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Abstract. Foliar diagnostic helps assess plant nutritional status and drives appropriate fertilizer 
recommendations to enhance quality and productivity of plants. Several foliar diagnostic methods 
are used but the literature is not sufficiently documented regarding the comparison of these 
methods using a varied range of comparison criteria. This study compared DRIS (Diagnosis and 
Recommendation Integrated System), M-DRIS (Modified-DRIS), and CND (Compositional 
Nutrient Diagnosis) in diagnosing pineapple leaf nutrient levels with varying sample sizes. 
Empirical data from a subtractive experiment was used to simulate and constitute a new database 
considering that nutrient contents were normally distributed. For each sample size, data were 
generated per treatment and replicated 3,000 times. DRIS, M-DRIS, and CND indices were 
computed from the simulated data for each nutrient. The methods were subsequently evaluated 
based on four criteria: (i) the Diagnosis Concordance Frequency, which assesses the consistency 
of diagnoses across different methods for determining nutritional indices; (ii) the sensitivity, or 
True Positive Rate, which gauges a model's ability to accurately identify a specific nutritional 
status when it is present; (iii) the precision, or Positive Predictive Value, which indicates the 
proportion of correctly identified diagnoses for a particular nutritional status relative to the total 
number of diagnoses made for that status; and (iv) the accuracy, which measures the closeness of 
the model's results to the true value. As results, we found that N, P, and K nutrient indices differed 
significantly between DRIS, M-DRIS, and CND models and with sample size. The nutritional 
diagnosis methods were also discordant, except DRIS versus M-DRIS (mean agreement = 66%). 
Compared to DRIS, and M-DRIS models, CND appeared to be the most sensitive and accurate 
model (average accuracy of 27.86%) for nutrient deficiency and excess diagnosis. The models’ 
accuracy varies with the sample size, but it becomes almost unchangeable from a sample size of 
330. For all sample sizes, the CND model was more accurate and efficient for N, P, and K nutrient 
status diagnosis, compared to DRIS and M-DRIS models. 
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Used abbreviations: 
A: Concentration of nutrient A in the high-yielding subpopulation 
AIC: Akaike Information Criterion 
B: Concentration of nutrient B in the high-yielding subpopulation 
CND: Compositional Nutrient Diagnosis 
CV: Coefficient of Variation 
DCF: Diagnosis Concordance Frequency 
DRIS: Diagnosis and Recommendation Integrated System 
f: DRIS function 
FNA: False Negative Adequate 
FND: False Negative Deficiency 
FNE: False Negative Excess 
FPA: False Positive Adequate 
FPD: False Positive Deficiency 
FPE: False Positive Excess 
PFR: Potential Fertilization Response 
G: Geometric mean 
IA: Model Index of nutrient A 
K: Potassium 
LN: CND index for nutrient N 
M-DRIS: Modified Diagnosis and Recommendation Integrated System 
N: Azote 
n: primary limiting by excess 
NBIm: Nutrient Balance Index Mean 
Nut: Nutrient 
nz: negative or zero with lower probability 
P: Phosphore 
p: primary limiting by deficiency 
PERMANOVA: Permutational multivariate analysis of variance 
PFR: Potential Fertilization Response 
PPV: Positive Predictive Value 
PPAV: Positive Predictive Adequate Value 
PPDV: Positive Predictive Deficiency Value 
PPEV: Positive Predictive Excess Value 
pz: positive or zero with lower probability 
R: Residual value 
RMSE: Root Mean Square Error 
SD: Standard deviation 
t ha−1: Tonne per hectar 
TPA: True Positive Adequate 
TPAR: True Positive Adequate Rate 
TPD: True Positive Deficiency 
TPDR: True Positive Deficiency Rate 
TPE: True Positive Excess 
TPER: True Positive Excess Rate 
TPR: True Positive Rate 
VN: CND row-centred log ratio for nutrient N 
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INTRODUCTION 
 
The diagnosis of the nutritional status of plants is a prerequisite for any rational 

fertilization. Nutrient balance determines crop yield and quality (Pineda-Álvarez et al., 
2021). Foliar diagnosis can be a useful tool for correcting plant nutrient deficiencies and 
imbalances (Baldock & Schulte, 1996), optimizing crop production (Walworth & 
Sumner, 1988), and evaluating fertilizer requirements. A thorough diagnostic is essential 
to create appropriate fertilizer recommendations and enhance quality and productivity 
without negatively impacting the environment (Pacheco-Sangerman et al., 2022). 
However, foliar analysis can only help assess plant nutritional status if adequate 
methodologies for diagnosing from analytical data are available (Walworth & Sumner, 
1988). Critical Levels and Sufficiency Ranges methods are commonly used to diagnose 
nutritional status of plants (Walworth & Sumner, 1988). Sufficiency Ranges methods 
have been used to investigate the nutrient status of different tomato cultivars grown 
under industrial greenhouse production (Osvalde et al., 2021) and to access the nutrient 
status of the American cranberry in Latvia (Karlsons & Osvalde, 2017). These methods 
involve comparing the nutrient concentration in the sample with an accepted normal 
value for a specific growth stage (Kania Kuhl & Callejas Rodríguez, 2011), are somewhat 
erroneous in that ‘critical nutrient concentrations’ are not independent diagnostics, but 
can vary in magnitude as the background concentrations of other nutrients increase or 
decrease in crop tissue (Bailey et al., 1997). Since nutrient uptake and distribution are 
affected by interactions within the plant, multi-nutrient approaches have been derived. 
Three common approaches used to identify nutritional imbalances are the DRIS (Beaufils, 
1973), the M-DRIS (Hallmark et al., 1987), and the CND (Parent & Dafir, 1992). 

DRIS is based on dual ratio functions (f(N/P), f(P/K), etc.) (DRIS, Beaufils, 1973). 
M-DRIS also considers nutrient contents, not just their dual relationships (Hallmark et 
al., 1987). CND is based on row-centred log ratios where each nutrient is adjusted to the 
geometric mean of all nutrients and a filling value (Parent & Dafir, 1992). These methods 
of nutritional diagnosis present discordant reports. 

The effectiveness of the CND method compared to other methods is not often 
proven in the literature. Politi et al. (2013) discovered that both the CND and DRIS 
approaches performed comparably while analyzing the nutritional status of mango in 
Lower-middle San Francisco. When determining the nutritional status of sugarcane in 
Brazil, the CND diagnosis differed from the DRIS techniques for manganese and 
nitrogen (Calheiros et al., 2018). DRIS and CND methods were found similar for the 
evaluation of leaf nutrients in soybean in Brazil (Souza et al., 2023). The CND method 
was proven to be more sensitive for early detection of Zn stress in Muscat grapes 
compared to DRIS (Kumar et al., 2003). DRIS and/or CND have been used to diagnose 
the nutrient status of a range of crops including pineapple, maize, tomatoes, cotton, 
orange etc. (Parent et al., 1993; Magallanes-Quintanar et al., 2006; Camacho et al., 2012; 
Serra et al., 2016; López-Montoya et al., 2018; Morais et al., 2019; Khuong et al., 2024). 
The comparison of the three diagnosis methods (DRIS, M-DRIS and CND), primarily 
relies on the criterion of diagnosis concordance frequency (Silva et al., 2004). Since the 
development of the CND method, no study has compared all the existing methods 
(DRIS, M-DRIS and CND) based on a set of solid criteria such as the diagnosis  
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concordance frequency (DCF) (Silva et al., 2004), the sensitivity or rate of true positives, 
the precision or Positive predictive value (Trevethan, 2017) and accuracy (Morais et al., 
2019; Powers, 2020; Chicco & Jurman, 2020; Tharwat, 2020). 

