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Abstract. The strain on food security, environmental health, ecosystems, and fertile land, driven 
by a growing global population, can be alleviated through sustainable agriculture. To navigate 
this critical situation, it is essential to leverage existing technologies. The advent of the Fourth 
Industrial Revolution and the evolution of the internet have opened up new possibilities such as 
precision agriculture, IoT-based farming, and data-driven analytics for the agriculture sector. One 
promising approach is the utilization of semantic web technologies in smart farming. This article 
presents an ontology-based method designed to enable semantic interoperability across various 
smart farming systems. By merging and integrating existing domain ontologies, a unified 
framework is proposed, that facilitates seamless data exchange, enhances decision-making, and 
addresses key challenges in sustainable agriculture. 
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INTRODUCTION 
 

As the world grapples with the twin challenges of food security and environmental 
sustainability, smart farming emerges as a promising solution to optimize the agricultural 
sector and advance the Sustainable Development Goals1 (SDGs), particularly SDG 2 - 
Zero Hunger, SDG 13 - Climate Action, and SDG 15 - Life on Land, by enabling data-
driven decision-making and increasing productivity (Swain et al., 2023). However, the 
lack of standardized data formats and shared vocabularies, also known as the semantic 
gap, has hindered interoperability across systems (Bökle et al., 2022). This gap refers to 
the challenge that arises when different systems interpret or represent the same data in 
incompatible ways, preventing seamless data exchange and integrated insights. 

Ontologies can be seen as dictionaries for smart farming systems. They help 
computers understand the meaning of data and communicate effectively. This means 
systems can share information seamlessly, leading to better data analysis and smarter 
farming practices. These dictionaries can also help people from different backgrounds 
understand each other better, encouraging collaboration and innovation. However, as 
individual systems develop their own ontologies, interoperability becomes increasingly 

 
1 https://sdgs.un.org/goals 
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difficult. Bridging this semantic gap is essential for realizing the full potential of 
sustainable and intelligent agriculture (Osman et al., 2021a). 

To address these challenges, a novel approach is proposed: merging and integrating 
the existing ontologies developed for diverse applications into a single, comprehensive 
one. This unified ontology will serve as a shared dictionary for all applications and 
systems, enabling seamless data exchange and collaboration, unlocking deeper insights 
through enhanced analysis, and fueling innovation by providing a common foundation 
for researchers and developers. This approach can unlock the transformative power of 
smart farming, revolutionize agricultural practices, and ensure a sustainable and secure 
food supply for our ever-growing population. 

The remainder of this paper is structured as follows: Section 2 provides essential 
background on the Internet of Things, Smart Farming, and ontologies. Section 3 reviews 
the related works, outlining existing approaches and highlighting potential gaps. 
Section 4 outlines the design and methodology of the ontology merging process, 
including ontology selection and tool usage. Finally, Section 5 presents and discusses 
the results of the merged ontology and outlines promising avenues for future work. 
 

BACKGROUND 
 

The Internet of Things (IoT) is a network of interconnected devices, enabling data 
collection and exchange (Thakur et al., 2023), thereby creating an intelligent ecosystem 
that autonomously interacts with the physical world in real-time (Yang et al., 2020). 
Since its inception at MIT in 1999, the IoT has undergone four distinct phases (Sciullo 
et al., 2022; Amara et al., 2022). Each phase reflects an evolution in the way devices 
connect, communicate, and share data. These developments have shaped the current 
landscape of smart farming, which relies heavily on IoT innovations: 

• Phase 1: Connecting Things to the Internet, coined by Kevin Ashton in 1999, 
this phase focused on connecting objects via Radio Frequency Identification (RFID).  

• Phase 2: Connecting Things to the Web, this phase solidified the Web of Things 
(WoT) architecture by 2010, leading to the development of the Social WoT (SocWoT) 
in 2013. 

• Phase 3: Semantic WoT Starting in 2014, this phase focused on embedding 
meaning into device communication to allow systems to understand and act on shared 
data. This directly supports semantic interoperability, the core of this study. 

• Phase 4: Standardized WoT Beginning in 2015, this phase concentrated on 
standardizing WoT applications through The World Wide Web Consortium (W3C) 
standards. 

