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Abstract. The occurrence of pests and diseases in arecanut crops has always been an important 
factor affecting the total production of arecanut. Arecanut is always dependent on environmental 
factors during its growth. Thus monitoring and early prediction of the occurrence of the disease 
would be very helpful for prevention and therefore more crop production. Here, we propose 
artificial intelligence-based deep learning models for fruit rot disease prediction. Historical data 
on fruit rot incidence in representative areas of arecanut production in Udupi along with historical 
weather data are the parameters used to develop region-specific models for the Udupi district. 
The fruit rot disease incidence score value is predicted using recurrent neural network variants 
(i.e., Vanilla LSTM, Vanilla GRU, stacked LSTM, and Bidirectional LSTM) for the first time. 
The predictive performance of the proposed models is evaluated by mean square error (MSE) 
along with the 5-fold cross-validation technique. Further, compared to other deep learning and 
machine learning models, the Vanilla LSTM model gives 1.5 MSE, while the Vanilla GRU model 
gives 1.3 MSE making it the best prediction model for arecanut fruit rot disease. 
 
Key words: crop disease, deep learning, prediction, cross-validation, fruit rot disease. 
 

INTRODUCTION 
 

The different technologies like robotics platforms, the Internet of things, and 
remote sensing belonging to the industry are now applied to solve agriculture challenges, 
leading to intelligent farming. Smart farming is essential to meet consumer demands, as 
well as for sustainability and productivity. According to the annual report of 2018–19 from 
the Department of Cooperation, Agriculture, and Farmers welfare, 54.6% of the entire 
workforce is affianced in allied and agricultural sector activities. Farming the arecanut 
is a financially rewarding endeavor for farmers. Over 90% of all arecanuts produced in 
India are produced in Karnataka, Assam, Kerala, Mizoram, Meghalaya, West Bengal, 
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and Nagaland. Arecanut is exported worldwide and 700 million people depend on it for 
many reasons (Balanagouda et al., 2021). 

Crop disease always depends on three factors: environmental fluctuation, host, and 
pathogen (Fenu & Malloci, 2021). Arecanut is exceptionally vulnerable to several 
pathogens like bacteria, fungi, and viruses. Heavy rainfall, humidity, and high-intensity 
rains reduce pollination and increase the disease rate reducing yield (Sujatha et al., 2018). 
Arecanut in India is especially threatened by fruit rot disease which causes a 10–70% 
loss in crop yield and sometimes leads to the tree collapsing in itself. The fruit rot disease 
(FRD) problem is escalating yearly because of the lack of human resources available to 
spray fungicides. This increases the disease severity and the ailment spreads to nearby 
regions. Hence, the scattering of diseases was assessed across many locations and the risk 
correlated with FRD (Balanagouda et al., 2021), which will help the extension officers 
and farmers to take control actions and prevent the further expropriation of FRD into 
adjacent places. Farmers rely more on forewarning systems at an initial stage as they can 
avoid the roll-out of disease and also minimize chemical usage. Literature shows that 
arecanut is comprehensively used in medicinal practice in India, China, and other countries 
in Asia (Peng et al., 2015). It is used as traditional medicine for abdominal health issues 
and for treating parasitic diseases, gastrointestinal diseases, and edematous diseases. 

Deep learning is a modern tool that was later integrated with the agriculture domain, 
which has already succeeded in other disciplines. The applications of deep learning in 
agriculture are surveyed by a few authors (Kamilaris & Prenafeta-Boldú, 2018; Santos 
et al., 2019; Ren et al., 2020). They summarized that deep learning models give superior 
performance in terms of accuracy when compared with machine learning models.  
Image-based disease detection, weed detection, land cover classification, and yield 
prediction are some of the more common uses of DL. Even then, it is rarely used for 
early disease detection in crops based on weather. Recent research states that long short-
term memory (LSTM) performs better in sequential data processing when compared 
with deep feedforward neural networks (Kim et al., 2017). 