Indeed, sensitivity or True Positive Rate (TPR) represents the proportion in which 
a nutritional status is identified for a nutrient when this situation is true. Sensitivity refers 
to a model’s ability to correctly detect nutritional status when true. It refers to the efficiency 
of the method to correctly diagnose the cases of a true nutritional status. Precision or 
Positive Predictive Value (PPV) represents the proportion of correctly detected 
nutritional statuses relative to the total number of diagnosed cases. It reflects the 
performance of the prediction. The accuracy is the proximity of the model execution 
output to the true value. It is the ratio between the correctly detected diagnoses to the 
total number of diagnoses results. Furthermore, the size of the database used for the 
development of diagnostic methods can have an impact on the precision of the result. 
The scientific literature reports a wide variation in the size of the database for setting 
DRIS standards, from as few as 24 observations (Leite, 1993) to approximately 2,800 
(Sumner, 1977) or more. In this study, we hypothesize that as CND is a multivariate 
method involving all nutrients, it performs better over DRIS and M-DRIS in nutrient 
diagnosis as a function of database size considering all solid comparison criteria (CDF, 
Sensitivity, PPV, and Accuracy). In this study, we are interested in the comparison of 
the three diagnostic methods using the major plant nutrients which are nitrogen, 
phosphorus and potassium. Indeed, nitrogen is the most prevalent nutrient that plants 
need and is a key factor in determining plant growth (Prinsi & Espen, 2015). According 
to Nguyen et al. (2015), this nutrient is a crucial part of cellular macromolecules like 
proteins, nucleic acids, chlorophyll, and plant growth regulators. Phosphorus is one of 
the vital macronutrients needed for the synthesis of nucleic acid, the stability and 
building of membranes, the metabolism of energy, and many other vital physiological 
and biological activities during plant growth and development (Hasan et al., 2016). 
Critical processes including enzyme activation, osmotic adjustment, turgor generation, 
cell division, membrane electric potential modulation, and pH homeostasis are all 
facilitated by potassium (Ragel et al., 2019). Nitrogen (N), phosphorus (P), and potassium 
(K) are critical macronutrients required for pineapple growth and development throughout 
its production cycle. Potassium is extracted in the highest amounts by the plant, and 
enhancing fruit weight and quality (Carr, 2012; Silva et al., 2018). Adequate potassium 
supply is strongly associated with improved fruit sweetness, size, and resistance to 
diseases (Teixeira et al., 2020). Phosphorus, often the third most required nutrient, 
supports root development and early plant establishment, which are important for 
maximizing yield potential (Roy et al., 2018). Together, these nutrients are critical for 
optimizing pineapple productivity and ensuring high-quality fruit production. Apart 
from macronutrients, certain micronutrients such as boron are essential for the full 
development of pineapple. Indeed, pineapple needs boron for optimal growth. Boron 
deficiency causes orange and yellow leaf discoloration, minimal growth, and curling. It 
also leads to chlorosis with red margins, multiple crowned fruits, and necrotic tissue, 
sometimes resulting in small spherical fruits (Py et al., 1984; Souza & Reinhardt, 2007). 
Therefore, this study aimed to compare DRIS, M-DRIS , and CND in diagnosing 
pineapple leaf nutrient levels with varying sample sizes. In this study, we used data from  
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the pineapple subtractive trial of Angeles et al. (1990) to generate artificial data to 
compare the diagnostic methods. This database was used as it includes subtractive 
treatments that can provide all the possible outcomes of a nutritional diagnosis: nutrient 
deficiencies, balances or excesses. 

 
MATERIALS AND METHODS 

 
Data used 
We used empirical data from a subtractive experiment in N, P, and K nutrients for 

pineapple. These data came from the study of Angeles et al. (1990), who used a size of 
1185 leaf nutrients and yield database to create DRIS norms for pineapple. They are 
published data sets from trials including 14 treatment combinations in which yield 
responses to nutrients N, P, and K were determined. In this study, five (05) treatments 
including 0N-0P-0K, 2N-0P-0K, 0N-1P-1K, 1N-2P-0K, and 2N-2P-2K, were chosen 
and used based on the subtractive nutrients. They are treatments where certain nutrients 
are omitted, treatments with a single dose for specific nutrients, and treatments with 
double doses for some nutrients. These treatments were selected to ensure adequate 
representation of deficiency, adequacy, and excess nutrient conditions that we aim to 
evaluate in our research. These 5 treatments were specifically chosen to cover a full 
range of responses to N, P, and K nutrients, as documented in the empirical database of 
the subtractive trial used. These empirical data included: treatment, mean fruit yield 
(response variable), and pineapple (variety smooth cayenne) foliar mineral nutrients 
(explanatory variables) Nitrogen (N), Phosphorus (P), and Potassium (K) contents mean 
and standard deviation. This dataset allowed us to evaluate the ability of DRIS, M-DRIS, 
and CND models to accurately detect nutrient deficiencies, balances, or excesses under 
these different nutrient limiting conditions. 

 
Simulation design 
The simulation was realized in four main steps: identification of probable linear or 

non-linear regression, generation of data, model index computation, and model 
comparison criteria computation. 

 
Step 1: Identification of probable linear or non-linear regression 
The variable under investigation is the pineapple fruit yield (t ha-1), a continuous 

quantitative variable. The relationship between the dependent variable (yield) and the 
independent variables (N, P, and K nutrients that are continuous quantitative variables) 
was examined using ten models, including linear and three common non-linear models 
(inverse, quadratic, and logarithm). Akaike Information Criterion (AIC, Narisetty 
(2020)), adjusted coefficient of determination (adjusted R2), and Root Mean Squared 
Error (RMSE, Nayanaka et al. (2010)) were used to test and compare these models. The 
AIC is given by: 

𝐴𝐴𝐴𝐴𝐴𝐴 =  − 2 ∗  𝑙𝑙𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑙𝑙𝑙𝑙𝑜𝑜 𝑣𝑣𝑣𝑣𝑙𝑙𝑣𝑣𝑙𝑙 𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓 𝑡𝑡ℎ𝑙𝑙 𝑓𝑓𝑙𝑙𝑜𝑜𝑙𝑙𝑙𝑙)  +  2 ∗  𝑙𝑙 (1) 
where k represents the model’s number of parameters. 
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The Root Mean Squared Error was computed as follow: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛
��[𝑍𝑍(𝑥𝑥𝑖𝑖) − 𝑍𝑍∗(𝑥𝑥𝑖𝑖)]2

𝑛𝑛

𝑖𝑖=1

� (2) 

the predicted value and 𝑍𝑍(𝑥𝑥𝑖𝑖) is the observed where n is the sample size,  is 
value (Javari, 2017). 

 
Step 2: Generation of data 
The response variable (Yield) was generated using Eq. (23). The nutrient 

concentrations related to pineapple fruit yield have been set to follow the normal 
distribution with parameters presented in Table 1 (Angeles et al., 1990). Nutrient data 
were simulated and yield was calculated accordingly for each treatment and varied 
sample size to ensure an extensive dataset that meets our study conditions including 
having treatments where certain nutrients are omitted, treatments with a single dose for 
specific nutrients, and treatments with double doses for some nutrients. Data size was 
varied to account for the effect of this factor on the performance of the models. Ten 
different sample sizes (30, 70, 80, 100, 210, 270, 330, 490, 630, and 860) were randomly 
selected from a generated sequence of sizes ranging from 10 to 1,000 by 10 using the 
seq() and sample() functions in R software. For each sample size and per treatment, the 
simulation was replicated 3,000 times (Hoad et al., 2007). The data was generated using 
the R software version 4.1.3 (R Core Team, 2021). 

 
Table 1. Parameters used for data generation 
Treatment Mean concentration (%) Standard deviation (%) Fruit yield 

(t ha-1) N P K N P K N P K 
0 0 0 0.97 0.47 0.64 0.4 0.52 1.32 42.7 
2 0 2 2.14 0.36 3.95 0.21 0.16 0.26 131 
0 1 1 0.67 0.54 3.29 0.27 0.46 0.38 55.5 
1 2 0 0.8 0.56 3.38 1.2 0.37 0.7 62.5 
2 2 2 1.8 0.32 2.64 0.34 0.23 0.41 134 
The first three columns refer to the fertilization treatments used in the original database; 0: a specific nutrient 
is omitted; 1: a single dose for a specific nutrient; 2: double doses for a specific nutrient.  
Source: Angeles et al. (1990) 
 

Step 3: Model index computation 
The nutritional status was evaluated using the DRIS and M-DRIS (Beaufils, 1973) 

methodologies, taking into account all forms of nutrient ratios (direct and inverse). 
Additionally, the CND approach, as described by Parent & Dafir (1992), was used for 
the diagnosis. The yield population was separated into two subpopulations of yields 
using the average yield added to half of the standard deviation (mean + 0.5*Standard 
deviation) as a subdivision criterion. The high-yielding subpopulation corresponds to the 
yield greater than the mean plus half of the standard deviation and the low-yielding 
subpopulation was the yield less or equal to the mean plus half of the standard deviation 
(Silva et al., 2004). The high-yielding subpopulation was defined as a population of 
reference. DRIS and M-DRIS indices were calculated using two steps. First, for each  
ratio of nutrients, observations were related to norms using standardization and index 

𝑍𝑍∗(𝑥𝑥𝑙𝑙)  
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equations (Hallmark et al., 1987; Bailey et al., 1997; Agbangba et al., 2010; Calheiros et 
al., 2018) as shown in the examples below (Eqs (3), (4) and (5)): 

𝑓𝑓 �
𝐴𝐴
𝐵𝐵
� = 100 �

𝐴𝐴
𝐵𝐵
𝑣𝑣
𝑏𝑏
− 1� /𝐴𝐴𝐶𝐶 𝑙𝑙𝑓𝑓 �

𝐴𝐴
𝐵𝐵
� > �

𝑣𝑣
𝑏𝑏
� + 𝑅𝑅𝑆𝑆 (3) 

𝑓𝑓 �
𝐴𝐴
𝐵𝐵
� = 100 �1 −

𝑣𝑣
𝑏𝑏
𝐴𝐴
𝐵𝐵
� /𝐴𝐴𝐶𝐶 𝑙𝑙𝑓𝑓 �

𝐴𝐴
𝐵𝐵
� < �

𝑣𝑣
𝑏𝑏
� − 𝑅𝑅𝑆𝑆 (4) 

𝑓𝑓 �
𝐴𝐴
𝐵𝐵
� = 0 𝑙𝑙𝑓𝑓 �

𝑣𝑣
𝑏𝑏
� − 𝑅𝑅𝑆𝑆 ≤ �

𝐴𝐴
𝐵𝐵
� ≤ �

𝑣𝑣
𝑏𝑏
� + 𝑅𝑅𝑆𝑆 (5) 

where 𝐴𝐴/𝐵𝐵 is the dual relation between the ‘A’ and ‘B’ nutrient concentrations (%) of 
the diagnosed population; 𝑣𝑣/𝑏𝑏, 𝐴𝐴𝐶𝐶 and 𝑅𝑅𝑆𝑆 are respectively the mean, the coefficient of 
variation and the standard deviation of 𝐴𝐴/𝐵𝐵 in the high-yielding subpopulation. 