The application of IoT across different sectors adds the notion of ‘Smart’, leading 
to transformative changes (Lampropoulos et al., 2019). One of the most prominent 
examples is Smart Farming, where IoT applications optimize agricultural practices by 
monitoring soil conditions, managing irrigation, analyzing crop health in real-time, etc 
(Talero-Sarmiento et al., 2023). 
 

Smart Farming and precision agriculture 
Smart farming and precision agriculture are closely related concepts, often used 
interchangeably, but they can have nuanced differences in their emphasis and scope. 
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Precision agriculture emphasizes optimizing existing processes through precise 
measurements and targeted interventions, for example, applying fertilizers only where 
needed using soil maps generated via he Global Positioning System (GPS) and 
Geographic Information Systems (GIS) (Keskin et al., 2016). Data collected through 
these technologies primarily informs decision-making within existing farm processes 
(Temizel et al., 2016). On the other hand, Smart farming takes a broader perspective, 
focusing on data access and application for holistic management by leveraging real-time 
data, AI, and IoT systems for adaptive decision-making. For instance, a smart farming 
system might combine soil moisture readings, weather forecasts, and crop growth 
models to automatically schedule irrigation across a farm. 

In the rest of the paper, the broader concept Smart Farming will be used, as the aim 
is to merge various subdomains within this sector, thereby facilitating a seamless 
exchange of information among them. 

 
Ontologies: A Path to Unified Knowledge Representation 
The ontology-driven approach is a methodology that leverages ontologies to 

address the challenges of semantic interoperability, enabling seamless communication 
and collaboration among diverse systems. 

Ontologies are formal, machine-readable representations of knowledge in a specific 
domain. For example, in smart farming, an ontology may define concepts like 
‘SoilMoistureSensor’, ‘CropType’, and ‘IrrigationEvent’, along with the relationships 
between them. This structured vocabulary ensures that different systems interpret and 
use data consistently (Gruber, 1993). They provide a structured framework for 
describing concepts, relationships, and constraints in a shared vocabulary. In this way, 
ontologies facilitate knowledge sharing and information exchange, ensuring that systems 
can exchange and interpret data with a consistent and meaningful understanding. 

This consistent and meaningful understanding, fostered by ontologies, is essential 
for achieving semantic interoperability, paving the way for more intelligent and 
interconnected ecosystems. 

 
RELATED WORKS 

 
The field of Semantic Web of Things (SWoT) has seen a surge of valuable 

contributions investigating the application of semantic technologies to enhance the 
functionality and performance of IoT systems, particularly within smart farming 
(Androcec et al., 2018; Rhayem et al., 2020; Pandey et al., 2021). This research area 
shows promise, with studies exploring ontologies in smart farming and their ability to 
enhance agricultural practices. These contributions aim to solve practical agricultural 
problems such as pest control, crop monitoring, irrigation scheduling, and livestock 
management (Drury et al., 2019). 

Researchers have investigated ontologies in various smart farming applications. For 
example, (Khan et al., 2019) specifically addressed the needs of cotton farming by 
proposing a cotton crop cultivation-oriented semantic framework based on an IoT smart 
farming application. Additionally, (Chukkapalli et al., 2020) proposed an ontologydriven 
framework for attribute-based access control, addressing critical security concerns in 
smart farm ecosystems. Furthermore, (Sanjeevi et al., 2021) presented, a Hierarchical 
Model utilizing Ontologies (HMO-IoT) for accurate detection of post-harvest losses, 
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specifically targeting Sekai-ichi apples. Moreover, (Symeonaki et al., 2022) developed 
an ontology-based IoT middleware approach for smart livestock management, enabling 
context-aware control of thermal environments in pig farms. 

Beyond specific applications, research has also focused on enhancing the 
underlying middleware architecture for smart farming. Notably, (Gaire et al., 2013) 
extended the Global Sensor Network (GSN) to incorporate semantic capabilities, 
facilitating efficient data exchange and interpretation. Similarly, (Htaika et al., 2018) 
proposed a fully interoperable middleware framework by seamlessly integrating 
semantic web technologies with the existing GSN infrastructure. These collective efforts 
demonstrate the versatility of ontologies in empowering smart farming technologies and 
addressing critical challenges within the agricultural domain. 

