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Abstract. This paper aimed to evaluate the WindTrax model to quantify CO2 (carbon dioxide) 
emissions in a commercial dairy cattle farm in Central Italy with a low-cost measurement system. 
A field trial of 20 minutes was conducted in February 2023, using two G-eko 2.0 MSPs  
(multi-sensor platforms), an anemometer, and a GNSS receiver, in unstable atmospheric 
conditions. Then, 5-minute averaged data were used as input in the WindTrax software for 
applying the backward Lagrangian Stochastic model. The model was used for calculating four 
mean CO2 emission rates (0.20212 ± 0.04994 g m-2 s-1) with 50,000 particles and the horizontal 
dispersion of CO2 concentrations around the sources using different numbers of particles  
(5,000, 10,000, 30,0000, and 50,000). Atmospheric dispersion maps, confidence interval 
concentration maps, and vertical profile plots were obtained by increasing the number of particles. 
The model shows better performances, in terms of confidence intervals, with a high number of 
particles with a stabilization of modeled median values between 30,000 and 50,000 particles. 
Horizontally, the lowest confidence intervals (near to zero) were obtained at 100–150 m from the 
sources along the wind direction, suggesting that the downwind sensor could be placed at a greater 
distance. Similarly, a better-defined vertical trend in modeled concentrations is observed as the 
number of particles increases. Wind gusts could have a great effect on emission rate calculation 
with limited sampling periods, as in this case, but simultaneously unstable atmospheric conditions 
affect the increased dispersion and dilution of CO2. 
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INTRODUCTION 
 

In recent decades, the exponential increase in human activities has significantly 
intensified the anthropogenic greenhouse effect, resulting in rising global temperatures 
and, consequently, climate change. This has increased public awareness of pollution and 
environmental issues (Tagliaferri et al., 2020). According to the IPCC (2022) report on 
global emission data from 2015, the livestock sector accounted for 12–17% of total 
greenhouse gases (GHGs) emissions, with cattle farming contributing 62% of the 
sector’s total emissions (Global Livestock Environmental Assessment Model 3  
 
 

https://doi.org/10.15159/AR.25.051
https://doi.org/10.15159/AR.25.051


dashboard, 2022). Within livestock farms, the primary sources of emissions are enteric 
fermentation in ruminants (67–68%), manure and slurry storage (23–26%), and feed 
production (Ripple et al., 2014; Grossi et al., 2019). 

Environmental chemical monitoring is essential in bottom-up approaches for 
emissions inventories and for identifying critical processes that could benefit from 
targeted mitigation strategies. Various gas sensor technologies are available for this 
purpose, including amperometric gas sensors (AGS), metal oxide semiconductor sensors 
(MOX or MOS), nondispersive infrared sensors (NDIR), and photoionization detectors 
(PIDs) (Cambra-López et al., 2010; Burgués & Marco, 2020). To improve monitoring 
efficiency, multi-sensor platforms (MSPs) have been developed, enabling the 
simultaneous operation of multiple sensors. These platforms facilitate the collection of 
gas concentration data alongside meteorological parameters, providing a comprehensive 
assessment of emissions (Burgués et al., 2018). 

Currently, monitoring GHG emissions is expensive due to the cost of accurate 
sensors in the market, but the ongoing technological development provides low-cost 
sensors. The objective of this study was to assess CO2 emissions obtained with  
self-engineered multi-sensor platforms on a dairy farm, through the estimation of 
emission fluxes and the graphical representation of gas concentrations and concentration 
confidence intervals across the farm area. By employing the WindTrax model to simulate 
the horizontal and vertical dispersion of the target gas, farmers could adopt an accurate 
low-cost measurement system that works autonomously, aiming to provide management 
insights. WindTrax is widely used in agrometeorological studies to estimate emission 
rates, particularly for GHGs and ammonia (Lin et al., 2015; Yang et al. 2016; Hrad et 
al., 2021; Genedy & Ogejo, 2022). Existing research primarily evaluates its accuracy in 
modeling pollutant emissions from area sources, highlighting its relevance as a tool for 
emission assessment and atmospheric dispersion analysis. Thus, an affordable and 
accurate emission measurement system that can be easily implemented on commercial 
farms is needed by farmers to identify critical emission sources, adopting appropriate 
mitigation strategies. 