Next, values from the standardization equations were used to calculate indices as 
shown in the examples below (Eq. 6): 

𝐴𝐴𝐴𝐴 =  
∑ 𝑓𝑓 �𝐴𝐴𝐵𝐵𝑖𝑖

�𝑛𝑛
𝑖𝑖=1 −  ∑ 𝑓𝑓 �𝐵𝐵𝑖𝑖𝐴𝐴 �

𝑛𝑛
𝑖𝑖=1

𝑧𝑧
 (6) 

where 𝐴𝐴𝐴𝐴 = DRIS index of ‘A’; ∑ 𝑓𝑓 �𝐴𝐴
𝐵𝐵𝑖𝑖
�𝑛𝑛

𝑖𝑖=1 = Sum of functions presenting concentration 

of nutrient ‘A’ is in the numerator; ∑ 𝑓𝑓 �𝐵𝐵𝑖𝑖
𝐴𝐴
�𝑛𝑛

𝑖𝑖=1 = Sum of functions presenting 
concentration of nutrient ‘A’ is in the denominator and 𝑧𝑧 =  Number of DRIS  
functions (f). 

The M-DRIS (Hallmark et al., 1987), not only considers the interdependence 
between nutrients but also incorporates the nutrient concentrations in its computing. The 
M-DRIS is calculated using the following equations: 

𝑓𝑓(𝐴𝐴) = 10 �
𝐴𝐴 − 𝑣𝑣
𝑅𝑅𝑆𝑆

�  𝑙𝑙𝑓𝑓 𝐴𝐴 > 𝑣𝑣 + 𝑅𝑅𝑆𝑆 (7) 

 𝑓𝑓(𝐴𝐴) = 10 �𝐴𝐴−𝑎𝑎
𝑆𝑆𝑆𝑆
� �𝑎𝑎

𝐴𝐴
�  𝑙𝑙𝑓𝑓 𝐴𝐴 < 𝑣𝑣 − 𝑅𝑅𝑆𝑆 (8) 

𝑓𝑓(𝐴𝐴) = 0 𝑙𝑙𝑓𝑓 𝑣𝑣 − 𝑅𝑅𝑆𝑆 ≤  𝐴𝐴 ≤ 𝑣𝑣 + 𝑅𝑅𝑆𝑆 (9) 
where 𝑓𝑓(𝐴𝐴) = Nutrient concentration function of ; 𝐴𝐴 = Sample nutrient concentration; 
𝑣𝑣 = High-yielding subpopulation nutrient concentration; 𝑅𝑅𝑆𝑆 =  Standard deviation of 
the high-yielding subpopulation nutrient concentration. 

The M-DRIS index is produced for each nutrient based on the outcome of each  
M-DRIS function, indicating that nutrient concentration as well as nutrient ratios are 
considered: 

𝐴𝐴𝐴𝐴 =  
∑ 𝑓𝑓 �𝐴𝐴𝐵𝐵𝑖𝑖

�𝑛𝑛
𝑖𝑖=1 −  ∑ 𝑓𝑓 �𝐵𝐵𝑖𝑖𝐴𝐴 �

𝑛𝑛
𝑖𝑖=1 + 𝑓𝑓(𝐴𝐴)

𝑧𝑧 + 1
 (10) 

where 𝐴𝐴𝐴𝐴 = Nutrient ‘A’ M-DRIS index; ∑ 𝑓𝑓 �𝐴𝐴
𝐵𝐵𝑖𝑖
�𝑛𝑛

𝑖𝑖=1 = Addition of functions in which 

concentration of nutrient ‘A’ appears in the numerator; ∑ 𝑓𝑓 �𝐵𝐵𝑖𝑖
𝐴𝐴
�𝑛𝑛

𝑖𝑖=1 = Addition of 
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functions in which concentration of nutrient ‘A’ appears in the denominator; 
𝑓𝑓(𝐴𝐴) =  Nutrient concentration ‘A’ function and 𝑧𝑧 = Number of M-DRIS functions (f). 

After computing the nutrient DRIS and M-DRIS indices, the mean nutritional 
balance index (𝑁𝑁𝐵𝐵𝐴𝐴𝑚𝑚) (Wadt et al., 1998) was calculated. This process involves 
summing the absolute values of the nutrient index for each nutrient and then dividing by 
the number of nutrients (d), as shown in the following equation: 

𝑁𝑁𝐵𝐵𝐴𝐴𝑚𝑚 =
1
𝑜𝑜
�|𝐴𝐴𝑛𝑛𝑜𝑜𝑙𝑙𝐼𝐼𝑙𝑙 𝐴𝐴𝑖𝑖|
𝑑𝑑

𝑖𝑖=1

 (11) 

In the CND model, the full composition array for 𝑜𝑜 nutrient compositions in plant 
tissues can be described by the following simplex 𝑅𝑅𝑑𝑑 with 𝑜𝑜 +  1 nutrient concentrations 
(d nutrients plus a filling value R) (Parent & Dafir, 1992): 

𝑅𝑅𝑑𝑑 =  [(𝑁𝑁,𝑃𝑃,𝐾𝐾,𝑅𝑅) ∶  𝑁𝑁 >  0,𝑃𝑃 >  𝑂𝑂,𝐾𝐾 >  0,𝑅𝑅 >  0;  𝑁𝑁 +  𝑃𝑃 +  𝐾𝐾 +  𝑅𝑅 =  100], 
where 100 is the concentration of dry matter (%); 𝑁𝑁, 𝑃𝑃, 𝐾𝐾 are the concentrations of 
nutrients (%); 𝑜𝑜 is the number of evaluated nutrients ; and 𝑅𝑅 is the filling value (residual 
value) between 100 and sum of the nutrients concentrations, computed as: 

𝑅𝑅 =  100 −  (𝑁𝑁 +  𝑃𝑃 +  𝐾𝐾) (12) 
A geometric mean (G) computed as (Eq. 13): 

𝐺𝐺 = (𝑁𝑁 × 𝑃𝑃 × 𝐾𝐾 × 𝑅𝑅)
1

𝑑𝑑+1, (13) 
was used to derive row-centred log ratios as follows (Eq. 14): 

𝐶𝐶𝑁𝑁 = 𝑙𝑙𝑛𝑛 �𝑁𝑁
𝐺𝐺
�  , … ,𝐶𝐶𝑅𝑅 = 𝑙𝑙𝑛𝑛 �𝑅𝑅

𝐺𝐺
�   (14) 

and 𝐶𝐶𝑁𝑁 +  𝐶𝐶𝑃𝑃 +  𝐶𝐶𝐾𝐾 +  𝐶𝐶𝑅𝑅 =  0, where VN is the CND row-centred log ratio expression 
for nutrient N. 

The row-centred log-ratios were used to calculate the CND indices, represented by 
𝐴𝐴𝑁𝑁  , . . . , 𝐴𝐴𝑅𝑅, as per Eq. (15): 

𝐴𝐴𝑁𝑁 =  
𝐶𝐶𝑁𝑁 −  𝐶𝐶𝑁𝑁∗

𝑅𝑅𝑆𝑆𝑁𝑁
, … , 𝐴𝐴𝑅𝑅 =  

𝐶𝐶𝑅𝑅 −  𝐶𝐶𝑅𝑅∗

𝑅𝑅𝑆𝑆𝑅𝑅
 (15) 

where 𝐶𝐶𝑅𝑅∗ , . . . ,𝐶𝐶𝑅𝑅∗ are the means and 𝑅𝑅𝑆𝑆𝑁𝑁 , . . . , 𝑅𝑅𝑆𝑆𝑅𝑅 the standard deviations of the row-
centred log-ratios in the high-yielding subpopulation (> than mean + 0.5 standard 
deviation) of each sample. 

As for the NBIm (Wadt et al., 1998) calculated for the DRIS and M-DRIS models, 
this index is also computed for the CND. For each sample size and treatment 
combination, DRIS, M-DRIS and CND index values for N, P and K nutrients were 
calculated using Eqs (6), (10) and (15), respectively. Each model index was applied 
separately for each treatment and sample size. 

 
Step 4: Models comparison criteria 
Four (04) criteria were used to compare the models. These criteria were: the 

Diagnosis Concordance Frequency (Silva et al., 2004), the sensitivity or True Positive 
Rate, the precision or Positive Predictive Value (Trevethan, 2017) and the accuracy 
(Morais et al., 2019; Powers, 2020; Chicco & Jurman, 2020; Tharwat, 2020). The 3,000 
replications databases per treatment and sample size were used to compare the index 
models. The five treatments in the database involve scenarios where specific nutrients 
are either omitted, applied in a single dose, or applied in a double dose. The omission of 
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a nutrient indicates its deficiency, a single dose represents an adequate concentration, 
and a double dose signifies an excess of the nutrient. Specifically, 0 means a nutrient is 
omitted, 1 corresponds to a single dose, and 2 indicates a double dose. The models were 
evaluated based on their ability to detect these three situations. For instance, if a 
treatment has a value of 0 for a nutrient and the model correctly identifies it as deficient, 
then the model has accurately detected the situation. 