Although each individual system achieves internal interoperability, the broader 
smart agriculture ecosystem still faces significant challenges in interorganizational 
information integration. This stems from the diverse ontologies adopted by different 
stakeholders (applications), which act as barriers to data exchange and collaboration. 
The aim is to find a solution for the interorganizational integration. To the best of our 
knowledge, previous efforts to address this challenge have focused on either enriching 
existing ontologies like ONTAgri with Service-Oriented Architecture (SOA) (Fahad et 
al., 2021) or creating entirely new taxonomies and enriching it by classifying datasets 
based on sensors using machine learning (Lynda et al., 2023). While both approaches 
have merit, expanding an insufficient ontology like ONTAgri (Rehman & Shaikh, 2011) 
may not be the most effective solution, nor may creating a taxonomy from scratch, which 
can be time-consuming and resource-intensive. 

These studies demonstrate how tailored ontologies can deliver domain-specific 
value, but also highlight the challenge: most ontologies are designed in silos, leading to 
fragmented and incompatible data ecosystems. This approach focuses on securing a 
seamless flow of data between all these systems, each of which is currently developing 
ontologies for its own use. This involves merging these ontologies using semantic web 
techniques. The goal is to apply the integration process to create one single ontology that 
gathers all necessary information for a comprehensive smart farming system, 
encompassing all sub-domains. 

 
Ontology Merging for Semantic Interoperability in Smart Farming 
For a farm where every element share understanding of the information’s meaning 

and context, from irrigation systems to weather sensors, it’s essential for each device to 
share information seamlessly, thereby creating a unified understanding of the 
agricultural ecosystem. This is achievable through ontology interoperability, which is 
the ability of different systems to understand and interpret each other’s data. 

Intra-organizational integration focuses on communication within a specific 
domain, such as irrigation. For example, ensuring interoperability between devices like 
sprinklers, soil moisture sensors, and flow meters is essential for optimizing water use 
and supporting healthy crop growth. By removing communication barriers within this 
subsystem, each component can contribute to a shared understanding of irrigation needs 
and act accordingly. 

However, the true power of smart farming lies in inter-organizational integration. 
This involves bridging the gap between ontologies from different sub-domains within 
the broader smart farming ecosystem, like merging the irrigation ontology with the 
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weather ontology. This allows systems to factor in weather data like precipitation and 
humidity, leading to smarter irrigation decisions. Bridging this semantic gap between 
subdomains through ontology merging is the main objective of this study. Fig. 1 
illustrates these two types of integration. 
 

 
 
Figure 1. Semantic Interoperability in Smart Farming. 
 

To overcome these challenges, a comprehensive approach is needed, based on 
ontology integration to identify and align terminology across different ontologies to 
ensure consistent communication. 

 
Core-Ontology for Smart Farming 
A core upper ontology aims to achieve maximum coverage of relevant concepts 

while maintaining minimal ambiguity. It offers several key benefits: 
• Enhanced clarity and comprehensibility: A concise core ontology reduces 

redundancy and complexity, making it easier to understand and use. 
• Increased interoperability: Minimizing ambiguity facilitates seamless 

integration with existing and future ontologies, fostering collaboration and data sharing. 
• Efficient knowledge representation: By focusing on core concepts, the ontology 

allows for efficient storage, retrieval, and analysis of agricultural knowledge. 
It paves the way for several exciting possibilities: 
• Knowledge graph development: This core ontology serves as a robust 

foundation for building comprehensive knowledge graphs in the smart farming domain, 
facilitating knowledge discovery and analysis. 

• Standardized data exchange: By promoting a shared vocabulary and data 
structures, the core ontology enables seamless data exchange between diverse smart 
farming systems and applications. 
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• Enhanced collaboration: A common ground for knowledge representation 
simplifies collaboration and knowledge sharing among researchers, developers, and 
practitioners within the smart farming community. 

 
MATERIALS AND METHODS 

 
A core upper ontology is proposed for the smart farming sector, it is acquired by 

merging a set of carefully chosen ontologies (See subsection 4.2). This ensures 
comprehensive coverage of the smart farming domain while leveraging existing 
knowledge and expertise. 