Researchers have developed a variety of weather-based crop disease forecasting 
models using deep learning techniques. Along with that, many crop disease detection 
models are developed using images. Analysis of agriculture big data through machine 
learning and deep learning has emerged lately. The analysis and classification of different 
algorithms used recently for plant and crop disease forecasting are explored (Fenu & 
Malloci, 2021). The study categorizes the forecasting models into image-based data, 
weather-based information, and data from heterogeneous sources, in which  
weather-based forecasting is more examined. Support vector machine, artificial neural 
network (Malicdem & Fernandez, 2015; Fenu et al., 2019), LSTM (Kim et al., 2017), 
extreme learning machine(ELM) (Anshul Bhatia et al., 2020), random forest (Jawade et 
al., 2020), and multi-layer perceptron (de Oliveira Aparecido et al., 2020) techniques are 
used to predict crop and plant disease based on weather parameters. Similarly, CNN, 
MLP, RF, ELM, and support vector regression techniques are frequently used to forecast 
crop and plant disease based on images (Zhu et al., 2017; Duarte-Carvajalinoet al., 2018). 
Along with images and weather data, data from different sources - i.e. remotely sensed 
variables like vegetation index, water stress index, land surface temperature, leaf area 
index, and soil temperature - are used to predict crop and plant diseases in their early stages. 

The enhanced LSTM model is used in the rice crops’ pest attack forecasting with 
the help of weather data (Wahyono et al., 2020). Daily temperature, humidity, and rainfall 
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data are the inputs given for the model over 16 years. Vanilla LSTM, stacked LSTM, 
and bidirectional LSTM models were compared with the sliding window concept. They 
found that bidirectional LSTM performed better due to the forward and backward 
processing of the data. 

Rice blast disease (RBD) is forecasted before occurrence using LSTM RNN 
(Recurrent Neural Network) (Kim et al., 2017). To test the model, they considered 
17 different rice varieties from 12 regions in South Korea. The proposed LSTM model 
is evaluated by varying the input parameters relative humidity, air temperature, sunshine 
hours, and rice blast disease score. Among several LSTM models, the BlastTHS LSTM 
model gives more accuracy because it contains all the input parameters to predict the 
disease in the Cheolwon region. 

The LSTM model is used to predict the pest and disease occurrence in the cotton 
crop based on weather factors (Xiao et al., 2018; Xiao et al., 2019). The Apriori 
algorithm is used to find the association rules between the weather parameters and 
disease data. The advantages of the LSTM model are shown by comparing it with the 
support vector method (SVM) and random forest method. Relative humidity, rainfall, 
minimum and maximum temperature, wind speed, and sunshine hours are the parameters 
used for the model development along with 63 datasets of cotton pests and diseases. 

A new deep LSTM method is proposed to predict the rice crop pest with the help 
of anomaly climate data (Wahyono et al., 2021). In this study, two prediction models are 
developed and prediction results are compared. Among the two models, the first model 
uses climate data with anomaly as input, and the second model uses data without 
anomaly. Good accuracy was seen in the first model when experimented with 100 
epochs. An attempt was made to predict the rice crop disease using an artificial 
intelligence-based hybrid CNN (Convolution Neural Network)-LSTM model (Jain & 
Ramesh, 2021). The study presents both region-specific prediction and classification 
models, where SVM is used to classify yellow stem border disease in rice crops. The 
model takes relative humidity, temperature, rainfall, evaporation, sunshine hours, and 
pest value captured from the light trap as validation parameters. 

Recently, ANN and SVM learning models were developed to forecast the incidence 
and severity of RBD to prevent or mitigate the escalating of the disease (Malicdem & 
Fernandez, 2015). The PCA algorithm is used to select the features contributing more to 
disease occurrence. SVM gives a more accurate prediction when the result is compared 
with the ANN model. A system was proposed to predict the RBD based on weather 
parameters like rainfall, temperature, wind speed, wind gust, sun hours, visibility, 
humidity, and UV index (Sriwanna, 2022). The agriculture office has documented the 
RBD occurrence between 2013 and 2019. The class 1 label is given to the recorded 
disease data elements but the class 0 label is given to ‘no disease’ data elements. After 
combining the blast data and weather data, they used ensemble feature rankings to select 
the weather features that have a meaningful effect on disease occurrence. The 
classification performance was measured using the F1 score, ROC AUC score, balanced 
accuracy, and geometric mean over DT, KNN, SVM, NB, and MLP classification 
algorithms using the top 10 features. 

