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Abstract. The objective of this study is to assess the predictive potential of indices derived from 
RGB images captured by a camera mounted on a remotely piloted vehicle (RPV) to estimate the 
fresh and dry forage yield of grasses from the Urochloa genus. The experiment was conducted 
between December 2021 and January 2023, involving four cultivars of the Urochloa genus 
(U. brizantha cv. Braúna, U. brizantha cv. Paiaguás, U. hybrid cv. Camello, and U. decumbens 
cv. Basilisk), with flights conducted at two heights (20 and 100 metres). The values of the Green 
Leaf Index (GLI) and Digital Vegetation Model (DVM) extracted were correlated with the yields 
of fresh (FFY), dry forage yield (DFY), dry matter content (DM), and crude protein (CP). The 
results showed that DVM exhibited greater efficiency in estimating DM and CP at a flight altitude 
of 20 m. In contrast, GLI proved more efficient in estimating FFY and DFY at 100 m altitude, 
suggesting the potential for combining DVM and GLI to develop predictive models. The RGB 
images obtained via RPV have potential for estimating forage productivity and quality, expanding 
the possibilities of pasture management techniques. 
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INTRODUCTION 
 

The prediction of tropical forage yield has become an increasingly important tool 
for sustainable pasture management. This interest is driven by the need to adjust stocking 
rates and carrying capacity, optimising the efficient use of natural resources. In Brazil, 
approximately 95% of beef production is based on grazing systems (Embrapa, 2022), 
which provides the country with a competitive advantage in the global beef market. 
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Therefore, strategies that enhance pasture management are crucial for maintaining 
productivity and sustainability in the agricultural sector. 

In tropical regions, the use of emerging technologies has proven to be a promising 
approach to optimising forage production. Among these technologies, the use of red, 
green, blue (RGB) images captured by remotely piloted aircraft (RPA) stands out as an 
effective alternative for estimating forage yield. Conventional methods, both direct and 
indirect, such as the use of rulers and rising plate meters, are limited in terms of their 
temporal and spatial representativeness, particularly in remote and inaccessible areas 
(Wachendorf et al., 2017). 

The potential of RGB images for estimating forage yield was highlighted by Acorsi 
et al. (2019), who demonstrated their viability as an alternative to traditional measurement 
methods. Through image processing algorithms and machine learning techniques, it is 
possible to extract valuable information regarding vegetation density and vigor, leading 
to more accurate predictions of available forage mass. Furthermore, studies such as those 
by Meshesha et al. (2020) have explored the integration of RGB data with other sources 
of information, such as meteorological data and soil characteristics, to improve the 
accuracy of forage yield estimates. 

The ability to monitor and predict forage availability in real time allows producers 
to make more informed decisions regarding pasture management, promoting the 
optimisation of natural resource use and maximising productivity. In this context, the 
aim of this study was to develop predictive models to estimate fresh and dry forage yield, 
dry matter, and the protein content in grasses of the Urochloa genus. 

 
MATERIALS AND METHODS 

 
The experiment was conducted at the experimental field of the State University of 

Southwest Bahia (UESB), located in Vitória of Conquista, Bahia, Brazil (14º52'58.66" 
S, 40º47'33.839" W, 892 m altitude), from December 2021 to January 2023. The region’s 
climate is classified as Cwb according to Köppen, characterised as a tropical highland 
climate with wet summers and dry winters, minimum and maximum temperatures of 
18 °C and 22 °C, respectively, and an average annual rainfall of 771 mm (SEI, 1999). 
The soil in the experimental area was classified as a red-yellow latosol, with a sandy 
loam texture (Embrapa, 2006). 

The experimental area was composed of four cultivars of grasses from the Urochloa 
genus: Urochloa brizantha cv. Braúna, Urochloa brizantha cv. BRS Paiaguás, Urochloa 
decumbens cv. Basilisk, and Urochloa hybrid cv. Camello. The experimental design was 
a randomised complete block design with five replications, totaling plots of 64 m² 
(8×8 m). The grasses were sown in December 2021 and fertilised with 29 kg ha⁻¹ of 
P₂O₅, 4.5 kg ha⁻¹ of K₂O, and 100 kg ha⁻¹ of nitrogen between sowing and the end of the 
rainy season (March–April 2022). 