This study investigated the impact of livestock-related activities on GHG 
emissions, with a focus on data analysis through specialized simulation methodologies. 
Specifically, CO2 (carbon dioxide) emissions were examined using low-cost sensing 
platforms and atmospheric dispersion modeling as tools for rapid on-farm assessment. 
This study represented the first application of low-cost sensing platforms combined with 
dispersion modelling to assess gas emissions and dispersion from livestock buildings in 
the study area. The study was conducted as part of a research project aiming at assessing 
greenhouse gases emissions from dairy cattle and swine farming systems across 
Northern, Central, and Southern Italy using innovative measurement techniques. In 
Central Italy, the Tuscany region ranks second in terms of dairy cattle population  
(data provided by the National Zootechnical Registry -BDN- of the Italian Ministry of 
Health, managed by the 'G. Caporale' Institute in Teramo through the National Services 
Centre -CSN-). One of the two main dairy production districts in Tuscany is located in 
the Province of Florence, specifically in the Mugello area, which hosts both larger farms 
(over 200 lactating cows) and medium-sized farms. 

 



MATERIALS AND METHODS 
 

Study site 
The experiment was conducted on a commercial dairy farm in the Mugello area, 

Province of Florence (Central Italy). The selected farm is representative of the medium-
sized dairy farms commonly found in this region. The farm primarily focused on dairy 
cattle breeding but also operated as an educational farm and agritourism. The cattle 
housing facility was open on all four sides, and it was situated on relatively flat terrain. 
At the time of the experiment, the farm housed 123 Holstein Friesian dairy cows in the 
main building for milk production. Of these, 65 lactating cows were kept in a free-stall 
pen with cubicles in the resting area and straw bedding, while the remaining 58 cows 
and heifers were housed in deep-litter pens with permanent straw bedding. All pens had 
concrete-floored feeding alleys and were equipped with water troughs. A Total Mixed 
Ration (TMR) was distributed once daily at h 18 00, and a robotic feed pusher regularly 
repositioned the feed along the self-locking headlocks. 

Additionally, 12 calves were kept in individual pens adjacent to the stable, and 12 
Belgian Blue White fattening cattle were also present in a pen in the south-east part of 
the stable. The farm also accommodated a chicken coop and a few donkeys. Contributions 
to the total emissions were considered negligible. 

The slurry from the two rows of pens inside the livestock building, one with 
permanent litter and the other in cubicles with straw bedding, was collected by automatic 
scrapers into two underground concrete tanks. The solid fraction, separated from the liquid, 
was stockpiled in a rectangular uncovered pit. In contrast, the liquid fraction was 
transferred to an open-air, circular underground concrete tank located north of the 
stable (Fig. 1). 

 

 
 

Figure 1. View of the commercial dairy farm (latitude 43.963270°, longitude 11.418885°) and 
inside the project of the WindTrax software environment. Point 1: upwind G-eko 2.0 multi-sensor 
unit. Point 2: downwind G-eko 2.0 multi-sensor unit. 
 



Instrumentation 
A dual-frequency GNSS receiver (GCX2, Sokkia, Netherlands) with centimetric 

accuracy was used to georeference the measurement points. Gas concentrations and 
microclimate parameters were measured using the G-eko 2.0, a self-engineered  
multi-sensor prototype described in Becciolini et al. (2023). The module, measuring 
120×100×67 mm and weighing 0.75 kg, was designed for environmental monitoring.  
G-eko 2.0 included sensors for measuring CO2, NH3, CH4, PM2.5 and PM10 together with 
atmospheric pressure, temperature, and humidity. 

CO2 was measured using a Non-Dispersive InfraRed (NDIR) sensor, which also 
integrated temperature and humidity sensors within the same module. The CO2/T/RH 
module had dimensions of 23×35×7 mm and a weight of 3.4 g. The technical 
specifications of the sensing module are detailed in Table 1. 
 