LSTM and multilayer perceptron algorithms are used to develop a predictive model 
for RBD in the Davangere region (Varsha et al., 2021). The data for blast disease is 
considered based on the literature study and climate data collected from the Karnataka 
state natural disaster monitoring station. Hyperparameters are adjusted and based on the 
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readings shown by the authors, the final results have outstanding accuracy. Image-based 
deep convolution encoder network model is proposed to predict and classify the diseases 
in different seasonal crops (Khamparia et al., 2020). The crop leaf images from the Plant 
Village dataset are considered for the experiment for five various diseases. Due to the 
combination of autoencoders and CNNs, the model is in hybrid mode. This network 
performed better than the conventional techniques. 

A CNN model was developed to identify the tomato crop disease using leaf images. 
In comparison to different machine learning models like Naive Bayes, kNN, and decision 
trees, the proposed model has 98.4% accuracy, which is relatively high (Agarwal et al., 
2020). The proposed model is tested using a different dataset from other domains, and 
additional model variants are used in the experiments. Accuracy, F1 score, and AUC-
ROC metrics are used to measure the model’s achievement. Rice diseases are identified 
through leaf images using the deep CNN model (Lu et al., 2017). The proposed model 
achieves 95.48% accuracy under a 10-fold cross-validation strategy, which is relatively 
high compared to conventional machine learning models such as SVM and particle 
swarm optimization. 10 different rice diseases are identified from the model. Apple scab 
disease was detected at its early stage using CNN and transfer learning methods (Kodors 
et al., 2021). The imbalanced dataset containing images of apple fruit and apple leaves 
is considered for the experiment. 

A summary was made on detecting and categorizing various arecanut diseases 
using image processing and machine learning methods (Puneeth et al., 2021). The results 
of the study indicate that not much work is being done on the early identification of 
arecanut disease. The authors found no weather-based prediction model for arecanut 
disease as part of their review process. Authors have also detected and classified wheat 
disease using improved deep convolution architecture (Goyal et al., 2021). The spike 
and leaf parts are the most affected in the wheat plant. The proposed method detects nine 
diseases and one healthy class from the Large wheat disease classification dataset 2020. 
The proposed CNN model is compared with VGG16 and RESNET50 CNN models and 
found high testing accuracy of 97.88%. 

Current state-of-the-art ML models are applied to predict the fruit rot disease in 
arecanut crops after data collection (Krishna et al., 2022). The dataset is created by 
integrating disease data and weather data. The decision tree regression (DTR), multilayer 
perceptron regression (MLPR), random forest regression (RFR), and support vector 
regression (SVR) models are used to predict the disease. RFR model gives the best 
performance with 0.9 as Mean Absolute Error and 1.9 as Mean Square Error. 

The development of image-based arecanut crop disease identification models has 
recently gained much traction. For instance, there was an identification of different arecanut 
diseases using a multi-gradient direction-based deep learning model (Mallikarjuna et al., 
2021; Mallikarjuna et al., 2022). In the proposed method, a multi-Sobel directional 
kernel is applied to each input image to generate multi-gradient directional images. 
These images are given as input to the ResNet CNN architecture for disease 
identification. The author has generated the dataset with a total of 281 images including 
healthy, rot, split, and rot-split images. Precision, F-measure, and recall performance 
metrics are used to evaluate the generated results. 