The forage was harvested when the plants reached the following heights: 45 cm for 
the Braúna cultivar, 35 cm for the Camello and BRS Paiaguás cultivars, and 30 cm for 
the Basilisk cultivar, maintaining a residual height of 50% of the pre-grazing height for 
all cultivars. Representative forage samples were collected from two 1 m² areas per plot 
and weighed to determine the fresh forage yield (FFY). The material was placed in paper  
bags and dried in a forced-ventilation oven at 55 °C for 72 hours. After this period, using 



the weight of the fresh mass (FM, in g) and the weight of the air-dried sample (ADS,  
in g), the percentage of air-dried sample (%ADS) was calculated. 

%ADS  =  
ADS(g)
FM (g)   ⋅  100 (1) 

After pre-drying, the samples were ground in a Wiley mill fitted with a 1 mm mesh 
sieve and then dried in an oven at 105 °C for 16 hours to determine the final dry sample. 
Based on the weight of the oven-dried sample (and the final dry sample, the dry matter 
content (%DM) and dry forage yield (DFY, kg ha-1) were calculated, according to the 
INCT-CA G-003/1 method. 

%𝑂𝑂𝑂𝑂𝑂𝑂  =  
𝐴𝐴𝐴𝐴𝐴𝐴 
𝑂𝑂𝑂𝑂𝑂𝑂

⋅ 100 (2) 

%𝐷𝐷𝐷𝐷  =  
𝐴𝐴𝐴𝐴𝐴𝐴  ⋅  𝑂𝑂𝑂𝑂𝑂𝑂 

100
 (3) 

𝐷𝐷𝐷𝐷𝐷𝐷   =  𝐹𝐹𝐹𝐹 (𝑘𝑘𝑘𝑘)  ⋅  %𝐷𝐷𝐷𝐷 (4) 
Forage yield evaluations of the treatments were based on the total annual 

production of the grasses over an experimental period of 418 days. Within this 
production cycle, six harvests were conducted for evaluation, except for the grasses 
without fertilisation and the Braúna and Camello cultivars, which only allowed for five 
harvests. Crude protein (CP) was analysed using the INCT-CA N-001/1 method as 
described by Detmann et al. (2012). These parameters were used as indicators of pasture 
performance in this study. 

The experiment utilised a DJI Phantom 4 Advanced quadcopter equipped with a 
20-megapixel complementary metal-oxide semiconductor (CMOS) sensor camera, with 
a focal length of 9 mm and a maximum aperture of 2.97, mounted on a gimbal. The 
system includes an integrated GNSS (Global Navigation Satellite System) receiver, 
enabling autonomous flight missions using pre-loaded flight plans from third-party 
software. 

Ten control points were distributed throughout the experimental field to obtain the 
geographical coordinates. Additionally, the coordinates of each plot vertex were 
collected using a geodetic receiver with real-time kinematic (RTK) technology, which 
assisted positional image correction and geospatial index extraction. Flight missions 
were planned using DroneDeploy software (DroneDeploy Inc., San Francisco, CA, 
USA) and uploaded to the UAV controller. The missions covered a total area of 
8,000 m², with autonomous flights were conducted prior to sample collection between 
10:00 and 12:00. Images were captured with 80% lateral and frontal overlap at two 
altitudes: 100 m and 20 m above ground level. 

Flight heights were determined according to the detailing and coverage capacity, in 
which the height of 20 meters has greater detail and the height of 100 meters has greater 
area coverage. Thus, one height to represent greater detail in the images (20 meters) and 
another to expand the area coverage (100 meters). 

The captured RGB images were processed using Agisoft PhotoScan photogrammetry 
software (v. 1.5.1, Agisoft LLC, St. Petersburg, Russia), which employs the structure-
from-motion (SfM) algorithm to stitch the overlapping images and generate a 3D point 
cloud (Verhoeven, 2011). The workflow was implemented based on Schirrmann et al. 
(2016) and adjusted to suit the study’s requirements. The proposed method included the 
following steps: importing the coordinates of the control points, importing the images, 



camera calibration, setting the geographic coordinates, analysing and aligning the 
images to generate a sparse point cloud, adjusting the images based on the CPs, 
constructing a dense point cloud, classifying ground points, constructing the Digital 
Surface Model (DSM), Digital Terrain Model (DTM), and orthomosaic. The digital 
vegetation model is used in Brazil to obtain detailed information about vegetation, such 
as its distribution, production, and chemical composition. 