Table 1. Specifications of the cmOSens sensing module 
Target parameter Measurement unit Measuring range Accuracy 
CO2 ppm 0 ÷ 5,000 ± 30 
Temperature Celsius degree –40 ÷ +70 ± (0.4 + 0.023 (T – 25)) 
Relative humidity % 0 ÷ 100 ± 2 
 

The NDIR sensor was selected due to its documented suitability for CO₂ 
measurements, attributed to its strong and distinct absorption peak in the mid-infrared 
region, and the absence of common limitations associated with low-cost electrochemical 
sensors, such as inter-device variability and susceptibility to poisoning by silicone 
vapours (Burgués & Marco, 2020). Given the documented influence of temperature on 
the accuracy of NDIR sensors (Martin et al. 2017), the sensor integrated into the first 
prototype of the multi-sensor system (G-eko 1.0) was calibrated by an independent 
laboratory under controlled temperature and humidity conditions (Becciolini et al., 2024a). 

 
Table 2. Specifications of the WT87B anemometer 
Target parameter Measurement unit Measuring range Accuracy Resolution 
Wind speed m s-1 0 ÷ 30 ± 5% ±0.1 0.01 
Temperature Celsius degree -10 ÷ +45 ± 2 0.1 
Relative humidity % 10 ÷ 90 ± 5 0.1 

 

To improve environments, an additional calibration was 
conducted on the G-eko 2.0 prototype under different 
temperature and humidity regimes, enabling the 
development of correction equations applicable to diverse 
environmental conditions (Becciolini et al., 2024b). 

The anemometer (WT87B, Shenzhen Wintact 
Electronics Co., Ltd., China) used in this study is shown 
in Fig. 2. This device measured wind speed, temperature 
and humidity. 

Through a dedicated mobile application, the sensor 
can connect to a smartphone, enabling real-time data 
recording and storage. The technical specifications of 
the sensor are provided in Table 2. 

 

 
 
Figure 2. Anemometer 
(WT87B, Shenzhen Wintact 
Electronics Co., Ltd., China). 



Software 
Two software packages were used for the analyses: WindTrax (version 2.0.9.7, 

Thunder Beach Scientific) and QGIS (3.22.5 version, QGIS.org, 2023, QGIS 
Geographic Information System. QGIS Association. http://www.qgis.org). 

WindTrax incorporates the WindTrax atmospheric dispersion model (Flesh & 
Wilson, 2005) and is designed to simulate the dispersion of target gases from both point 
and extended area emission sources. It includes three modeling approaches: the 
Atmospheric Surface Layer model, the forward Lagrangian Stochastic (fLS) model, and 
the backward Lagrangian Stochastic (bLS) model. The bLS model is suited for extended 
area sources and was used in this study to estimate the CO2 emission rate (Q, g m-2 s-1) 
from various sources, including two rows of pens in the main building, the manure 
storage, and the slurry storage tank located north of the livestock building (Fig. 1). To 
run the bLS model, WindTrax requires four parameters describing the surface layer wind 
model: surface roughness length (z0, cm), friction velocity (u*, m s-1), atmospheric 
stability or Monin-Obukhov length (L, m), and mean horizontal wind direction  
(θ, degrees) (Crenna, 2006a). Additionally, at least one gas concentration measurement 
per source is needed to estimate the unknown emission rates (Flesch et al., 1995). The 
model also requires a background concentration (CBG), which can be entered directly if 
known or derived from an upwind concentration measurement. The software then solves 
a system of equations to calculate coefficients that relate emission rates to measured 
concentrations and vice versa (Crenna 2006a; Crenna 2006b). 

QGIS, an open-source geographic information system (GIS) software, was used 
both before and after WindTrax simulations. Initially, it was employed to georeference 
the two sampling points and generate a scaled map for exporting into WindTrax (Fig. 1), 
ensuring accurate distance proportions within the software. After the simulations, QGIS 
was used to create raster images visualizing the atmospheric dispersion of CO2 as 
modelled by WindTrax. 
 