The literature shows that disease identification and prediction models are developed 
for different plants and crops. To list citrus, cucumber (Liu et al., 2022), potato, olive, apple, 
tomato, tobacco, mango, barley, coffee, cotton, grape, rice, wheat, orange, strawberry, 
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oil palm, ginger, and sugar beet can be considered. The main contribution of this research 
work is as follows: 

 Even though many prediction models exist in the crop disease management 
domain for various crops, there is no deep learning-based prediction model for the 
arecanut crop. Hence the present study is the first effort to develop weather-based 
arecanut crop disease forecasting using deep learning models. 

 A novel aspect of this study is integrating historical weather data with arecanut 
crop disease data to create a unique dataset. 

 The performance of four deep learning methods is compared and analyzed. 
Consequently, sincere effort and research are required to develop novel solutions 

to prevent or mitigate the effect of crop disease on yield loss at an early stage. 
 

MATERIALS AND METHODS 
 

The flow diagram for the proposed work is shown in Fig. 1. First, the disease and 
weather data are collected from different sources and integrated. Second, the data is  
pre-processed to make it fit for further processing. After this, different deep-learning 
models are applied to predict the disease score value. Finally, based on the validation 
loss and training loss, all the models are compared and the results are analyzed. 

 

 
 

Figure 1. Flow diagram of the proposed work. 



1122 

Sources of Data 
In this research work, arecanut fruit rot disease data and historical climate data are 

used to generate an FRD forewarning model. The arecanut disease data is collected from 
literature resources, arecanut disease recommendations, and field surveys with nearly 
60 farmers (Krishna et al., 2022) from the Udupi region in Karnataka state, India. Zone 
Agricultural and Horticultural Research Station, Brahmavar, Udupi has provided 
21 years of weather data from 2000 to 2020. Only temperature, rainfall, humidity, 
sunshine hours, and cloud direction parameters are considered in the experiment. The 
data before pre-processing/integration is shown in Table 1 for September 2000. 

 
Table 1. The historical weather data sample for September 2000 before preprocessing. The 
parameters are: Rainfall (RF), Maximum temperature (Max Temp), Minimum Temperature (Min. 
Temp), Relative Humidity in the morning (RH - I), Relative Humidity in the evening (RH - II), 
Cloud measure (I & II in oktas) 

Date RF 
Max. 
Temp 

Min. 
Temp 

RH-I RH-II Cloud I Cloud II 
Sunshine 
Hours 

01.09.2000 0 30 22 97 97 6 6 0 
02.09.2000 0 30 22 98 95 8 7 0 
03.09.2000 0 30 23 93 91 8 6 0 
04.09.2000 0 30 22 100 97 8 6 0 
05.09.2000 0 30 23 95 91 8 8 0 
06.09.2000 0 31 22 92 90 8 8 8 
07.09.2000 6 31 22 96 91 8 8 9 
08.09.2000 12 31 23 94 91 8 6 9 
... ... ... ... ... ... ... ... ... 
... ... ... ... ... ... ... ... ... 
29.09.2000 0 31 23 94 94 8 6 4 
30.09.2000 0 30 25 92 95 8 8 9 
 

Data Pre-processing 
The FRD occurs due to heavy rainfall, high humidity, and low temperature. It is 

around May through October that the climate will be conducive to disease activity. 
Hence from 21 years of collected data, only these months are considered. Arecanut 
diseases usually directly depend on the weather pattern. Therefore, the disease and 
weather data are integrated as shown in Algorithm 1 to create the final dataset, which is 
used to develop the prediction model. This study represents the relationship between 
weather parameters and FRD in arecanut crops by predicting the score value. The score 
value varies from 0 to 35 based on the weather pattern. As the score value increases, 
there is a greater chance of disease outbreaks and spreading. The following rules are 
used to calculate the disease score value. 