DCF evaluates the consistency of diagnoses between different methods of 
determining nutritional indices. This is crucial for ensuring the reliability of the models. 
It is calculated based on the Potential Fertilization Response (PFR) (Silva et al., 2004). 
It focuses on two situations: separating nutrients and identifying the principal limiting 
deficient nutrient (p) and excessive nutrient (n). The following criteria were used to 
evaluate the degree of agreement between the diagnoses made using the various 
techniques for determining the nutritional indices: (i) For a nutrient, if the diagnosis 
(deficiency, adequate and excess, or p and n) was the same between two distinct 
methods, it was considered concordant; (ii) If two methods produce different diagnoses 
for the same nutrient, the diagnosis is considered non-concordant. The concordance rate 
is then calculated for all evaluated methods, providing an indicator of the consistency of 
different diagnoses. A high DCF indicates strong agreement between models in 
identifying nutrient status. 

TPR: measures a model's ability to correctly identify a particular nutritional status 
when that status is indeed present. It refers to the efficiency of the method at correctly 
diagnosing the cases of a true nutritional status. This criterion includes three 
subcategories including the True Positive Deficiency Rate (TPDR), True Positive 
Adequate Rate (TPAR), and True Positive Excess Rate (TPER) that were computed for 
the nutritional deficiency, adequate, and excess, respectively. A high TPR for a specific 
nutritional status indicates that the model is able to identify this status. Indeed, TPDR is 
the proportion of deficiency diagnosed by a model when the nutrient is deficient, and is 
calculated by: 

𝑇𝑇𝑃𝑃𝑆𝑆𝑅𝑅 =
𝑇𝑇𝑃𝑃𝑆𝑆

𝑇𝑇𝑃𝑃𝑆𝑆 + 𝐹𝐹𝑁𝑁𝑆𝑆
=

𝑇𝑇𝑃𝑃𝑆𝑆
𝑇𝑇𝑃𝑃𝑆𝑆 + 𝐹𝐹𝑁𝑁𝐴𝐴|𝑆𝑆 + 𝐹𝐹𝑁𝑁𝑅𝑅|𝑆𝑆

 (16) 

where TPD = True Positive Deficiency = [Deficient nutrient correctly identified as 
deficient]; FND = False Negative Deficiency = [Deficient nutrient incorrectly identified 
as excessive or adequate]; FNA|D = [Deficient nutrient incorrectly identified as 
adequate] and FNE|D = [Deficient nutrient incorrectly identified as excessive]. 

TPAR is the proportion of adequate diagnosed by a model when the nutrient is 
adequate, and is calculated by: 

𝑇𝑇𝑃𝑃𝐴𝐴𝑅𝑅 =
𝑇𝑇𝑃𝑃𝐴𝐴

𝑇𝑇𝑃𝑃𝐴𝐴 + 𝐹𝐹𝑁𝑁𝐴𝐴
=

𝑇𝑇𝑃𝑃𝐴𝐴
𝑇𝑇𝑃𝑃𝐴𝐴 + 𝐹𝐹𝑁𝑁𝑆𝑆|𝐴𝐴 + 𝐹𝐹𝑁𝑁𝑅𝑅|𝐴𝐴

 (17) 

where TPA = True Positive Adequate = [Adequate nutrient correctly identified as 
adequate]; FNA = False Negative Adequate = [Adequate nutrient incorrectly identified 
as deficient or excessive]; FND|A = [Adequate nutrient incorrectly identified as 
deficient] and FNE|A = [Adequate nutrient incorrectly identified as excessive]. 

TPER is the proportion of excess diagnosed by a model when the nutrient is 
excessive, and is calculated by: 
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𝑇𝑇𝑃𝑃𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁𝑇𝑇

= 𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁𝑆𝑆|𝑇𝑇+𝐹𝐹𝑁𝑁𝐴𝐴|𝑇𝑇

 

𝑇𝑇𝑃𝑃𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑃𝑃𝑅𝑅

𝑇𝑇𝑃𝑃𝑅𝑅 + 𝐹𝐹𝑁𝑁𝑅𝑅
=

𝑇𝑇𝑃𝑃𝑅𝑅
𝑇𝑇𝑃𝑃𝑅𝑅 + 𝐹𝐹𝑁𝑁𝑆𝑆|𝑅𝑅 + 𝐹𝐹𝑁𝑁𝐴𝐴|𝑅𝑅

 
(18) 

where TPE = True Positive Excess = [Excessive nutrient correctly identified as 
excessive]; FNE = False Negative Excess = [Excessive nutrient incorrectly identified as 
deficient or adequate]; FND|E = [Excessive nutrient incorrectly identified as deficient] 
and FNA|E = [Excessive nutrient incorrectly identified as adequate]. 

PPV: represents the proportion of correctly detected diagnoses of a particular 
nutritional status to the total number of diagnosed cases of that status. This criterion 
reflects the model’s prediction performance. A high PPV for a specific nutrient status 
indicates diagnosis for that status are reliable. There are three subcategories: Positive 
Predictive Deficiency Value (PPDV), Positive Predictive Adequate Value (PPAV),  
and Positive Predictive Excess Value (PPEV). Indeed, PPDV is the proportion of 
deficiency that was correctly identified to the total number of deficient cases diagnosed. 
It is given by: 

𝑃𝑃𝑃𝑃𝑆𝑆𝐶𝐶 =
𝑇𝑇𝑃𝑃𝑆𝑆

𝑇𝑇𝑃𝑃𝑆𝑆 + 𝐹𝐹𝑃𝑃𝑆𝑆
 (19) 

where TPD = [Deficient nutrient correctly identified as deficient] and FPD = False 
Positive Deficiency = [Adequate or excessive nutrient incorrectly identified as 
deficient]. 

PPAV is the proportion of adequacy that was correctly identified to the total 
number of adequate cases diagnosed, and is given by: 

𝑃𝑃𝑃𝑃𝐴𝐴𝐶𝐶 =
𝑇𝑇𝑃𝑃𝐴𝐴

𝑇𝑇𝑃𝑃𝐴𝐴 + 𝐹𝐹𝑃𝑃𝐴𝐴
 (20) 

where TPA = [Adequate nutrient correctly identified as adequate] and FPA = False 
Positive Adequate = [Deficient or excessive nutrient incorrectly identified as adequate]. 

PPEV is the proportion of excess that was correctly diagnosed to the total number 
of excessive cases diagnosed, and is given by: 

𝑃𝑃𝑃𝑃𝑅𝑅𝐶𝐶 =
𝑇𝑇𝑃𝑃𝑅𝑅

𝑇𝑇𝑃𝑃𝑅𝑅 + 𝐹𝐹𝑃𝑃𝑅𝑅
 (21) 

where TPE = [Excessive nutrient correctly identified as excessive] and FPE = False 
Positive Excess = [Deficient or adequate nutrient incorrectly identified as excessive]. 

Accuracy: measures how close the model's results are to the true value. It is the 
ratio of correctly detected diagnoses to the total number of diagnosis results. Accuracy 
provides an overall view of the model performance. A high accuracy indicates the model 
performs well overall in identifying nutrient deficiencies, adequate levels, and excesses. 

𝐴𝐴𝐼𝐼𝐼𝐼𝑣𝑣𝑓𝑓𝑣𝑣𝐼𝐼𝐴𝐴 =
𝑇𝑇𝑃𝑃𝑆𝑆 + 𝑇𝑇𝑃𝑃𝐴𝐴 + 𝑇𝑇𝑃𝑃𝑅𝑅

𝑇𝑇𝑃𝑃𝑆𝑆 + 𝑇𝑇𝑃𝑃𝐴𝐴 + 𝑇𝑇𝑃𝑃𝑅𝑅 + 𝐹𝐹𝑁𝑁𝑆𝑆 + 𝐹𝐹𝑁𝑁𝐴𝐴 + 𝐹𝐹𝑁𝑁𝑅𝑅
 (22) 

where TPD = True Positive Deficiency, TPA = True Positive Adequacy, TPE = True 
Positive Excess, FND = False Negative Deficiency, FNA = False Negative Adequacy, 
and FNE = False Negative Excess. 

In summary, these performance criteria provide a comprehensive picture of how 
well models can diagnose plant nutrient status. DCF assesses agreement between 
models, while TPR and PPV evaluate a model's ability to correctly identify true nutrient 
deficiencies, adequate levels, and excesses. 
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Data analysis 
The fruit yield population was separated into high and low subpopulation data 

arrays based on the confidence interval method proposed by Silva et al. (2004). 
Descriptive statistics were calculated for pineapple fruit yield, leaf nutrient 
concentrations, nutrient ratios, and row-centred log ratio expression data (Eq. 15) using 
R software version 4.1.3 (R Core Team, 2021). Descriptive statistics included, means, 
standard deviations, CVs, skewness, and kurtosis values, where a skewness value of zero 
indicates perfect symmetry, and values greater than 1 indicate marked asymmetry. We 
computed DRIS (Eq. 6), M-DRIS (Eq. 10), and CND (Eq. 15) index values per treatment 
based on the index function and the row-centred log-ratios for the high-yielding 
subpopulation. The more negative is the index value for a nutrient, the more limiting is 
that nutrient. The mean nutrient balance index (NBIm) was also computed for each 
model. The mean indices of the three models for each nutrient and the NBIm were 
plotted against the sample size using plot() function from the base stats package in 
R software. They were plotted to see the trends for the distribution of N, P, and K indices 
and NBIm for the different models. 