The generated products were processed in Quantum GIS (QGIS) software for index 
extraction, represented as layers (shapefiles) of the experimental treatments, created 
from the geographic coordinates of each plot vertex. Extraction of the Digital Vegetation 
Model (DVM) and the Green Leaf Index (GLI) was carried out using the RGB 
(Red, Green, Blue) bands, as described in Table 1. The DVM values were obtained by 
subtracting the data extracted from the surface (DSM) from the values extracted from 
the terrain (MDT), thus forming a reference value for vegetation (DVM). Regarding 
GLI, its values are obtained from the behavior observed in the red, blue and green bands 
(Table 1). 
 
Table 1. Description of the DVM and GLI indices extracted from the products (orthomosaic, 
DSM, and DTM) generated from image processing 
Digital indices Type Formula Author 
Digital Vegetation Model (DVM) Vertical DVM = DSM - DTM  
Green Leaf Index (GLI) Spectral 

𝐺𝐺𝐺𝐺𝐺𝐺 =
(2 ∗ G) − 𝑅𝑅 − 𝐵𝐵
(2 ∗ G) + 𝑅𝑅 + 𝐵𝐵

 
Louhaichi  
et al. (2001) 

 
The means of the cultivars regarding pasture and digital indices were compared 

using Tukey’s test at a 5% significance level, performed with the SAS (Statistical 
Analysis System) software. Correlations between the pasture indices and digital indices 
(spectral and vertical) were assessed using Pearson’s correlation test at a 1% significance 
level, employing the SPSS (Statistical Package for the Social Sciences) software. 
Subsequently, the data for each cultivar were subjected to multiple linear regression 
analysis, applying the stepwise method. 

The regression analysis was performed in two ways, the first using all the data 
obtained from the cultivars, forming a single database. In the second way, the data were 
separated according to cultivar. In this way, the models obtained are represented broadly 
and specifically, by classifying them as a general model and models for each cultivar. 
From a cross-sectional analysis, regression analysis and model construction were 
performed using the aggregated data. 

 
RESULTS AND DISCUSSION 

 
The annual production of FFY, DFY, DM, and CP did not differ (P > 0.05) among 

the Urochloa grass species (Table 2). The annual average cutting cycle production of the 
cultivars was 40.9 t ha⁻¹ and 10.4 t ha⁻¹ for FFY and DFY, respectively. Furthermore, 
the average DM content across the cultivars was 24.5%, and the CP content was 10.3%. 
All evaluated cultivars exhibited high FFY and DFY, despite their agronomic and  
morphological differences. Regarding chemical composition, under the evaluated 
management conditions, the grasses showed crude protein (CP) levels compatible with 



the range observed for grasses of the genus when fertilised with nitrogen (Sales et al., 
2020). 

 
Table 2. Production and chemical composition of grasses Urochloa genus 
Grasses FFY (t ha-1) DFY (t ha-1) DM (%) CP (%) 
U. brizantha cv. Braúna  39.7 11.2 25.3 10.7 
U. híbrida cv. Camello 41.4 10.9 23.5 8.9 
U. decumbens cv. Basilisk 41.9 10.0 24.5 10.9 
U. brizantha cv. BRS Paiaguás 40.6 9.6 24.6 10.7 
P-value 0.90 0.13 0.81 0.05 
FFY: Fresh Forage Yield; DFY: Dry Forage Yield; DM: Dry Matter; CP: Crude Protein. Means followed 
by the same letter in the column do not differ according to the Tukey test (P < 0.05). 
 

The cultivars did not differ significant (P > 0.05) in terms of GLI and DVM 
(Table 3). Although no significant difference were identified, it is important to highlight  

by leaf pigments such as chlorophyll and carotenoids (Asprilla et al., 2019). Chlorophyll 
strongly absorbs the blue (B) and red (R) bands of the visible spectrum, reflecting the 
green (G) band more intensely (Meer & Jong, 2001). This characteristic contributes to 
the definition of GLI, which considers the saturated green band in relation to the other 
two bands. 