Algorithm 1: Rules used to calculate disease score value 
If Rainfall > 15 mm and Temperature < 24 °C and Humidity > 90, 
then Score value increments 
if Rainfall > 5 mm and Sunshine > 5 hrs, 
then Score value increments 
if Rainfall < 10 mm and Temperature > 24 °C, 
then Score value decreases. 
In all other cases score value remains same. 
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After integrating/preprocessing the fruit rot disease data and weather data, the final 
data can be used to predict the fruit rot disease score value. It is possible to forecast 
disease severity for farmers based on the range of score values. The range from 0 to 15 
indicates no disease, 15–25 indicates a medium risk of getting a fungal infection, 25–34 
shows an occurrence of disease and a score value above 35 indicates a high severity of 
the infection. Once the infection starts it will spread to the entire farm with the help of 
wind. Table 2 shows the final integrated data after preprocessing for September 2000. 
 
Table 2. The historical weather data sample for September 2000 and score value after integration/ 
preprocessing through algorithm 1 

Date RF 
Max. 
Temp 

Min. 
Temp 

RH-I RH-II Cloud I Cloud II 
Sunshine 
Hours 

Score 
value 

01.09.2000 0 30 22 97 97 6 6 0 16 
02.09.2000 0 30 22 98 95 8 7 0 15 
03.09.2000 0 30 23 93 91 8 6 0 14 
04.09.2000 0 30 22 100 97 8 6 0 13 
05.09.2000 0 30 23 95 91 8 8 0 12 
06.09.2000 0 31 22 92 90 8 8 8 11 
07.09.2000 6 31 22 96 91 8 8 9 12 
08.09.2000 12 31 23 94 91 8 6 9 13 
... ... ... ... ... ... ... ... ... ... 
... ... ... ... ... ... ... ... ... ... 
29.09.2000 0 31 23 94 94 8 6 4 3 
30.09.2000 0 30 25 92 95 8 8 9 2 

 
Disease prediction Techniques 
A recurrent neural network is the best technology to work with sequential time 

series data (Samarawickrama & Fernando, 2017; Zhang & Dong, 2020). Hence the 
present study has experimented with different variants of RNN, that include LSTM and 
GRU. A detailed explanation of the models is given in the next section. 

its functionality; which provides read, write, and reset operations for the cell. 
Forget Gate: Decides what information has to be discarded from the cell. 

𝑓௧ ൌ 𝜎ሺ𝑊. ሾℎ௧ିଵ, 𝑥௧ሿ  𝑏  (1) 

LSTM model 
Recently LSTM has become a 
state-of-the-art model for different 
time series prediction problems. 
It is a part of an RNN capable  
of learning long-term data 
dependencies, hence it is more 
useful in time series sequential 
analysis. The LSTM cell is shown 
in Fig. 2. It is also called a 
memory cell because it stores 
some information that is essential 
for the next decision. This LSTM 
cell contains three gates; each has 

 

 
 

Figure 2. LSTM cell with three gates: input, output 
and forget. 
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Input Gate: Decides the values from the inputs to update the cell. 
𝑖௧ ൌ 𝜎ሺ𝑊 . ሾℎ௧ିଵ, 𝑥௧ሿ  𝑏  (2) 

Output Gate: Decides what to output based on the input and content of the cell. 
𝑜௧ ൌ 𝜎ሺ𝑊. ሾℎ௧ିଵ, 𝑥௧ሿ  𝑏  (3) 

In the equation, W is the weight given to the neuron, h is the output from the previous 
cell, b is the bias, Ct is the cell state and x is the input at time step t. 
Vanilla LSTM model: As shown in Fig. 3(a), the model with a single hidden layer is 
called the vanilla LSTM model (Wu et al. 2018) used the vanilla LSTM model to 
estimate the remaining useful life of engineered systems. 
Stacked LSTM model: In this model, multiple LSTM layers are stacked one after the 
other as shown in Fig. 3(b). According to the literature, stacked LSTM performs better 
than vanilla LSTM. 
Bidirectional LSTM model: As shown in Fig. 3(c), in this model, instead of training a 
single model, two models are trained with forwarding LSTM using input sequence and 
backward LSTM using reversed input sequence. The output from the forward and 
backward LSTM is concatenated to feed to the dense layer. 
 

a)   

b)   c)  
 

Figure 3. Variants of RNN (a) Vanilla LSTM (b) Stacked LSTM (c) Bidirectional LSTM. 
 