A permutational multivariate analysis of variance (PERMANOVA) test (p < 0.05) 
was performed on the nutrient indices using Euclidean method (Anderson, 2001) under 
the null hypothesis that there is no difference between these indices for DRIS, M-DRIS, 
and CND models with 0.05 significance level. Model and treatment were considered as 
factors. We calculated also the percentages of agreement between the models, the 
sensitivity (Eqs (16), (17) and (18)), precision (Eqs (19), (20) and (21)) and accuracy 
(Eq. 22) for each model and by sample size that were used to compare model 
performance. Performance criteria values including sensitivity, precision, and accuracy 
of each model were then averaged and plotted against the sample size using function plot 
from the base stats package in R software. All the computations and plots were done 
using R software version 4.1.3. 

 
Interpretation of DRIS, M-DRIS, and CND indices  
The nutrient index and the NBIm were used to interpret the diagnosis made by 

DRIS, M-DRIS, and CND (Wadt, 2005). Using this method, each nutrient's DRIS,  
M-DRIS, and CND index modules are compared with the NBIm. According to Wadt et 
al. (1998), the technique determines if the imbalance ascribed to a particular nutrient is 
larger or smaller than the imbalance given to the average of all nutrients. The method 
has the advantage of detecting even excess nutrients. According to this author, for a 
nutrient Nut, the following conclusions could be drawn: 

𝑆𝑆𝑙𝑙𝑓𝑓𝑙𝑙𝐼𝐼𝑙𝑙𝑙𝑙𝑛𝑛𝐼𝐼𝐴𝐴 =  𝐴𝐴𝑁𝑁𝑣𝑣𝑡𝑡 <  0 𝑣𝑣𝑛𝑛𝑜𝑜 |𝐴𝐴𝑁𝑁𝑣𝑣𝑡𝑡|  >  𝑁𝑁𝐵𝐵𝐴𝐴𝑓𝑓 
𝐴𝐴𝑜𝑜𝑙𝑙𝐴𝐴𝑣𝑣𝑣𝑣𝑡𝑡𝑙𝑙 =  |𝐴𝐴𝑁𝑁𝑣𝑣𝑡𝑡|  ≤  𝑁𝑁𝐵𝐵𝐴𝐴𝑓𝑓 

𝑅𝑅𝑥𝑥𝐼𝐼𝑙𝑙𝐸𝐸𝐸𝐸 =  𝐴𝐴𝑁𝑁𝑣𝑣𝑡𝑡 >  0 𝑣𝑣𝑛𝑛𝑜𝑜 |𝐴𝐴𝑁𝑁𝑣𝑣𝑡𝑡|  >  𝑁𝑁𝐵𝐵𝐴𝐴𝑓𝑓 
The DRIS, M-DRIS, and CND indices (Table 2) were interpreted using the  

theory of potential fertilization response (PFR) (Wadt et al., 1998). The nutrients of the  
high-productivity subpopulation were classified according to the potential fertilization 
response as follows: zero (z), positive (p), negative (n), positive or zero (pz), and 
negative or zero (nz). 
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Table 2. Criteria for interpreting DRIS, M-DRIS, and CND indices based on PFR 
Nutritional state Criteria Potential response fertilization 
Deficient and limiting INut < 0 

|INut| > NBIm 
INut is lower index value 

Positive, with higher probability (p) 

Probably deficient INut < 0 
|INut| > NBIm 

Positive or zero, with lower probability 
(pz) 

Adequate |INut| ≤ NBIm zero (z) 
Probably excessive INut > 0 

|INut| > NBIm 
Negative or zero, with lower probability 
(nz) 

Excessive INut > 0 
|INut| > NBIm 
INut is higher index value 

Negative, with higher probability (n) 

PFR= Potential Fertilization Response, NBIm = nutrient balance index mean and INut = DRIS, M-DRIS or 
CND index nutrient. Source: Calheiros et al. (2018). 

 
The flow chart (Fig. 1) below presents the different steps of this study. 

 

 
 

Figure 1. Research scheme. 
 

RESULTS AND DISCUSSION 
 
Relationship between yield and nutrients 
Among the 10 regression models performed to identify the relationship between 

yield and nutrients, the multiple linear regression model has the lowest AIC (210.39) and 
RMSE (15.73) values, as well as the highest R² (78.01; Table 3). Therefore, it is 
considered the best model, and its equation is as follows: 

𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙𝑜𝑜 =  − 5.44 +  79.6 ∗  𝑁𝑁 −  25.13 ∗  𝑃𝑃 −  3.35 ∗  𝐾𝐾 (23) 
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This equation was then used to generate the yields corresponding to the nutrient 
levels, in keeping the linear functional link between the data. 
 
Table 3. Linear and non linear equation to yield on the explanatory variables 
Model Equation AIC R2 (%) RMSE 
Multiple linear regression Yield = e +a*N + b*P + c*K 210.39 78.01 15.73 
Logarithm transformation Yield = e +a*log(N) + b*log(P) + c*log(K) 214.12 74.3 17.01 
Inverse Yield = e +a*(1/N) + b*(1/P) + c*(1/K) 244.09 52.85 35.98 
Quadratic of N Yield = e +a*N2 + b*P + c*K 227.16 61.07 18.86 
Quadratic of P Yield = e +a*N + b*P2 + c*K 241.2 60.28 28.98 
Quadratic of K Yield = e +a*N + b*P + c*K2 225.04 63.53 20.35 
Quadratic of N and P Yield = e +a*N2 + b*P2 + c*K 219.45 64.12 18.25 
Quadratic of N and K Yield = e +a*N2 + b*P + c*K2 222.23 63.55 20.22 
Quadratic of P and K Yield = e +a*N + b*P2 + c*K2 235.1 60.05 28.43 
Quadratic of N, P and K Yield = e +a*N2 + b*P2 + c*K2 228.64 61.75 19.62 
AIC = Akaike Information Criterion; R2: Coefficient of determination; RMSE = Root Mean Square Error; 
e = the intercept or constant term; a = the regression coefficient for N; b = the regression coefficient for P; 
c = the regression coefficient for K. 
 

Binary nutrients ratio and row-centred log ratio statistics  
Binary nutrient ratio combinations and row-centred log ratios of all three nutrients 

were calculated for the different sample sizes, and summary statistics were evaluated for 
each of the resulting nutrient ratio expressions (Table 4). We noticed that the values of 
the dual relations and the multi-nutrient variables with the means differed for the  
high-productivity subpopulation. The DRIS and M-DRIS norms, i.e. means and CVs of 
the nutrient ratios, for high-yielding subpopulations were presented in Table 4. 

Indeed, a total of six (06) nutrient ratios were established and used to determine the 
DRIS and M-DRIS standards. These ratios were N/P, N/K, P/K, P/N, K/N, K/P. 
Considering the different sample sizes, except 30, the ratio P/N had the lowest average 
ratio and K/P had the highest for the control treatment (Table 4). For the treatments  
2N-0P-2K, 1N-2P-0K, and 2N-2P-2K, the ratios of P/K had the lowest standard 
deviation, while the ratios of K/P had the highest standard deviation. On the other hand, 
for treatment 0N-1P-1K, the nutrient ratios of N/K had the lowest standard deviation, 
whereas the ratios of K/P had the highest standard deviation. These values were 
computed using CVs and 𝑋𝑋� , and were presented in Table 3. The means, standard 
deviation (SD), and CV (%) of ratios for high-yielding subpopulations were computed 
for the DRIS and M-DRIS norms. These norms were used to calculate nutrient indices 
of DRIS and M-DRIS and the Mean Nutrient Balance Indices. 