Experimental setup 
The experiment was conducted during a single day in February 2023. First, the 

prevailing wind direction was determined. Two G-eko 2.0 units were then positioned at 
the height of 1 m from the ground, one upwind (sampling point 1) and one downwind 
(sampling point 2) of the emission sources (Fig. 1), aligned with the wind direction. The 
units were positioned away from obstacles (Flesch & Wilson, 2005; Crenna et al., 2008). 
The anemometer was placed upwind, near the G-eko 2.0 unit, at a height of 2 m above 
the ground. Both G-eko 2.0 units recorded CO2 concentrations (ppm), atmospheric 
pressure (Pa), and temperature (°C) at a sampling rate of 5 seconds. Wind speed (m s⁻¹) 
was measured at a sampling rate of 1 second, while wind direction was estimated. Data 
collection was conducted continuously for 20 minutes. The choice of the sampling period 
is due to the fact that the 15-minute averaging period is the most commonly used to 
include homogeneous weather conditions in the analysis, as suggested by the software 
author (Crenna, 2006b) for capturing representative atmospheric conditions. Furthermore, 
this work was part of a larger field trial involving measurements at different heights 
above the ground, so only this data on a 20-minute sampling period was available. 
Another reason to choose a 20-minute sampling period is the variability of the wind 
direction, estimated during the field trial and considered with a constant value during the 
field trial. 

https://www.qgis.org/


Data processing 
After the field trial, data were exported in .csv format. A verification process was 

conducted to ensure data quality, which included assessing whether the recorded values 
fell within expected ranges and evaluating the consistency between measurements 
obtained from the two G-eko 2.0 units. 

All collected data were processed using Microsoft Excel to generate input files for 
WindTrax simulations. The following data processing description has not previously 
been applied, primarily due to the short duration of the field trial, which imposed specific 
methodological constraints. Other authors (Lin et al., 2015; Pedone et al., 2017) used 
data obtained by field trials of longer duration, so the sampling period suggested by the 
author of the software (Crenna, 2006b) was used. Measurements from the G-eko 2.0 
units were averaged at 1-minute intervals, resulting in two datasets of 20 values. The 
same procedure was applied to wind data yielding, in total, three datasets of 
20 measurements each. The scaled map of the farm, created in QGIS, was imported into 
WindTrax to design the extended area sources and accurately locate the sampling points 
used during the field trial (Fig. 1). The area sources are represented in lime green and 
the orange arrow represents wind direction. WindTrax requires the specification of 
sampling points locations and corresponding datasets; therefore, each point was linked 
to the corresponding dataset (Fig. 1). 

Each set of paired measurements of CO2 concentration collected upwind (C1, N 20) 
and downwind (C2, N = 20), along with wind data (N = 20) was entered into the model 
to generate 20 simulations, each estimating an emission rate (Q, g m-2 s-1). Regarding 
model specifications, the surface roughness length (z0) was set to 2.3 to represent the 
short grass surrounding the livestock farm, which is bordered by arable land. The friction 
velocity u* was calculated by the model based on wind speed measurements recorded by 
the anemometer during the field trial. Atmospheric stability was classified as B according 
to the Pasquill-Gifford stability classes considering wind speeds below 2 m s-1 and weak 
daytime solar radiation. The mean horizontal wind direction (θ) was determined using 
topographic methods based on GPS coordinates of the two sampling points aligned with 
the wind direction during the field trial, yielding a value of approximately 119.3°. The 
number of particles in the simulation was set to 50,000. 

The 20 calculated Q values were converted into a dataset obtained by averaging the 
collected data over 5-minute intervals. These data were used to run additional 16 
simulations to model CO2 dispersion over a 270 m × 230 m area. The area was defined 
based on emission sources and wind direction to represent CO2 concentrations at a height 
of 2 m above the ground. The simulation parameters remained the same as previously 
stated, and the number of particles was set to 5,000 (N = 4 simulations), 10,000 (N = 4), 
30,000 (N = 4), and 50,000 (N = 4). Each simulation generated a raster image consisting 
of 10,000 pixels, with each pixel representing an estimated CO2 concentration (ppm). 
These raster images were georeferenced in QGIS by constructing a rectangle of matching 
dimensions. This kind of analysis was not used by any of the authors of the analysed 
literature, but it helps to make the measuring system reliable. The method of 
implementation for obtaining atmospheric dispersions was, however, in accordance with 
the software manual (Crenna 2006a; Crenna 2006b). 

A similar approach was applied to the calculation of vertical profile plots at the 
sampling point 2. Using the calculated Q values, 16 vertical profile plots of estimated 



CO2 concentrations were modelled. The simulation parameters were the same as those 
used for the CO2 dispersion model. Each vertical profile plot provided estimated CO2 
concentrations at heights ranging from 1 to 10 m above the ground, at an interval of 1 m. 
Both the CO2 horizontal dispersion and vertical profile estimates were generated along with 
their respective confidence intervals. R (R Core Team, 2024, version 4.4.0) and Rstudio 
(Rstudio Team, 2024, version 2024.4.1.748) were used for data analysis by selecting the 
library function ggplot2 (Wickham, 2016) for creating the vertical profile plots. 
 