GRU Model 
It is similar to LSTM but a new variant of RNN. The GRU has not maintained the 

cell state like LSTM. It controls the flow of information through the reset gate and the 
update gate. The GRU unit is shown in Fig. 4. 

Update Gate: It combines the 
input and the forget gates into a 
single update gate. 

𝑧௧ ൌ 𝜎ሺ𝑤௭. ሾℎ௧ିଵ, 𝑥௧ሿሻ  (4) 

Reset Gate: It stores the 
short-term memory of the 
network that is the hidden state. 

𝑟௧ ൌ 𝜎ሺ𝑤 . ሾℎ௧ିଵ, 𝑥௧ሿሻ  (5) 

In the equation, W is the weight 
given to the neuron, h is the output 
from the previous cell, b is the bias, 
and x is the input at time step t. 

 

 
 
Figure 4. GRU cell with two gates. 
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Both LSTM and GRU performance varies from case to case, but GRU has only two 
gates, so it processes faster than LSTM. K-fold cross-validation is used to validate the 
model. It is a statistical method that estimates the performance of the learning models on 
new data samples. Here the parameter K refers to the number of splits in the dataset. 
K value 5 is taken in the present experiment. In this method, the dataset is divided into 
5 subsets; from the subset, one set is used for testing, and the remaining four sets are 
used for training. By using this technique, we ensure that the model’s score does not 
depend on the selected subset for training and testing. 

A diagram of the neural network layers for the different deep learning models used 
in the study is presented in Fig. 3. A detailed parameter list for the models used in the 
experiment are shown in Table 3. ReLu activation function is used in all four models, 
along with a 0.001 learning rate. A dataset with step size 15 is used to train the model. 
A Python environment and the TensorFlow library are used for the experiment. 
TensorFlow supports deep learning and machine learning applications. 

 
Table 3. Parameter list for the different DL models 

Units First layer Dense layer Dropout layer 
Vanilla LSTM 64 32 0.2 
Stacked LSTM 64 (Lstm 1) 32 (Lstm 2) 32 0.2 
Vanilla GRU 64 32 0.2 
Bidirectional LSTM 64 (Lstm 1) 64 (Lstm 2) 32 0.2 

 
RESULTS AND DISCUSSION 

 
The present study compares the DL models to predict the arecanut crop disease 

score value. According to the current literature, deep learning models were not applied 
to predict the arecanut FRD. Hence for the first time, vanilla LSTM, vanilla GRU, 
stacked LSTM, and bidirectional LSTM are used in this present experiment. Models are 
measured through validation loss and training loss with the help of mean square error 
(MSE) as shown in Eq. 6. 

MSE =  
∑ሺ௧௨ ௩௨ିௗ௧ௗ ௩௨ሻమ

௧௧ ௨  ௧௦௧ ௦௦
  (6) 

Table 4 shows the validation loss of different DL algorithms with the help of the 5-fold 
cross-validation technique. Similarly, Table 5 shows the training loss of different DL 

Vanilla LSTM and stacked LSTM give better accuracy (lower validation loss) in 
their second fold, whereas vanilla GRU performed best in its fourth fold  
and bidirectional LSTM gives the best performance in the fifth fold. The measured loss 

models. In training, the loss represents 
how well the model fits the training 
samples, while in the validation, 
the loss represents how well the 
model fits newly arrived samples. 

Similarly, Table 4 shows the 
training loss of different DL models. 
Observation from Tables 4 and 5 
shows that the loss can vary 
depending on the subset of the sample. 

 
Table 4. Comparison of validation loss with different
learning models and training sets 

 Validation Loss 
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Vanilla LSTM 2.9 1.5 2.2 2.2 2.9 
Stacked LSTM 3.7 1.8 3.0 2.2 2.4 
Vanilla GRU 2.0 1.5 2.1 1.3 1.6 
Bidirectional 
LSTM 

2.2 5.5 2.5 1.9 1.8 
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Figure 5. Training loss and validation loss for Vanilla LSTM at different fold cross-validation stage. 