The DVM, in turn, can be interpreted as an indicator of vegetation height because 
its calculation involves subtracting the terrain model from the surface model. This is 
relevant because a greater number of leaf blades arranged parallel to the ground tends to 
significantly contribute to the estimation of parameters such as forage canopy height, 
which has shown a positive and consistent correlation with forage mass, as evidenced in 
several studies (Da Silva et al., 2015; Deminicis, 2015; Martins et al., 2020). Therefore, 
the DVM is a potential tool for accurately estimating pasture forage mass. 

At a flight altitude of 20 m, a weak negative correlation was recorded between DFY 
(-0.36) and DVM, a value higher than that observed at 100 m (0.03) (Fig. 1 and 2). 
However, a moderate negative correlation was found between DM (-0.68) and DVM, 
alongside a strong positive correlation for CP (0.79) at 20 m altitude (Fig. 1). These 
results differ from those at 100 m, where a weak negative correlation for DM (-0.25) and 
a weak positive correlation for CP (0.26) were observed (Fig. 2). 

GLI showed a moderate positive correlation (0.45) with FFY and a weak positive 
correlation (0.25) with DFY at a flight altitude of 20 m (Fig. 1). At 100 m altitude, the 
correlation of GLI was moderate positive (0.65) for FFY and weak positive (0.27) for 

that the highest numerical values  
for GLI and DVM were observed  
for the Paiaguás cultivar, whereas  
the lowest values were recorded for 
the Braúna cultivar, possibly due to 
morphological differences between 
the cultivars. 

The spectral response of plants, 
as observed in GLI, results from the 
reflectance at wavelengths between 
400 and 700 nm, which is regulated  

 
Table 3. Green leaf index (GLI) and digital 
vegetation model (MDV) of cultivars Urochloa 
Grasses GLI DVM (m) 
U. brizantha cv. Braúna 0.159 0.052 
U. híbrida cv. Camello 0.172 0.060 
U. decumbens cv. Basilisk 0.180 0.052 
U. brizantha cv. BRS Paiaguás 0.192 0.087 
P-value 0.03 0.05 
Means followed by the same letter in the column do  
not differ according to the Tukey test (P < 0.05). 



DFY (Fig. 2). For CP and DM, GLI showed a moderate negative correlation (-0.43) with 
DM and a weak positive correlation (0.33) with CP at 20 m altitude. At 100 m, the 
correlation was strong negative (-0.80) for DM and weak positive (0.38) for CP (Fig. 2). 
 

 
Figure 1. Pearson correlation between pasture and digital indices, at 20 m of flight height. 
*Significant correlation at 1%. FFY = Fresh Forage Yield; DFY = Dry Forage Yield; GLI = Green Leaf 
Index; DVM = Digital Vegetation Model; DM = Dry Matter; CP = Crude Protein. 

 
For the FFY and DM, the correlation at 20 m was lower than that recorded at 

100 metres. However, the correlation between CP and DVM shifted from weakly 
positive to strongly positive, and a similar effect was observed for DM content. As 
evidenced by the correlations observed in this study, DVM exhibits a weak correlation 
with forage biomass production but a strong correlation with CP. In contrast, the GLI 
showed strong correlation with the DM and a moderate correlation with the FBY at a 
flight altitude of 100 m, suggesting its potential for the development of predictive models. 

At a flight altitude of 100 m, GLI showed moderately positive correlations with the 
FFY and a weak positive correlation with the DFY. Additionally, the DM and CP levels 
demonstrated moderately negative and weakly positive correlations, respectively (Fig. 2 
(Rumsey, 2023)). The GLI expression is obtained through the equation presented by 
Louhaichi et al. (2001), where the pixel values can range between -1 and +1. 
        

0.99 a 0.70 Strong positive       
  0.69 a 0,40 Moderate positive 

DFY 0.86*           0.39 a 0,10 Weak positive 
GLI 0.65* 0.27*         0.10 a -0.10 Insignificant 
DVM 0.16* 0.03* 0.31*       -0.39 a -0.10 Weak negative 
DM -0.46* 0.00 -0.80* -0.25*     -0.69 a -0.40 Moderate negative 
CP 0.05 -0.25* 0.38* 0.26* -0.51*   -0.99 a -0.70 Strong negative 
  FFY DFY GLI DVM DM   

  

 
Figure 2. Pearson correlation between pasture and digital indices, at 100 m of flight height. 
*Significant correlation at 1%. FFY = Fresh Forage Yield; DFY = Dry Forage Yield; GLI = Green Leaf 
Index; DVM = Digital Vegetation Model; DM = Dry Matter; CP = Crude Protein. 

