾+𝛼𝐾1𝑚𝑎𝑥 sin(𝜔𝑡)] cos 𝛾 (−ℎ𝑘 + ℎ
− 𝑧1) cos 𝜃 − 𝑀 , 
𝜔𝑡 ∈ [2𝑘𝜋, (2𝑘 + 1)𝜋], 𝑘 = 0, 1, 2, … 

 

(88) 

or: 

(0.038 + 0.15 tan2 𝛾𝑘)𝑚𝑘ℎ𝑘
2
𝑑2𝜃

𝑑𝑡2

= 2𝑃1 cos 𝜃 (−ℎ𝑘 + ℎ − 𝑧1) + 2𝑓𝑃1 sin
2 𝛾 cos 𝛾𝑘 (−ℎ𝑘

+ ℎ
− 𝑧1) sin 𝜃
+ 𝑓𝑃1 sin(2𝛾) cos 𝛾 (−ℎ𝑘 + ℎ − 𝑧1) cos 𝜃 − 𝑀 , 
𝜔𝑡 ∈ [(2𝑘 − 1)𝜋, 2𝑘𝜋], 𝑘 = 1, 2, … 

(89) 

 

The initial conditions for the obtained differential equation (89) are established 

basing on the same considerations as for the differential equation (52) and they will have 

the following form: 

At t = 0:  

0, 0   . (90) 

 

The differential equation (88) is nonlinear. It can be solved only with the use of 

numerical techniques and a PC. With this approach, the value z1 for each cycle of using 

the numerical algorithm has to be obtained from the second equation of the system (64) 

for the respective instant tk. 

The differential equation (89) is also nonlinear, since it includes the value z1, which 

is a variable, and for any instant tk this value z1 has to be obtained from the second 

equation of the system (72). 

Thus, the obtained analytic expressions, essentially, constitute the theory of direct 

sugar beet root lifting from the soil with the use of vibrational lifting units. The reached 

analytic expressions make it possible to define the kinematic modes of vibration-assisted 

beet root lifting basing on the requirement of keeping the roots intact and the design 

parameters of the vibrational lifting unit. 
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RESULTS AND DISCUSSION 

 

Now, let’s apply the achieved results of the developed theory and construct an 

algorithm for computing the kinematic parameters of the work process under 

consideration. Here are its main provisions: 

1. First we specify the required initial data for the calculation. 

2. Then we find the values φ1, ψ1, φ2, ψ2 in accordance with the expressions (55), 

(56), (57) and (58), respectively. 

3. Next, we find the sugar beet root motion law during its direct lifting from the 

soil, according to the expression (64). 

4. Now we move to drawing the diagrams for various values of the initial 

parameters, from those diagrams we find the time of duration of the direct beet root 

lifting from the soil. 

5. In order to carry out the numerical calculations, we have to specify the required 

parameters. Thus, according to Pogorely & Tatyanko, (2004) and Bulgakov, (2011), the 

specified parameters have the following values:  

– (average) mass of a sugar beet root: mk = 0.9 kg; 

– (average) length of a sugar beet root: hk = 0.25 m; 

– angles of the vibrational lifting unit’s trihedral wedges: γ = 14○, β = 52○; 

– friction coefficient of steel on the sugar beet root surface: f = 0.45; 

– resistance force exerted by the soil, when a sugar beet root moves in it:  

Rx = 100 N, Rz = 100 N; 

– amplitude of perturbing force: H = 500 N; 

– transverse moving force: P1 = 400 N; 

– angle of deflection of the friction force vector from the vector of its minimal  

value: 
max1K

 30°; 

– initial position of the sugar beet root’s centre of mass on the axis O1x1:  

x10 = 0.2 m. 

 

The dihedral angle δ between the wedge’s working surface and the lower base of 

the lifting share can be derived from the expression stated in (Bulgakov, 2011): 






cossin

cos
arctg . 

Calculations have been carried out for several values of the vibrational lifting unit 

oscillation frequency. 

Basing on the obtained law of motion of the beet root’s centre of mass (64) in the 

system of coordinates x1O1z1, we draw the graphs x1 = x1(t), z1 = z1(t) in the MathCAD 

environment (Fig. 2) in order to determine the lifting time.  

As may be inferred from the graphs, the duration of the beet root lifting from the 

soil (z1 = 0) reaches only 0.032 s. 
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a)  b)  
 

Figure 2. Graphs of the root’s centre of mass displacement along the axes O1x1 (a) and O1z1 

(b) as a function of time during the direct beet root lifting from the soil (H = 500 N; P1 = 400 N;  

Rx = 100 N; Rz = 100 N; ν = 10 Hz). 