 
The training loss is slightly higher than the validation loss in all the validation folds 

when 100 epochs are executed. As shown in the figure, it is observed that as the epochs 
increase, the training loss is decreasing. When 1,000 epochs are executed, the training 
loss is almost equal to the validation loss, which is the best fit. The training loss and 
validation loss of Vanilla GRU for 5-fold cross-validation are shown in Fig. 6. In the 
K-fold cross-validation method each data sample is used at least once in testing, and (K-1) 
times in training. Hence the result generated from cross-validation reduces bias and 
variance. The training loss and validation loss of stacked LSTM for 5-fold cross-
validation are shown in Fig. 7. The difference between training loss and validation loss 
for a bidirectional model is lower than in other models. The bidirectional model 

MSE is the mean data of the 
squared differences between 
actual and predicted values.  
MSE performance metric is 
always used in regression 
problems. The training loss and 
validation loss of Vanilla LSTM 
for 5-fold cross- validation are 
shown in Fig. 5. 

Table 5. Comparison of training loss with different 
learning models and training sets 

 
Training Loss 
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Vanilla LSTM 9.6 7.2 6.3 5.8 4.7 
Stacked LSTM 7.1 6.6 5.4 5.1 4.3 
Vanilla GRU 8.3 7.1 6.3 5.5 4.3 
Bidirectional 
LSTM 

6.7 1.7 4.6 3.5 3.0 
 

Vanilla LSTM (fold 0) Vanilla LSTM (fold 1) 

Vanilla LSTM (fold 2) Vanilla LSTM (fold 3) 

Vanilla LSTM (fold 4) 
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performed well when the K-fold cross-validation technique was applied. Fig. 8 shows 
the loss obtained during the experimentation with a bidirectional model. 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
  

Figure 6. Training loss and validation loss 
for Vanilla GRU at different fold cross-
validation stage. 

Figure 7. Training loss and validation loss 
for stacked LSTM at different fold cross-
validation stage. 

 

Vanilla GRU (fold 0) 

Vanilla GRU (fold 1) 

Vanilla GRU (fold 2) 

Vanilla GRU (fold 3) 

Vanilla GRU (fold 4) 

Stacked LSTM (fold 0) 

Stacked LSTM (fold 1) 

Stacked LSTM (fold 2) 

Stacked LSTM (fold 3) 

Stacked LSTM (fold 4) 
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Figure 8. Training loss and validation loss for bidirectional LSTM at different fold cross-
validation stage. 

 
From Figs 5, 6, 7, and 8, it can be observed that as the number of epochs increases 

the training loss decreases. The training is done with 1000 epochs and it is observed that 
the training (TL) and validation loss (VL) is almost equal as shown in Fig. 9. In the 
conducted experiment, the predicted value is slightly different from the actual value. The 
graph for prediction values versus actual values is shown in Fig. 10. 
 

 
 
Figure 9. Loss rate after 1000 epochs training with 5-fold cross-validation. 
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Figure 10. Plotting of first 100 actual values vs prediction value: Bidirectional LSTM, Stacked 
LSTM, Vanilla GRU, and Vanilla LSTM. 

 
There are 3,152 samples in the dataset, 80% of samples are used for training, and 

20% are used for testing purposes. From the 630 testing samples, only 100 predicted 
values are shown in the graph. The disease score value is predicted from the model and 
using this score value, disease incidence severity classification can be done. The 
proposed study and the current study were compared in Table 6 based on different crops 
and methods used to make crop disease predictions. It is difficult to compare the results 
with other related works since the use of deep learning models in arecanut crop disease 
forecasting is a novel approach. In contrast, LSTM models are used to predict disease in 
crops such as rice and cotton. 