 
According to these authors, negative values tend to represent non-living areas, 

whereas positive values are associated with green leaves and stems. In this context, the 
presence of green, especially in leaves, is directly related to chlorophyll, which absorbs 
light energy in the range of 680–700 nm (Streit et al., 2005). Studies have indicated 
satisfactory correlations (R² = -0.49) between GLI obtained from images and chlorophyll 

       0.99 a 0.70 Strong positive 
        0.69 a 0.40 Moderate positive 
DFY 0.93*           0.39 a 0.10 Weak positive 
GLI 0.45* 0.25*         0.10 a -0.10 Insignificant 
DVM -0.15 -0.36* 0.25*       -0.39 a -0.10 Weak negative 
DM 0.07 0.42* -0.43* -0.68*     -0.69 a -0.40 Moderate negative 
CP -0.12 -0.35* 0.33* 0.79* -0.73*   -0.99 a -0.70 Strong negative 
  FFY DFY GLI DVM DM     



content, which is strongly association with fresh biomass production and nitrogen 
content in plants (Hunt Jr. et al., 2013). 

In this context, predictive models were evaluated for the FFY, DFY, DM and CP, 
adjusted based on the data collected throughout the experimental period and as a function 
of flight altitude. Both general and specific models were considered for each cultivar. 
The predictive model for the FFY was adjusted for a flight altitude of 100 m, 
incorporating the GLI in its formulation. This adjustment was justified by the significant 
correlations (R) and the coefficients of determination (R²) values, which were higher 
than those obtained at a flight altitude of 20 m (Fig. 3). 

 

 

 

 
 

 

 

 
 

 

 
Figure 3. Regression models for estimating 
FFY (t ha-1) with GLI. 
a) general model; b) cv. Bráuna; c) cv. Camello; 
d) cv. Basilisk; e) BRS Paiaguás. *significant at 1%. 

 
The model that considered all data (Fig. 3, a) exhibited an R² of 0.45, indicating 

that 45% of the variability in FFY can be explained by this model. When analysed by 
cultivar, this R² decreases for the Braúna cultivar (0.35) (Fig. 3, b) and increased for the  
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Camello (0.46) (Fig. 3, c), Basilisk (0.59) (Fig. 3, d), and BRS Paiaguás (0.59) (Fig. 3, e) 
cultivars. The behaviour of the GLI in relation to FFY increases linearly; that is, the 
higher the GLI value obtained, the greater is the FFY. 

According to Yamaguchi et al. (2020), the behaviour of the GLI in the regression 
equation is increases linearly for rice crops, a pattern also observed in this study. The 
higher the GLI extracted from the images, the greater was the forage biomass. Barbosa 
et al. (2019) reported that higher vegetation index indicates a greater presence of 
vegetation in a given area, resulting from increased green reflectance. 

Due to the behaviour observed in the different predictive models, the growth habit 
characteristics of the cultivars may have influenced the response of the indices. For 
instance, Braúna grass, which has thinner and more upright leaves with fewer 
pronounced angles, showed a FFY model with a lower fit compared to the other 
cultivars. This suggests that the sensor may have detected and considered this difference, 
which influenced the construction of the predictive model. On the other hand, DFY did 
not present significant results above 0.1 for the GLI and DVM indices at a flight altitude 
of 100 m (Fig. 4), either separately or together, with R² values of 0.05 and 0.03, 
respectively. 

 

 

 

 
 
Figure 4. Regression model for DFY at 100 m flight height. 
*significant at 1%. 
 

When analysed together, the GLI and DVM models produced significant predictive 
models for the DFY at a flight altitude of 20 m, with R² values exceeding 0.50, as shown 
in Table 4. However, no significant predictive model for DFY was obtained of the 
Paiaguás cultivar. Estimating the DFY using the general equation predicts a higher 
amount of dry matter, ranging from 2,000–5,000 kg ha⁻¹, when the GLI exceeds 0.20 
and the DVM is below 0.20. 