RESULTS AND DISCUSSION 
 

The input data were averaged over five minutes and subsequently used for the 
WindTrax simulations. This averaging period was selected because of the short sampling 
period adopted during the field trial, despite WindTrax’s potential sensitivity to short-
term wind speed and direction variability. Table 3 shows measurements obtained from 
the G-eko 2.0 units at sampling point 1 (upwind) and 2 (downwind), and the anemometer, 
which were employed to calculate CO2 emission rates (Table 4). The highest CO2 
emission rate was obtained for the fourth step, which corresponds to the period with the 
maximum detected wind speeds. 

 
Table 3. Input data averaged over five minutes detected by the two G-eko 2.0 units and the 
anemometer at the sampling point 1 (upwind) and 2 (downwind) 

Step 
(run 
nr.) 

Time 
(CET) 

Upwind sampling point Downwind sampling point 

temp. 
(°C) 

atm. 
pressure 
(Pa) 

CO2 
(ppm) 

wind 
speed 
(m s-1) 

wind 
direction 
(°) 

temp. 
(°C) 

atm. 
pressure 
(Pa) 

CO2 
(ppm) 

1 10:40 10.47 99,568 450.14 0.73 119.3 9.59 99,636 637.68 
2 10:45 10.55 99,561 453.98 0.72 119.3 9.47 99,630 635.83 
3 10:50 10.39 99,555 448.51 0.57 119.3 9.43 99,627 629.10 
4 10:55 10.43 99,557 442.26 1.04 119.3 9.58 99,624 621.08 

 
It should be considered that for all the four steps the atmospheric stability was 

considered class B (unstable), hence the simulations calculating emission rates  
are influenced by the wind gusts. For example, observing Tables 3 and 4, step 4 is 
characterised by maximum wind speed and a consequent calculation of a notable peak 

Middle East. The correlation between wind speed and CO2 concentrations is inverse 
significantly in colder months. The paper explains that higher wind speeds lead to a 

in CO2 emission rate, compared to the 
other steps. In order to understand the 
influence of the wind on measured 
concentrations, i.e. whether the values 
of detected concentration depends on a 
real increase of emission rates or on 
increased particle transport due to 
increased wind speed, a recent study 
(Mousavi et al., 2025) assessed the 
influence of meteorological variables 
on measured CO2 concentrations in the  

 
Table 4. CO2 emission rates averaged over five 
minutes calculated using the WindTrax model 
(50,000 particles) 
Step  
(run nr.) 

Time  
(CET) 

Q  
(g m-2 s-1) 

1 10:40 0.19902 
2 10:45 0.19054 
3 10:50 0.14932 
4 10:55 0.26958 
 



reduction in detected concentrations through the dispersion and dilution processes. 
Consistently, in this case, the maximum detected concentrations are not reached upwind 
and downwind with the maximum wind speed (Table 4), thus it is possible to state a 
greater dispersion of CO2 at higher wind speeds. In this study, input data were averaged 
over 5 minutes and not over an interval of 15–30, as recommended by the author of the 
software. Shorter averaging periods are more subject to wind gusts and in conditions of 
atmospheric instability, indeed some studies (Carozzi et a., 2013; Tagliaferri et al., 2023) 
have highlighted a worse level of accuracy in the calculation of emission rates, 
underestimating them. 

Simulations were conducted for all the four steps, covering the entire sampling 
period. Different numbers of particles (5,000, 10,000, 30,000, and 50,000) were tested, 
yielding various outputs including concentration maps, confidence interval maps, and 
vertical profile plots. 

 

 
 
Figure 3. Concentration maps for estimated CO2 horizontal dispersion at 2 m above ground level 
modeled with WindTrax simulations using CO2 measurements averaged at 5-minute intervals. 
From top left, horizontal contour plots (10 classes separated by 90-ppm intervals) for models 
computed with 5,000, 10,000, 30,000, and 50,000 particles. 