The CND norms, i.e. means and CVs, of row-centred log ratios of N, P, and K, for 
the high yielding- subpopulation were presented in Table 4. N and P nutrients had the 
lowest and highest standard deviations, respectively, with regard to the CND criteria for 
all sample sizes and the control treatment. For K nutrient, the standard deviation was 
0.83% (computed using  𝑋𝑋�  and CV; Table 4). 
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-1.33 
-62.19 

-1.33 -62.67 
-1.33 

-62.13 
-1.33 

-62.62 
-1.33 

-62.36 
-1.33 -62.64 

-1.33 
-62.55 

-1.33 
-62.55 

T2 
N

/P 
15.03 1,724.80 15.36 2,259.69 20.11 

6,309.45 12.55 1,033.16 26.13 
15,606.77 14.35 2,330.56 

150.6 
35,245.83 15.71 3,514.99 

14.41 
2,598.88 

17.53 8,389.27 
N

/K
 

0.54 
11.87 

0.54 
11.85 

0.54 
11.83 

0.54 
11.83 

0.54 
11.92 

0.54 
11.89 

0.54 
11.87 

0.54 
11.89 

0.54 
11.86 

0.54 
11.91 

P/K
 

0.09 
43.99 

0.09 
44.13 

0.09 
43.96 

0.09 
43.93 

0.09 
44.08 

0.09 
44.10 

0.09 
44.08 

0.09 
43.99 

0.09 
44.05 

0.09 
43.97 

P/N
 

0.17 
44.49 

0.17 
44.95 

0.17 
44.79 

0.17 
44.75 

0.17 
44.86 

0.17 
44.84 

0.17 
44.78 

0.17 
44.80 

0.17 
44.81 

0.7 
44.71 

K
/N

 
1.86 

12.06 
1.86 

12.02 
1.86 

12.03 
1.86 

12.04 
1.86 

12.13 
1.86 

12.08 
1.86 

12.08 
1.86 

12.09 
1.86 

12.07 
1.86 

12.11 
K

/P 
27.84 1,662.23 28.02 2,115.26 36.39 

6,067.38 22.90 968.54 
47.6 

15,312.52 26.44 2,377.52 
310.83 35,474.45 28.94 3,340.91 

26.92 
2,748.18 

32.27 7,900.48 
G

 
4.41 

1.57 
4.41 

1.58 
4.21 

1.59 
4.41 

1.58 
4.41 

1.59 
4.40 

1.59 
4.41 

1.59 
4.40 

1.59 
4.41 

1.59 
4.41 

1.58 
Log (N

/G
) 

-0.73 -13.76 
-0.73 

0.1 
-0.73 

-13.78 
-0.72 -13.77 

-0.73 
-13.86 

-0.72 
-13.82 

-0.73 
-13.78 

-0.73 -13.82 
-0.73 

-0.73 
-0.73 

-13.84 
Log (P/G

) 
-2.65 -24.91 

-2.64 
-24.91 

-2.64 
-24.66 

-2.64 -24.6 
-2.65 

-24.72 
-2.64 

-24.73 
-2.65 

-24.81 
-2.64 -24.73 

-2.64 
-2.64 

-2.64 
-24.59 

Log (K
/G

) 
-0.11 -44.62 

-0.11 
-44.63 

-0.11 
-44.87 

-0.11 -44.51 
-0.11 

-44.7 
-0.11 

-44.92 
-0.12 

-44.73 
-0.11 -44.74 

-0.11 
-0.11 

-0.11 
-44.68 
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Table 4 (continued) 
T3 

N
/P 

6.19 
1,650.93 5.38 

1,452.75 5.46 
1,660.36 7.55 

4,206.58 11.4 
12,837.01 7.18 

3,725.06 
7.79 

6,289.36 
6.67 

4,211.49 
12.83 

18,240.64 17.79 32,345.07 
N

/K
 

0.2 
41.91 

0.21 
41.8 

0.21 
41.72 

0.21 
41.76 

0.2 
41.72 

0.21 
41.74 

0.21 
41.82 

0.21 
41.96 

0.21 
41.77 

0.21 
41.93 

P/K
 

0.18 
66.92 

0.18 
66.48 

0.18 
66.72 

0.18 
66.91 

0.18 
66.78 

0.18 
66.48 

0.18 
66.88 

0.18 
66.66 

0.18 
66.64 

0.18 
66.62 

P/N
 

1.47 
587.16 

2.59 
5,853.87 4.26 

12,386.18 1.73 
2,742.32 1.66 

2,071.21 
1.93 

2,716.81 
1.66 

2,142.14 
1.7 

2,416.8 
1.99 

5,442.97 
3.42 

33,140.85 
K

/N
 

8.94 
905.35 

15.02 6,296.99 20.62 
11,248.19 9.75 

2,272.68 8.94 
1,551.59 

10.81 2,761.16 
9.91 

3,781.15 
9.68 

2,363.47 
10.84 

6,261.52 
20.05 32,399.43 

K
/P 

31.13 1,725.96 26.64 1,396.35 28.13 
1,555.03 34.04 3,137.97 44.41 

7,851.88 
33.87 3,194.79 

36.58 
5,137.91 

33.44 3,780.51 
57.78 

14,136.23 68.42 25,110.33 
G

 
4.22 

2.83 
4.21 

2.83 
4.22 

2.83 
4.21 

2.82 
4.21 

2.82 
4.22 

2.83 
4.22 

2.82 
4.21 

2.83 
4.22 

23.23 
4.22 

23.28 
Log (N

/G
) 

-1.96 -29.7 
-1.96 

-29.7 
-1.95 

-29.45 
-1.94 -29.07 

-1.94 
-29.04 

-1.95 
-29.36 

-1.68 
-29.22 

-1.95 -29.38 
-1.95 

-29.32 
-1.95 

-29.19 
Log (P/G

) 
-2.29 -44.52 

-2.29 
-44.53 

-2.29 
-44.39 

-2.30 -44.5 
-2.3 

-44.61 
-2.29 

-44.55 
-2.3 

-44.82 
-2.29 -44.51 

-2.3 
-44.68 

-2.29 
-44.62 

Log (K
/G

) 
-0.25 -35.07 

-0.25 
-35.07 

-0.25 
-35.17 

-0.25 -35.02 
-0.25 

-34.93 
-0.25 

-35.03 
-0.25 

-34.94 
-0.25 -34.97 

-0.25 
-34.97 

-0.25 
-34.95 

T4 
N

/P 
18.3 

6,675.43 12.81 3,452.28 6.53 
672.48 

14.5 
3,432.38 9.37 

2,480.93 
31.8 

21,885.95 9.46 
2,304.91 

11.35 5,284.76 
41.48 

41,737.89 11.24 5,462.52 
N

/K
 

0.35 
79.06 

0.36 
79.8 

0.36 
80.47 

0.36 
79.77 

0.36 
79.2 

0.36 
79.31 

0.36 
79.71 

0.36 
79.76 

0.36 
80.91 

0.36 
79.94 

P/K
 

0.18 
64.2 

0.18 
64.5 

0.18 
65.21 

0.18 
64.2 

0.18 
64.4 

0.18 
64.68 

0.18 
64.67 

0.18 
64.71 

0.18 
65.93 

0.18 
64.63 

P/N
 

2.61 
977.89 

3.50 
2,290.19 5.10 

5,156.76 3.15 
1,779.13 624.72 

32,159.3 
4.68 

11,755.1 
3.47 

2,447.74 
3.95 

7,641.35 
4.001 

6,117.44 
3.5 

3,386.52 
K

/N
 

15.22 930.3 
21.07 2,000.73 27.13 

3,702.31 18.35 1,656.8 1,631.002 31,945.30 27.35 11,299.61 19.67 
2,068.73 

22.83 7,715.36 
26.002 6,489.78 

20.96 3,166.57 
K

/P 
47.15 5,113.71 1.53 

3,552.3 20.42 
995.8 

43.29 4,806.56 27.26 
2,144.36 

74.38 18,235.6 
33.08 

4,065.54 
36.51 7,780.84 

60.65 
26,061.09 33.58 6,103.32 

G
 

4.23 
5.18 

4.23 
5.27 

4.24 
5.25 

4.23 
5.22 

4.23 
5.21 

4.23 
5.23 

4.23 
5.24 

4.23 
5.26 

4.23 
5.23 

4.23 
5.22 

Log (N
/G

) 
-1.69 -65.23 

-1.69 
-65.23 

-1.69 
-65.22 

-1.69 -65.16 
-1.69 

-65.15 
-1.68 

-65.17 
-1.68 

-65.25 
-0.26 -65.19 

-1.69 
-65.21 

-1.69 
-65.18 

Log (P/G
) 

-2.25 -41.09 
-2.25 

-41.09 
-2.25 

-40.70 
-2.25 -41.17 

-2.25 
-40.98 

-2.26 
-41.20 

-2.25 
-41.09 

-2.25 -41.09 
-2.26 

-41.05 
-2.25 

-41.07 
Log (K

/G
) 