Conversely, GLI values below 0.20 and DVM values above 0.4 tend to result in an 
estimated DFY of less than 1,000 kg ha⁻¹ (Fig. 5, a). This behaviour of the digital indices 
(GLI and DVM) extends the analysis of individual cultivars. It can be observed that the 
DVM has a negative correlation with DFY, whereas the GLI shows a positive 
correlation. The model fit (R²) reaches 0.69 for the Basilisk cultivar, 0.66 for the Camello 
cultivar, and 0.64 for the Braúna cultivar (Table 4). 
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Table 4. Regression models for dry forage yield (DFY) at 20 metres flight height.  
Cultivar *Regression models R2 
Basilisk DFY = 697 – 2,865*DVM + 6,300*GLI 0.69 
Camello DFY = 183 – 5,312*DVM + 13,474*GLI 0.66 
Braúna DFY = 375 – 4,059*DVM + 11,958*GLI 0.64 
General model DFY = 650 – 3,025*DVM + 8,078*GLI 0.50 
*significant at 1%. 
 

It is important to note that the DFY model results from the combined contributions 
of the GLI and DVM. This approach was also observed by Zhang et al. (2022),  
who, using RGB images from unmanned aerial vehicles (UAV), reported a better 
performance (R²) in predictive models that integrated texture features obtained from 
pixels. Pixel-by-pixel selection at different heights (canopy and ground) helps 
distinguish vegetation from soil, as reported by Raj et al. (2021) used in the extraction 
of the digital surface model (DSM). This same principle can be applied to the DVM in 
this study, which can differentiate between soil and vegetation, thereby contributing to 
the prediction of forage mass in pastures. 

These correlations corroborate the results presented by Acorsi et al. (2019), who 
also obtained an R² of 0.69 for the predictive model of dry matter production in black 
oat, whereas Gruner et al. (2019) achieved R² accuracies ranging from 0.62 to 0.81 in 
temperate pastures. The only cultivar that did not present a predictive dry matter model 
with satisfactory and significant correlations using both indices (GLI and DVM) was 
BRS Paiaguás. As stated by Roth & Streit (2018), vegetation indices (VIs) have also 
shown non-significant correlations for certain legume species, indicating that the 
performance of VIs is highly species-specific when estimating dry biomass. 

The predictive models for FFY and DFY showed R² values of 0.45 and 0.50, 
respectively, in the general model. Similar results were observed by Gruner et al. (2019), 
who, evaluated temperate pastures, obtained an R² of 0.43 for a grass mixture, improving 
the model through species-specific analysis. This variation in response may be related to 
the morphological and structural differences observed between the different cultivars 
and species, which can influence both the interpretation of the images and the predictive 
efficiency of the model (Silva et al., 2016). 

This same behaviour is evident in the present study, where higher R² values were 
achieved when the data were analysed separately by cultivar, reaching R² values of  
0.59 for BRS Paiaguás and Basilisk in FFY, and R² of 0.69 for the Basilisk cultivar in 
the DFY. These correlations support the findings of Acorsi et al. (2019), who also 
obtained an R² of 0.69 for the predictive model of dry matter in black oat, whereas Gruner 
et al. (2019) achieved R² accuracies ranging from 0.62 to 0.81 in temperate pastures.  
It is important to highlight that the forage yield values refer to the sum of all harvests, 
which may show differences when individual harvests are analysed. 

The predictive models for DM were obtained at a flight altitude of 100 m. The 
equation considering all data (general model) presented an R² of 0.64 (Fig. 5, a) using 
GLI as the predictive variable. The model fit (R²) increased when the analyses were 
separated by cultivar, with the Braúna cultivar presenting a predictive model with an R² 
of 0.82 (Fig. 5, b), followed by the Camello cultivar with an R² of 0.73 (Fig. 5, c), 
Basilisk with an R² of 0.63 (Fig. 5, d), and BRS Paiaguás with an R² of 0.57 (Fig. 5, e). 

 



 

 

 

 
 

 

 

 
 

 

 
Figure 5. Regression models for estimating 
DM (%) with GLI. 
a) general model; b) cv. Bráuna; c) cv. Camello; 
d) cv. Basilisk; e) BRS Paiaguás. *significant at 1%. 

 
The DM estimation was negatively correlated with the GLI, meaning that the higher 

the GLI, the lower the DM of the forage. This behaviour is expected, as DM is closely 
associated with plant maturity (Stabile et al., 2010). As the plant matures, there is a 
greater accumulation of DM, resulting from the elongation of leaves and, especially, the 
stem, leading to thickening and lignification of the cell wall (Deschamps, 1999). 
Consequently, there is a lower concentration of non-structural compounds, such as 
pigments, lipids, and nitrogen. 