Rice blast disease is forecasted at an early stage based on RH, sunshine, 
temperature, and disease score data, with 67.4% prediction accuracy (Kim et al., 2017). 
The model is developed using only the LSTM technique. Similarly, the present study 
experimented with a different crop, and the rainfall parameter plays an important role 
here. Along with LSTM, the GRU model is also considered for the study, which gives a 
1.3 MSE value. Arecanut disease classification is done with the help of CNN architecture 
(Mallikarjuna et al., 2022). The model takes only images as input and produces an 86.8% 
accuracy rate on average. However, in the present study, weather data is incorporated as 

Prediction using Bidirectional LSTM 

Prediction using Stacked LSTM 

Prediction using Vanilla GRU 

Prediction using Vanilla LSTM 
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input, allowing for an earlier disease diagnosis. Arecanut disease data and weather data 
are integrated as novel data sets, which are used as input to the different machine learning 
models (Krishna et al., 2022). This article considers the same dataset but experiments on 
different deep-learning models. 
 
Table 6. The proposed study and the existing study are compared concerning crops and methods 

Reference 
Crop  
type 

Input parameters 
Techniques 
used 

Prediction  

(Kim et al., 2017) Rice Relative humidity, sunshine, 
temperature, disease score data 

LSTM Rice blast 
disease 

(Xiao et al., 2019;  
Xiao et al., 2018) 

Cotton Rainfall, wind speed, humidity, 
sunshine, temperature 

SVM, RF, 
LSTM 

Pest and 
disease 

(Wahyono et al., 2021) Rice Temperature, rainfall, 
humidity, climate anomaly 

Deep LSTM Pest attack 

(Mallikarjuna et al., 2022; 
Mallikarjuna et al., 2021) 

Arecanut Images ResNet CNN Rot, split, 
rot split,  
and healthy 

(Krishna et al., 2022) Arecanut Rainfall, Relative humidity, 
sunshine, temperature, disease 
score data 

DTR, SVR, 
RFR, MLPR 

FRD score 
value  

Proposed study Arecanut Rainfall, Relative humidity, 
sunshine, temperature, disease 
score data 

LSTM, GRU, 
Bidirectional 
LSTM 

FRD score 
value  

 
The DL algorithm results are compared with the ML algorithm results for the 

arecanut disease prediction. Table 7 shows the MSE values of ML and DL algorithms 
applied to the arecanut dataset to predict fruit rot disease score values. 

 
Table 7. Compares MSE loss with machine learning and deep learning models 

Model Algorithm MSE value 
ML (Krishna et al., 2022) Support Vector Regression 6.1 

Random Forest Regression 1.9 
Decision Tree Regression 3.4 
Multi-layer Perceptron Regression 3.3 

DL Vanilla LSTM 1.5 
Stacked LSTM 1.8 
Vanilla GRU 1.3 
Bidirectional LSTM 1.8 

 
DL models give better accuracy in prediction when compared to ML models. 

Vanilla GRU is the best model compared with all other models, with a low error rate of 
1.3 and less processing time due to its fewer gates. 

 
CONCLUSIONS 

 
In the present study, deep learning approaches are first used to predict the fruit rot 

disease in arecanut based on weather parameters. This novel approach primarily focused 
on the relationship between weather parameters and fruit rot disease in arecanut crops. 
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Historical weather data is taken from the agriculture research station in Brahmavar, 
India, and disease data is generated by referring to the arecanut disease 
recommendations. Vanilla GRU gives a lower error value of 1.3 MSE compared to 
different LSTM models. Bidirectional LSTM does not show promising results with the 
current dataset since its MSE value is 1.8. The stacked LSTM model also shows the same 
MSE value. K-fold cross-validation gives a less biased model than a single training and 
testing data set. 

Since the validation loss is not very low, it can be surmised that the accuracy of the 
model is not very high. Nevertheless, it is a meaningful starting point, being the first 
attempt to predict arecanut crop disease using deep learning techniques based on weather 
parameters. This effort will help farmers take precautionary measures and prevent the 
spread of crop disease. In future work, disease and weather data from different regions 
can be considered to develop the model. Different optimization techniques can be used 
to increase the accuracy of the model. 
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