 
The concentration maps in Fig. 3 were generated for step nr. 1 using different 

numbers of particles, and indicate the simulated CO2 concentrations at the height of 
2 m above the ground. A uniform colour scale was applied to all four concentration 
maps, using ten value classes ranging from a minimum of 440 ppm to a maximum of  
1,250 ppm, with intervals of 90 ppm, to create horizontal contour plots. Additionally, 
Fig. 4 shows the concentration map generated for step nr. 1 using 50,000 particles at the 
height of 2 m above the ground, also representing the emission sources. 



 
 
Figure 4. Concentration maps for estimated CO2 horizontal dispersion at 2 m above ground level 
modeled with WindTrax simulations using CO2 measurements averaged at 5-minute intervals. 
Horizontal contour plots (10 classes separated by 90-ppm intervals) for models computed with 
50,000 particles. The sources are shown, as well. 
 

Table 5 shows the results of the concentration maps corresponding to the four steps 

noted across all the steps: the median concentration values tend to stabilise with a high 
number of particles (30,000 and 50,000). 

in terms of maximum and 
minimum values of the 10,000 
estimated concentrations, while 
Fig. 5 shows the results of the 
concentration maps corresponding 
to the four steps in terms of 
median values. The median was 
selected to summarize the 
distribution due to the high 
number of minimum concentration 
values located in the periphery  
of the raster files for each step. 
Reporting mean values with 
standard deviation would  
have provided a misleading 
interpretation of the results of the 
simulations. A general trend was  

 
Table 5. Simulated CO2 concentrations (maximum  
and minimum values) at 2 m above the ground level 
using CO2 and environmental parameter (temperature 
and pressure) measurements averaged at 5-minutes 
intervals, using 5,000, 10,000, 30,000, and 50,000 
particles for all the four steps 
Step  
(run nr.) 

Particles number 
5,000 10,000 30,000 50,000 

1 Max 1,250.00 1,140.00 1,130.00 1,140.00 
Min 450.14 450.14 450.14 450.05 

2 Max 1,230.00 1,121.46 1,110.00 1,130.00 
Min 453.98 453.98 453.98 453.89 

3 Max 1,210.00 1,110.00 1,100.00 1,120.00 
Min 448.51 448.51 448.51 448.42 

4 Max 1,200.00 1,100.00 1,090.00 1,100.00 
Min 442.26 442.26 442.26 442.17 

 



Minimum concentration values remained consistent with the measured mean 
background concentration at the sampling point 1 up to 30,000 particles, then it 
decreased by a few decimals for 50,000 particles. 

Inside the distribution of calculated CO2 values, the median value is subject to an 
upward shift to 30,000 particles and then to a downward shift with 50,000 particles for 
all the steps. 

 

 
 
Figure 5. Median modeled CO2 concentrations of the 16 concentration maps, increasing the 
number of particles in WindTrax for each step (1–4). 
 

Extending the analysis to the calculated confidence intervals of the estimated CO2 
concentrations, horizontal dispersion maps by WindTrax calculated for the first step are 
shown in Fig. 6. The same scale of values was used for all the four confidence interval 
maps, by selecting values from a minimum value of 0 ppm to a maximum value of 290 
ppm. It can be observed that by increasing the number of particles included in the 
simulations, the calculated confidence intervals decreased. Furthermore, as the distance 
from the source along wind direction increased, the confidence interval decreased. 

Pedone et al. (2017) applied the WindTrax model using 2.000, 7.000, and 50.000 
particles, obtaining a variability of 20% in CO2 emission rate. Other authors (Shonkwiler 
& Ham, 2018; Shaw et al., 2020; Hrad et al., 2021) used the WindTrax model by 
selecting a number of particles greater than 50,000, mainly for reducing the uncertainty 
of the model. Studies that selected 50,000 particles adopted smaller distances of sensors 
from the source i.e. 100–300 m (Hrad et al., 2021), 30 m (Riddick et al., 2022), 0.5 m 
(Ricco et al., 2021). It should be considered that in studies where sensors are placed close 
to the source, their number tends to increase. In this study, G-eko units were positioned 
at 20–40 m from the closer emission source i.e. the bedding inside the livestock building 
and the manure storage. Hrad et al. (2021) stated that 50,000 particles is the default value 
to shorten simulation. 
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Figure 6. Confidence interval (CI) maps for estimated CO2 horizontal dispersion at 2 m above 
ground level modelled with WindTrax simulation using CO2 measurements averaged at 5-minute 
intervals. From top left, CI for models computed with 5,000, 10,000, 30,000, and 50,000 particles. 
 