-0.24 -67.71 
-0.25 

-67.71 
-0.24 

-68.57 
-0.25 -67.38 

-0.24 
-67.60 

-0.25 
-67.81 

-0.25 
-67.92 

-1.68 -68.11 
-0.25 

-67.71 
-0.25 

-67.78 
T5 

N
/P 

24.87 1,193.63 34.85 5,748.19 29.65 
4,117.35 28.72 1,896.02 29.61 

2,780.58 
38.87 7,120.04 

27.31 
2,263.61 

32.94 5691.68 
32.71 

7,922.83 
38.17 10,933.74 

N
/K

 
0.69 

25.47 
0.69 

25.72 
0.69 

25.61 
0.69 

25.5 
0.69 

25.68 
0.7 

25.52 
0.7 

25.44 
0.7 

25.45 
0.7 

25.53 
0.7 

25.55 
P/K

 
0.13 

63.5 
0.13 

63.98 
0.13 

63.99 
0.13 

63.47 
0.13 

63.55 
0.13 

63.66 
0.13 

63.40 
0.13 

63.49 
0.13 

63.61 
0.13 

63.61 
P/N

 
0.19 

65.43 
0.19 

65.82 
0.19 

66.12 
0.19 

65.13 
0.19 

65.37 
0.20 

65.63 
0.19 

65.39 
0.19 

65.36 
0.2 

65.43 
0.2 

65.56 
K

/N
 

1.53 
26.92 

1.52 
27.06 

1.52 
28.66 

1.52 
26.78 

1.52 
26.92 

1.53 
26.94 

1.52 
26.81 

1.52 
26.74 

1.52 
26.92 

1.53 
26.91 

K
/P 

37.54 1,189.09 46.46 4,817.31 43.27 
4,468.23 42.51 1,966.38 43.47 

2,711.17 
56.38 6,296.80 

39.51 
2,083.57 

49.25 6,417.43 
49.64 

9,042.45 
55.13 10,223.39 

G
 

3.99 
3.88 

3.99 
3.9 

4 
3.89 

4 
3.87 

3.99 
3.88 

3.99 
3.86 

3.99 
3.85 

4.23 
3.86 

3.99 
3.87 

3.99 
2.87 

Log (N
/G

) 
-0.82 -25.01 

-0.82 
-25.01 

-0.81 
-24.92 

-0.81 -24.72 
-0.81 

-24.93 
-0.81 

-24.89 
-0.81 

-24.79 
-0.81 -24.77 

-0.81 
-24.86 

-0.81 
-24.82 

Log (P/G
) 

-2.77 -34.84 
-2.77 

-34.84 
-2.77 

-34.95 
-2.76 -34.85 

-2.77 
-35.05 

-2.76 
-34.93 

-2.76 
-34.81 

-2.76 -34.71 
-2.76 

-34.75 
-2.76 

-34.77 
Log (K

/G
) 

-0.42 -28.71 
-0.42 

-28.71 
-0.42 

-28.71 
-0.42 -28.58 

-0.42 
-28.54 

-0.42 
-28.44 

-0.42 
-28.36 

-0.42 -28.48 
-0.43 

-28.53 
-0.42 

-28.50 
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For the treatments 2N-0P-2K, 0N-1P-1K, and 2N-2P-2K, potassium (K) had the 
lowest standard deviation, while phosphorus (P) had the highest standard deviation. 
Potassium (K) and nitrogen (N) exhibited the lowest and highest standard deviations for 
the treatment 1N-2P-0K, respectively. The standard deviation of phosphorus (P) ranged 
between 0.91% and 0.93% (computed using  𝑋𝑋�  and CVs). Negative values in the CND 
criteria mean that the nutrient's foliar content is lower than the geometric mean of the 
nutritional composition in the multi-nutrient variable. 

 
Nutrient indices computed by DRIS, M-DRIS, and CND methods 
The N, P, and K indices and as well as the NBIm were calculated for each treatment 

and each sample size using DRIS, M-DRIS, and CND models. When all nutrient indices 
for DRIS, M-DRIS, and CND were plotted in one graph, the models showed different 
trends for the distribution of N, P, and K indices as well as NBIm (Fig. 2). Nutrient 
indices were different between models and with sample size. Indeed, we noticed that N, 
P, and K averaged indices as well as NBIm for M-DRIS (red dashed lines) were positive, 
whereas DRIS average indices (black lines) were negative for P and positive for K  
and NBIm. N varied between negative (𝐴𝐴𝑁𝑁 = -36.78) and positive values (𝐴𝐴𝑁𝑁 = 158.28). 
CND averaged indices (blue lines) were between negative and positive values for all 
nutrients with the sample size (ranging from −1.57*10−16 to 1.31*10−16 for N, -9.68*10−17 
to 5.83*10−17 for P, and -1.23*10−16 to 8.66*10−17) and were very close to 0, which 
explained the approximately linear shape of its curves in the figure. 

For all three models, the calculated indices became approximately stable from the 
sample size of 490 (Fig. 2). P was the most limiting nutrient by deficiency, compared to 
the other nutrients. 
 

 
 
Figure 2. Averaged indices of N, P, K and mean nutrient balance index (NBIm) for DRIS,  
M-DRIS, and CND models relative to the different data size. 
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Table 5. Results of permutational multivariate analysis of variance on the nutrient indices 
considering the models and treatment as factors 
Sample size Source of variation Df Sum of squares R2 F Pr(>F) 
30 Model 2 276,236 0.40 5.01 0.001*** 

Treatment 4 194,099 0.28 1.76 0.12 
Residual 8 220,393 0.32 - - 
Total 14 690,729 1 - - 

70 Model 2 269,961 0.34 4.77 0.007** 
Treatment 4 288,337 0.37 2.55 0.025* 
Residual 8 226,224 0.29 - - 
Total 14 784,522 1 - - 

80 Model 2 321,217 0.37 4.09 0.002** 
Treatment 4 233,648 0.27 1.49 0.168 
Residual 8 314,105 0.36 - - 
Total 14 868,969 1 - - 

100 Model 2 269,792 0.36 4.45 0.004** 
Treatment 4 239,334 0.32 1.97 0.052 
Residual 8 242,563 0.32 - - 
Total 14 751,689 1 - - 

210 Model 2 165,972,252 0.15 1.03 0.393 
Treatment 4 296,526,975 0.27 0.92 0.933 
Residual 8 646,655,531 0.58 - - 
Total 14 1,109,154,758 1 - - 

270 Model 2 556,484 0.31 3.4 0.007** 
Treatment 4 602,948 0.33 1.84 0.076 
Residual 8 654,686 0.36 - - 
Total 14 1,814,118 1 - - 

330 Model 2 4,802,704 0.23 1.51 0.065 
Treatment 4 3,394,142 0.16 0.53 0.913 
Residual 8 12,707,887 0.61 - - 
Total 14 20,904,733 1 - - 

490 Model 2 303,415 0.35 4.38 0.004** 
Treatment 4 286,785 0.33 2.07 0.043* 
Residual 8 277,008 0.32 - - 
Total 14 867,208 1 - - 

630 Model 2 579,664 0.38 4.47 0.006** 
Treatment 4 444,592 0.29 1.71 0.133 
Residual 8 519,244 0.34 - - 
Total 14 1,543,499 1 - - 

860 Model 2 576,084 0.36 4.35 0.003** 
Treatment 4 486,791 0.31 1.84 0.048* 
Residual 8 530,319 0.33 - - 
Total 14 1,593,194 1 - - 

Df: Degree of freedom; ***, **, and * indicate significance at 0.001, 0.01, 0.05, and 0.1 levels, respectively. 
 
The permutational multivariate analysis of variance (PERMANOVA) results 

indicated that there was a significant difference between the DRIS, M-DRIS and CND 
indices for the sample sizes of 30 (p.value = 0.001), 70 (p.value = 0.007), 80 
(p.value = 0.002), 100 (p.value = 0.004), 270 (p.value = 0.007), 490 (p.value = 0.004), 
630 (p.value = 0.006), and 860 (p.value = 0.003). For the sample sizes of 210 and 330, 
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the nutrient indices calculated did not differ significantly between the DRIS, M-DRIS, 
and CND models. Considering the treatments, there was also a difference between the 
dispersions of the models’ indices calculated for the sample size of 70 (p.value = 0.025) 
at a 5% significance level (Table 5). 

 
Comparison of the Performance of DRIS, M-DRIS, and CND 
 
Frequency of concordance in diagnosis using the DRIS, M-DRIS, and 

CND models 
The comparison of multiple models employing specific norms based on the 

frequency of concordant diagnoses (DCF) (Silva et al., 2004) produced varying findings 
depending on the method of comparison and the concentration of nutrients in pineapple 
leaves. A set of all treatments combined was used to assess the effect of the index model 
and sample size. All sample sizes yielded mean values of 66% (DRIS versus M-DRIS), 
43.33% (DRIS vs CND), and 28.7% (M-DRIS vs CND) (Table 6).When comparing N, 
P, and K nutrients, the concordance is lower with CND involved. Consequently, the 
DRIS and M-DRIS models showed more similarity in diagnosing nutritional status for 
pineapple compared to each of them versus the CND model. Overall, the models 
disagreed, and when it came to determining the status of N, P, and K minerals, the 
nutritional diagnostic obtained through the CND technique was not the same as that 
obtained through the DRIS and M-DRIS methods. Our results are consistent with those 
of Silva et al. (2004) when assessing the nutritional status of eucalyptus trees and with 
the work of Urano et al. (2006) when assessing the nutritional diagnosis of soybeans. 
They found that the DRIS and M-DRIS methods were concordant. 