The regression model for estimating CP was based on the vertical index of the 
DVM, which showed positive and significant correlations. The general model has an R² 
fit of 0.66 (Fig. 6, a). When analysing the cultivars separately, better fits were observed 
for the Braúna (R² of 0.72) (Fig. 6, b) and Basilisk (R² of 0.82) (Fig. 6, d) cultivars, with  
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increases of 9.09% and 24.24%, respectively, compared to the general model. In 
contrast, the Camello (Fig. 6, c) and BRS Paiaguás (Fig. 6, e) cultivars showed R² values 
of 0.65 and 0.54, respectively, demonstrating moderate and significant correlations, 
although lower than the general model. 

 

 

 

 
 

 

 

 
 

 

 
Figure 6. Regression models for CP at 20 m 
flight height. 
a) Geral; b) cv. Bráuna; c) cv. Camello; d) cv. 
Basilisk; e) BRS Paiaguás. *significant at 1%. 
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(R² = 0.66). Although GLI demonstrated a significant positive correlation for the 
CP model, it correlation was considered weak, with negligible gains (0.019 units). A 
strong positive correlation is observed in the predictive model when analysed by cultivar, 
with the Basilisk cultivar showing an R² of 0.82, highlighting the potential of this model 
for estimating %CP. Satisfactory correlations were also observed for the other grasses. 
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These results are similar to those found in studies using RGB images, such as those 
for peanut crops (R² = 0.98) (Janani & Jebakumar, 2023) and rice (R² = 0.82) (Shi et al., 
2021), and surpass those found in maize research (R² = 0.47) (Lu et al., 2021). However, 
these studies focused on estimating plant nitrogen content, whereas the predictive model 
in this study demonstrated better R² results by utilising the digital vegetation model. 

The low GLI performance in estimating CP may reflect the fact that visible light 
alone cannot indicate changes in the nutrient components of leaves, particularly nitrogen 
content (Jin et al., 2020). Studies indicate that better predictions are obtained in models 
that utilise multispectral and hyperspectral cameras, which capture bands from the 
infrared and near-infrared spectrum, and these models are proven to be more sensitive 
in capturing the structural and nutritional characteristics of plants (Prey et al., 2018). 

Thus, given that the predictive model for CP is derived from the DVM, which 
considers the structural characteristics of the plant, this index has excellent potential for 
predicting CP in tropical grasses of the genus Urochloa, explaining up to 82% of the 
variation in the data. The potential of this model achieves strong and significant 
correlations, similar to research that utilised multispectral cameras to estimate nitrogen 
levels in leaves of maize crops (Wei et al., 2019), which explained 80% or more of the 
variation in the data. 

The use of RGB images in photogrammetric processing presents a promising 
alternative for predicting the yield of fresh and/or dry forage mass, as well as the levels 
of dry matter and crude protein in pasture, as reported by Gruner et al. (2019) and Acorsi 
et al. (2019). It is important to consider the specificity that must be observed in the field 
to obtain these data efficiently. The better performance of the predictive models for each 
cultivar results from the particularities of each species, reflected in their morphological 
and structural characteristics. 

As observed by Varlet-Grancher et al. (1989) and Santos et al. (2011), foliar 
pigments, along with leaf size and angle, plant arrangement, species, and management 
practices, influence the efficiency of solar light absorption and consequently the 
reflectance of RGB bands. However, to date, no studies have successfully related these 
attributes to RGB sensor capacity for estimating the forage mass of tropical grasses. 
Nevertheless, the present study highlights that the morphological and structural 
characteristics of tropical grasses may interfere with the expression of digital indices. 

 
CONCLUSIONS 

 
To estimate the production of fresh mass and dry mass, it is recommended to 

conduct a flight at an altitude of 100 m and extract the green leaf index. To estimate the 
DFY, a flight at an altitude of 20 m is necessary, extracting both the GLI and DVM. 
Finally, to estimate the CP of the pasture, a flight at 20 metres should also be conducted, 
extracting only the DVM. Based on the models developed in this study, the efficient 
application of these methods should consider the specific objective – be it green or dry 
mass production – and the grass species that comprise the pasture. In this way, it is 
possible to define the most suitable flight altitude and obtain reliable results. 
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