 
Ontology Selection Rationale 
To ensure comprehensive domain coverage and interoperability, ontologies were 

selected based on their relevance to core smart farming subdomains such as crop 
management, soil conditions, sensor data, environmental modeling, and plant 
physiology. The selection criteria included: 

• Public accessibility 
• Domain specificity and granularity 
• Reuse in prior agricultural ontology projects. 
 
Set of ontologies: 
Building upon the foundation of existing research (Arnaud et al., 2020; Bhuyan et 

al., 2022), and incorporating several recently developed ontologies (Goldstein et al., 2021), 
a comprehensive set of openly accessible ontologies was assembled for the merging 

modeling of sensor data and observations, while the Agronomy Ontology and Plant Trait 
Ontology address farming practices and phenotypic traits. 

 

process. Table A.1 (See Appendix A) 
provides an overview of these 
ontologies, highlighting the specific 
contributions they make towards 
the construction of the unified 
ontology. To address the limited 
availability of publicly accessible 
smart farming ontologies and 
increase efficiency, additional 
ontologies are introduced for the 
IoT and agriculture in general. 
Therefore, these new ontologiesw 
will be meticulously aligned with 
the existing smart farming 
ontologies to expand the available 
concept set. (Fig. 2 illustrates this). 

For example, SOSA and IoT- 
Lite were selected for their strong 

 

 
 
Figure 2. Ontological Bridge: Smart Farming, IoT, 
and Agriculture. 
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Ontology Merging Workflow 
The ontology integration involves two key steps: ontology alignment and ontology 

merging. Alignment focuses on identifying and expressing the correspondences between 
concepts in different ontologies. Merging then leverages this alignment to create a 
unified ontology by combining elements from the originals. 

The available tools for ontology integration vary; some are capable of performing 
both alignment and merging, while others are specialized for only one of these tasks. 
Consequently, these tools often need to be used in combination to achieve 
comprehensive integration. 

To select the appropriate tools, various existing research were reviewd. A recent 
review article (Osman et al., 2021a) provided a comprehensive comparison of ontology 
merging tools, guiding our choice of the most suitable option for the presented needs. 

For merging, a tool capable of handling multiple ontologies simultaneously is 
required. Based on the aforementioned review, the ‘Alignments Reuse for Ontology 
Merging’ (AROM)2 (Osman et al., 2021b) was selected. It offers two primary 
configurations for ontology merging: with or without pre-computed alignments. When 
alignments are provided, AROM leverages this information to identify equivalent 
entities across the source ontologies. This guided approach ensures a more semantically 
accurate merged ontology, where equivalent concepts are explicitly linked and 
redundancies are minimized. In the absence of alignments, AROM employs a simpler 
strategy of merging all entities from the input ontologies. This approach can be valuable 
for scenarios where the goal is to create a comprehensive knowledge base encompassing 
all information from the source ontologies, even if it might introduce some redundancy 
or inconsistency in the merged outcome. 

Given the focus on achieving a coherent result that leverages interoperability, the 
alignment functionality of AROM was used. Therefore, for the alignment step, various 
publicly available tools3 were reviewed, and top-performing tool according to the 
Ontology Alignment Evaluation Initiative (OAEI)4. The OAEI, held annually alongside 
the Ontology Matching workshop at the International Semantic Web Conference 
(ISWC)5, rigorously evaluates alignment tools, ensuring access to the best solutions.  

According to the comprehensive results from the OAEI 2023 (Pour et al., 2023), 
each tool has distinct strengths tailored to specific operational needs. LogMap (Jiménez-
Ruiz et al., 2011) demonstrates superior performance in scenarios demanding fast 
processing and exceptional precision. This efficiency is crucial for this project 
requirements, where timely and accurate ontology matching impacts subsequent data 
analysis phases significantly. While ALIN (Pour et al., 2023) excels in enhancing recall 
in uncertain scenarios, the priority for the current application lies in maintaining high 
precision and processing speed, leading us to opt for LogMap as the most suitable tool 
for the presented needs. This decision is grounded in the empirical evidence provided by 
the OAEI 2023 results, which clearly highlight LogMap’s capabilities in meeting this 
project’s specific criteria. 