 
Table 6. Agreement percentages of concordant diagnoses of N, P, and K status in pineapple, 
subpopulation of high productivity, among the methods DRIS, M-DRIS, and CND for each 
sample size, applied to the leaves 

Sample  
size 

DRIS vs M-DRIS DRIS vs CND M-DRIS vs CND 
N  
(%) 

P  
(%) 

K 
(%) 

Mean 
(%) 

N 
(%) 

P  
(%) 

K 
(%) 

Mean 
(%) 

N  
(%) 

P  
(%) 

K  
(%) 

Mean 
(%) 

30 80 20 80 60 40 20 40 33.33 60 40 40 34 
70 100 80 80 86.66 40 40 80 53.33 40 40 60 27.67 
80 40 20 0 20 100 40 0 46.67 40 0 40 14 
100 80 60 40 60 40 20 40 33.33 60 40 80 34.67 
210 80 40 80 66.67 40 0 20 20 40 60 20 33.67 
270 100 20 80 66.67 60 80 60 66.67 60 40 40 34 
330 100 60 80 80 40 40 20 33.33 40 60 20 33.67 
490 80 40 80 66.67 40 40 60 46.67 40 40 40 27.33 
630 100 60 80 80 80 20 80 60 80 0 60 27.67 
860 80 60 80 73.33 60 20 40 40 60 0 20 20.33 
Mean 84 46 68 66 54 32 44 43.33 52 32 42 28.7 
 

The DCF of the potential fertilization response (PFR) for the principal limitation 
by deficiency (p) for DRIS vs. M-DRIS, DRIS vs. CND, and M-DRIS vs. CND were 
45.32%, 50.43%, and 40.75%, respectively, for the second criterion (Table 7). 
Furthermore, for the same comparison, the main excess (n) constraint was 31.8%, 
39.07%, and 45.82%, respectively. This comparison showed the highest degree of 
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similarity among the three approaches. As observed for the negative response (n), the 
concordance was smaller when DRIS was considered in the comparisons. M-DRIS  
and CND models were more consistent in identifying primary limiting by excess (n), 

al. (2020) found that CND was better at capturing nutrient imbalances affecting fruit 
development and ripening stages, suggesting that it is a more sensitive tool for managing  
 

whereas DRIS and CND were more 
comparable in diagnosing principal 
limiting by deficiency (p), when 
compared to the other duals. 

 
Sensitivity, positive predictive 

value and accuracy of DRIS,  
M-DRIS and CND models 

DRIS, M-DRIS, and CND 
models were also compared based on 
their sensitivity or true positive rate 
(TPR, Fig. 3), positive predictive 
value (PPV, Fig. 4, A-C) and 
accuracy (Fig. 4, D). Compared with 
DRIS and M-DRIS, CND appeared 
to be more sensitive for early 
detection of N, P, and K deficiency 
and excess in pineapple leaves when 
the situations were true (Fig. 3, A and 
C). Parent & Dafir (1992) showed 
that CND is theoretically more robust 
than DRIS and M-DRIS. CND 
recognizes high-order interactions 
between nutrients, which was 
partially addressed by DRIS and  
M-DRIS (Parent & Dafir, 1992). 
CND has been found to be more 
efficient to determine the nutritional 
status of crops because of its sound 
mathematical and statistical bases 
(René et al., 2013; Valdez-Cepeda  
et al., 2013; Morais et al., 2019).  
In the case of pineapple, Cunha et al. 
(2020) found that CND was better  
at capturing nutrient imbalances 
affecting fruit development and 
ripening stages, suggesting that it is a 
more sensitive tool for managing the 
nutrition of fruit crops. However, for 
all sample sizes considered, Cunha et  

 
Table 7. Agreement percentages of concordant 
diagnoses of the potential fertilization response in 
a subpopulation of high productivity, among the 
methods DRIS, M-DRIS, and CND using specific 
norms for each sample size, applied to the leaves 
Sample  
size Method p (%) n (%) 

30 DRIS vs M-DRIS 26.67 33.33 
DRIS vs CND 40.67 23.33 
M-DRIS vs CND 30 55 

70 DRIS vs M-DRIS 25.33 30.67 
DRIS vs CND 50 35.5 
M-DRIS vs CND 20 33.33 

80 DRIS vs M-DRIS 60.33 40.67 
DRIS vs CND 26.7 60 
M-DRIS vs CND 50 10.67 

100 DRIS vs M-DRIS 12.5 10 
DRIS vs CND 40 65.33 
M-DRIS vs CND 50.5 12.5 

210 DRIS vs M-DRIS 70 50 
DRIS vs CND 60 24.67 
M-DRIS vs CND 45.67 75 

270 DRIS vs M-DRIS 70.67 6.67 
DRIS vs CND 13.33 70 
M-DRIS vs CND 36 53.33 

330 DRIS vs M-DRIS 20.33 60 
DRIS vs CND 80 27.33 
M-DRIS vs CND 20 60.67 

490 DRIS vs M-DRIS 30.33 16.67 
DRIS vs CND 64.5 29.33 
M-DRIS vs CND 35.33 50.33 

630 DRIS vs M-DRIS 73.33 40 
DRIS vs CND 43.67 30.5 
M-DRIS vs CND 60 67.33 

860 DRIS vs M-DRIS 63.67 30 
DRIS vs CND 75.67 24.67 
M-DRIS vs CND 60 40 

Mean DRIS vs M-DRIS 45.32 31.8 
DRIS vs CND 50.43 39.07 
M-DRIS vs CND 40.75 45.82 

p = primary limiting by deficiency, n = primary limiting 
by excess. 
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the nutrition of fruit crops. However, for all sample sizes considered, the DRIS method 
was more sensitive to identifying N, P, and K balance in pineapple leaves when the 

N, P, and K nutrients in pineapple leaves (Fig. 4, B). Fig. 4, D showed the accuracy of 
DRIS, M-DRIS, and CND models in function of sample size. 
 

situation was true (Fig. 3, B). 
Then, the CND model was more 

appropriate to identify situations 
where nutrients were deficient or 
excessive. Using the CND method 
may be more suitable for leaves with 
lower or excessive nutrient contents, 
despite its lower sensitivity to 
identify non-nutritional problems. 
Therefore, if low productivity is due 
to nutritional issues, applying the 
CND method for nutritional 
diagnosis could lead to reliable 
recommendations for correcting 
imbalances and increasing crop 
productivity. CND was connected to 
DRIS and M-DRIS but, being based 
on compositional data analysis and 
principal component analysis had 
greater potential for improving plant 
leaf diagnosis (Parent & Dafir, 1992). 

Furthermore, a comparison of 
the diagnostic precision (positive 
predictive value) of DRIS, M-DRIS, 
and CND models revealed that CND 
was the most precise in detecting 
correctly deficiency and excess to the 
total number of deficiency and excess 
cases, respectively for N, P and K 
nutrients, followed by the M-DRIS 
model (Fig. 4, A and C). Kumar et al. 
(2003) showed that CND appeared to 
be more sensitive and efficient  for 
projecting nutrient imbalances in 
turmeric. CND was the sensitive 
diagnosis and could be instrumental 
in adjusting fertilization to crop needs 
after crop emergence (Kumar et al., 
2003). However, the DRIS model 
was more precise in detecting 
correctly adequacy (sufficiency) to 
the total number of adequacy cases for 

 

 
 

 
 

 
 
Figure 3. Sensitivity of DRIS, M-DRIS and CND 
models. 
A = True Positive Deficiency Rate diagnosed by the 
models, B = True Positive Adequate Rate diagnosed by 
the models and C = True Positive Excess Rate 
diagnosed by the models. 
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Figure 4. Positive predictive values and accuracy of DRIS, M-DRIS and CND models. 
A = Positive Predictive Deficiency Value of the models, B = Positive Predictive Adequate Value of the 
models, C = Positive Predictive Excess Value of the models and D = Accuracy of the models. 

 
From this figure, we saw that, for all sample sizes considered, the CND model was 

the most accurate (average accuracy of 27.86%) for diagnosing N, P, and K nutrients in 
pineapple leaves, followed by the M-DRIS method (average accuracy of 25.39%) and 
finally the DRIS method (average accuracy of 21.91%). The DRIS and M-DRIS methods 
were reportedly inferior CND in diagnosing imbalances as they assumed additivity of 
dual ratios (Parent & Dafir, 1992). The performance of the models varied with sample 
size. But, from the data size of 330, there was no higher variation in the DRIS, M-DRIS, 
and CND models’ accuracy. The nutrient status of interest when we have low 
agricultural productivity is nutrient deficiency and to identify this situation, the CND 
model was the most appropriate, sensitive, accurate, and efficient, compared to the other 
models. Thes findings are consistent with the work of Tadayon et al. (2023) who 
conclude that CND is a better technique for assessing nutrient excesses, deficits, or 
balance in plant tissue. It is a multivariate approach and feneficial over the bivariate 
Diagnosis and Recommendation Integrated System (DRIS) techniques and conventional 
univariate critical value (CV) methodologies (Lisboa et al., 2024). Multivariate CND 
technique is superior for increased diagnostic precision for diagnosing mineral disorders 
when multiple nutrients are expected to limit yield simultaneously (Savita et al., 2016). 
Thus, in comparison to DRIS, the CND approach offers a stronger foundation for future 
advancements in foliar diagnostics. 
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CONCLUSIONS 
 
This study compared the performance of three different systems, DRIS, M-DRIS, 

and CND, for diagnosing pineapple leaf nutrient levels while varying the sample size. 
When compared to DRIS and M-DRIS, CND performed better overall in terms of 
sensitivity, positive predictive value, and accuracy. Although the DRIS and M-DRIS 
models demonstrated certain advantages, especially in establishing nutritional balances, 
the CND method was more successful in detecting nutrient excess and deficiencies. 
Future works may focus on the comparison of the diagnosis methods for the 
micronutrients such as zinc, Br also essential for plant growth. 
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