 

In Fig. 3, the motion trajectory of the beet root’s centre of mass during the direct 

beet root lifting from the soil is shown. 
 

 
 

Figure 3. Beet root motion trajectory in the coordinate system x1O1z1 during the direct lifting of 

the root from the soil: (H = 500 N, P1 = 400 N, Rx = 100 N, Rz = 100 N, ν = 10 Hz). 

 

It becomes evident from the presented graph that within the interval of lifting the 

beet root from the soil (-0.083 ≤ z1 ≤ 0) its centre of mass moves effectively on a straight 

line. 

Obviously, this motion trajectory represents the actual trajectory of motion of the 

beet root’s centre of mass only as a certain approximation, since the soil resistance forces 

during the beet root displacement Rx1 and Rz1 are assumed to have constant magnitudes. 

Also, calculations have been carried out for the displacement of the beet root’s 

centre of mass along the axis O1z1 until its complete lifting from the soil as a function of 

the changing perturbing force amplitude and z1 = z1(H,t) at P1 = const and  

z1 = z1(P,t) at P = const have been obtained. 
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In Fig. 4, the surface and profile graph of z1 = z1(H,t) subject to the perturbing force 

amplitude variation within a range of H = 100…700 N (for a transverse moving force 

value of P1 = 400 N and an oscillation frequency value of ν = 10 Hz) are presented. 
 

  
  

 

Figure 4. Surface (a) and profile graph (b) of function z1 = z1(H,t) for the perturbing force 

amplitude’s variation within a range of H = 100…700 N (P1 = 400 N, ν = 10 Hz). 

 

As one may see in the shown graph, when the perturbing force amplitude changes 

within a range of 100…700 N, the time of beet root lifting from the soil changes within 

an interval of 0.053…0.028 s. 

In Fig. 5, the surface and profile graph of the function z1 = z1(P1,t)  subject to the 

transverse moving force variation within a range of P1 = 100…700 N (for a perturbing 

force amplitude value of H = 500 N and an oscillation frequency value of ν = 10 Hz) are 

presented. 
 

 

 

  
 

Figure 5. Surface (a) and profile graph (b) of function z1 = z1(P1,t) for the transverse moving 

force variation within a range of P1 = 100…700 N (H = 500 N, ν = 10 Hz). 
 

a) b) 

a) b) 
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As may be inferred from the shown graph, when the transverse moving force 

changes within a range of 100…700 N, the time of beet root lifting from the soil changes 

within a range of 0.043…0.026 s. 

 

CONCLUSIONS 

 

A new theory of lifting sugar beet roots from the soil with vibrational lifting units 

has been worked out. This includes the analytic description of the work process at all 

stages of lifting, starting from the instant, when the vibrational lifting unit grips the root, 

and up to the complete lifting of the root out of soil. 

The system of differential equations for the motions of the root during its direct 

lifting from the soil has been obtained. Solving the obtained differential equation system 

allows to find the law of motion of the sugar beet root’s centre of mass in the analytical 

form. 

The calculations in the MathCAD environment performed on a PC have made it 

possible to find the duration of direct beet root lifting from the soil and analyse the effect 

that the vibrational lifting unit design parameters and the kinematic modes of performing 

the work process have on the lifting time. 

Thus, at a perturbing force amplitude of H = 500 N, a transverse moving force of 

P1 = 400 N, soil resistance forces: along the axis Ox1 – Rx = 100 N and along the axis 

Oz1 – 100 N, a perturbing force frequency of ν = 10 Hz the time of root lifting from the 

soil is 0.032 s. When the perturbing force amplitude varies within a range of 100…700 N 

(at a transverse moving force of P1 = 400 N and a perturbing force frequency of  

ν = 10 Hz), the time of beet root lifting from the soil varies within a range of 

0.053…0.028 s. 

When the transverse moving force varies within a range of P1 = 100…700 N (at a 

perturbing force amplitude of H = 500 N and a perturbing force frequency of 10 Hz) the 

time of beet root lifting from the soil varies within a range of 0.043…0.026 s. 

The achieved results of the theoretical research provide a possibility to determine 

the optimal kinematic modes of operation and vibrational lifting unit design parameters, 

proceeding from the requirement of keeping sugar beet roots intact when harvesting 

them. 
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