 
2 https://github.com/inesosman/AROM 
3 https://tinyurl.com/public-oaei-systems 
4 https://oaei.ontologymatching.org 
5 https://iswc2023.semanticweb.org 
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Fig. 3 illustrates the impact of the alignment on the construction of the merged 
ontology. Using LogMap (Jiménez-Ruiz et al., 2011) contributes to a reduction in the 
number of concepts within the merged ontology. 
 

 
 
Figure 3. Impact of LogMap on the Structure and Composition of the Merged Ontology. 

 
LogMap’s configurable parameters, like matching thresholds and inconsistency 

repair (default: true), allow for tailored ontology matching. While the default settings 
were used for this experiment, exploring different configurations could potentially 
achieve a greater reduction in concepts while main taining accuracy and coherence, 
highlighting the importance of customizing LogMap for optimal results. 

 
RESULTS AND DISCUSSION 

 
Resulting merged ontology 
The merged ontology resulting from the integration process is represented in the 

OWL 2 DL format. For the purpose of reading and opening this ontology, the Protégé6 
ontology editor was employed (See Fig. 4). 

Our merged ontology construction process generated a comprehensive knowledge 
base, encompassing 67,373 classes, 357 object properties, and 124,192 logical axioms. 
As part of the technical validation, consistency checks confirmed its logical integrity, 
while the absence of unsatisfiable classes underscored its internal coherence. 
Annotations and labels are provided in English. 

This rich structure positions the merged ontology as a powerful resource for future 
research and applications. The ontology is publicly accessible via an online repository7.  

Despite the technical success of the merging process, several critical limitations 
and trade-offs should be acknowledged: 

• Complexity and Usability: The richness and breadth of the ontology result in a 
large number of concepts, which may complicate its use for practitioners, developers, or 
researchers who are unfamiliar with ontology engineering. Navigating the full structure 
or identifying relevant classes for specific queries could present a steep learning curve. 

 
6 https://protege.stanford.edu 
7 https://github.com/NaoualSmaili/gistAgro 
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• Performance Considerations: The large number of classes and axioms may affect 
the performance of reasoning tasks and SPARQL queries, particularly in real-time or 

This integrated reasoning goes beyond isolated data points and enables context-
aware decisions, ultimately improving efficiency, sustainability, and yield (See Fig. 5). 

 

 
 

 
Figure 5. Example of a question the merged ontology is able to answer. 

 
Once the work is complete (See Section Future works) the query for this question, 

illustrated in Fig. 6, will help decide whether irrigation should be done as soon as 
possible or delayed, and it highlights the capabilities of our ontology in integrating 
various smart farming sub-domains. 

 

soil moisture
levels

Smart irrigation

predicted weather
patterns

Smart weather

crop water
requirements

Smart cropping

Optimize irrigation
schedules based

on:

The need:

resource-constrained environments. 
In terms of empirical validation, 

users can leverage SPARQL queries to 
interact with the ontology, enabling 
them to retrieve and analyse pertinent 
information that aids in critical 
decision-making processes. For 
instance, a farmer could ask: ‘Should I 
irrigate my wheat fields today given 
the current soil moisture and 
tomorrow’s rainfall forecast?’ 

• The ontology enables this 
question to be answered by connecting: 

• Crop water requirements (via 
smart cropping ontology) 

• Real-time soil data (via IoT 
sensor ontology) 

• Rainfall predictions (via weather 
ontology). 

 

 
 
Figure 4. Overview of the resulting merged 
ontology: gistAgro. 
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Future works 
This work represents an important step toward enabling semantic interoperability 

in smart farming, but it is by no means the final stage. Several directions are planned to 
enhance and extend this contribution. 

• Coverage ratio (extent of domain concepts captured) 
• Consistency (logical coherence of ontology concepts) 
• Completeness (degree to which essential domain knowledge is captured) 
• Precision and recall (accuracy of alignments) 
• Ontology reuse score, and 
• SPARQL query performance (execution time and result relevance). 
Additionally, publishing comprehensive documentation, tutorials, and query 

examples to assist third parties in effectively reusing and extending the ontology is 
planned. 

However, we acknowledge that technical and social challenges remain. Merging 
heterogeneous ontologies may introduce conceptual overlaps and inconsistencies that 
require careful reconciliation. 

On the social side, encouraging widespread adoption will depend on ease of use, 
alignment with existing standards, and clear demonstration of benefits to end-users in 
agriculture and agro-tech industries. 

Finally, we emphasize that effective querying and evaluation of the ontology will 
greatly benefit from the active participation of smart farming specialists, whose domain 
insights will be invaluable in refining both structure and content. 

 

First, collaboration and access to 
additional ontologies from external 
researchers and domain experts are 
essential to enrich and refine the core 
ontology. We have actively reached 
out to members of the research 
community and remain hopeful that 
their contributions will help expand 
domain coverage and improve 
conceptual alignment. A detailed log 
of all updates and modifications will 
be maintained in the public GitHub 
repository to ensure transparency and 
traceability throughout the ongoing 
development process. 

In future versions, a rigorous 
validation will be conducted of the 
merged ontology using standard 
semantic metrics such as: 

 

 
 
Figure 6. Example of SPARQL query. 
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CONCLUSIONS 
 

This paper presents a semantic interoperability framework for smart farming based 
on the integration of multiple existing ontologies. This approach addresses a critical 
challenge in smart agriculture: the fragmentation of knowledge across systems, which 
prevents seamless data sharing and automated reasoning. 

By merging a diverse set of well-established ontologies into a unified core 
(gistAgro), a shared vocabulary is provided that enables intelligent data exchange across 
subdomains such as weather monitoring, soil analysis, crop planning, and irrigation 
control. 

We believe that this work represents a significant contribution to the field of smart 
farming by addressing the critical challenge of semantic interoperability and paving the 
way for more efficient, integrated, and intelligent smart farming systems. 
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APPENDIX 1. 
 

This table catalogs the publicly available ontologies related to smart farming that were found and 
used in the merging process. It categorizes them based on their specific contribution to this unified 
ontology. Each entry includes the ontology’s name, its URL for easy access, and the latest version 
that was used. 
 
Table 1. Ontologies Merged to Enhance Data Interoperability in Smart Farming 

Ontology 
Contribution 
to Unified 
Ontology 

URL Version 

Bermudez-Edo et al. (2017) 
IoTLite 

IoT Devices & 
Protocols 

http://iot.ee. 
surrey.ac.uk/fiware/ 
ontologies/iot-lite 

04/06/2017 

Janowicz et al. (2019) SOSA: 
Sensors, 
Observations, 
Samples, 
and Actuators 
Ontology 

Sensors & 
Observations 

https://github.com/w3c/ 
sdw/blob/gh-pages/ssn/ 
integrated/sosa.rdf 

10/08/2018 

Aubert et al. (2017) Agronomy 
Ontology 

Agriculture 
& Farming 
Practices 

https://bigdata. 
cgiar.org/resources/ 
agronomy-ontology 

10/06/2020 

Chavez Feria & Poveda 
Villalón (n.d.) Sensor Data 
ontology 

Sensor Data 
Management 

https://bimerr.iot. 
linkeddata.es/def/ 
sensor-data/ 

17/06/2021 

Buttigieg et al. (2016) 
Environment 
Walls et al. (2019) Ontology 

Environment & 
Ecosystems 

http:// 
environmentontology.org 

11/07/2022 

Plant 
Ontology 

Plant Anatomy 
& Growth 

http://browser. 
planteome.org/amigo 

02/11/2022 

Cooper et al. (2024) Plant 
Experimental 
Conditions 
Ontology 

Plant 
Experimentation 

http://obofoundry.org/ 
ontology/peco 

14/12/2022 

Cooper et al. (2020) Plant 
Trait Ontology 

Plant Phenotypes & 
Traits 

http://obofoundry.org/ 
ontology/to 

13/02/2023 

Meier et al. (2018) Plant 
Stress Ontology 

Plant Stress & 
Resilience 

https://github. 
com/Planteome/ 
plantstress-ontology 

13/07/2023 

Aleksander et al. (2023) Gene 
Ontology 

Gene Function 
& Products 

https://geneontology. 
org 

09/08/2023 

Gkoutos et al. (2012) Units 
of measurement 
ontology 

Measurement & 
Units 

http://obofoundry.org/ 
ontology/uo 

07/09/2023 

Bada & Eilbeck (2012) 
Sequence 
Ontology 

Biological Sequence 
Features 

http://www. 
sequenceontology.org 

14/11/2023 

 