Therefore, simultaneous observation of the concentration maps and the confidence 
interval maps for the first step (Fig. 3 and 6) showed that the highest values of CO2 

confidence intervals, while Fig. 7 also shows results of the other confidence interval 
maps, referring to the other steps in terms of median confidence intervals. 

For the other steps as well, there is a reduction in the calculated confidence intervals 
by increasing the number of particles. 

concentration, represented with 
darker areas, have wider confidence 
intervals because they are close to 
the sources. On the other hand, the 
lowest values represented with 
lighter areas have smaller 
confidence intervals because they 
are further away from the sources. 
From these considerations, despite 
the simplicity of applying the bLS 
approach, the available sensors, 
type, and positioning have a great 
impact on atmospheric dispersion 
simulations. 

Table 6 also shows results of 
the other confidence interval maps, 
referring to the other steps in  
terms of maximum and minimum  

 
Table 6. Simulated CO2 concentration confidence 
intervals (maximum and minimum values) at 
2 m above the ground level using CO2 and 
environmental parameter (temperature and pressure) 
measurements averaged at 5-minutes intervals, 
using 5,000, 10,000, 30,000, and 50,000 particles 
for all the four steps 
Step  
(run nr.) 

Particles number 
5,000 10,000 30,000 50,000 

1 Max 285.77 144.77 117.00 88.81 
Min 0.00 0.00 0.00 0.16 

2 Max 276.62 140.13 113.26 85.96 
Min 0.00 0.00 0.00 0.15 

3 Max 274.50 139.06 112.39 85.31 
Min 0.00 0.00 0.00 0.15 

4 Max 271.71 137.64 111.25 84.44 
Min 0.00 0.00 0.00 0.15 

 



 
 

Figure 7. Median modeled CO2 confidence interval concentrations of the 16 confidence interval 
concentration maps, increasing the number of particles in WindTrax for each step (1–4). 
 

 
 
Figure 8. Vertical profile plots of estimated CO2 concentration 土  confidence intervals in the 
sampling point 2 of the G–eko 2.0. Simulations were run using 5,000 (a), 10,000 (b), 30,000 (c), 
and 50,000 (d) particles. Estimations are from heights equal to 1 m a.g.l. to 10 m a.g.l. The dotted 
blue line indicates the height at which simulations of the horizontal dispersion were carried out. 

 
Additionally, vertical profile plots were calculated with the WindTrax software at 

the sampling point 2 for observing estimated CO2 concentrations ± confidence intervals 
with several numbers of particles at different heights above the ground, i.e. from 0 to 
10 m with 1 m intervals. Fig. 8 shows narrower CO2 confidence intervals as the number 
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of particles increases. Therefore, what has been observed horizontally with concentration 
maps and confidence interval maps also occurs vertically with vertical profile plots. 
Moreover, a better-defined vertical trend in concentrations is observed as the number of 
particles increases. Again, it is observed that a large number of particles is necessary for 
a better accuracy in estimating concentrations. 

 
CONCLUSIONS 

 
This study provided relevant insights into the performance of a Lagrangian 

atmospheric dispersion model for estimating CO₂ emissions from livestock facilities and 
mapping their dispersion in the surrounding environment. 

The results highlight the importance of adapting the measurement protocol to the 
specific emission sources under investigation. In this case, overall CO₂ emission rates 
were estimated for three distinct sources: the livestock building, the manure pit, and the 
slurry tank. To improve source-specific estimates, it is recommended to deploy at least 
one sensing unit per emission source, along with one additional unit for background 
concentration measurements. All sensors should be positioned at appropriate distances 
within a 1 km radius from the sources, in accordance with model guidelines. 

With regard to meteorological data processing, the choice of averaging intervals 
proved critical. Short averaging periods (e.g., 5 minutes) are more susceptible to wind 
gusts, potentially reducing the reliability of emission rate estimates, particularly under 
unstable atmospheric conditions. Simulations revealed that increasing the number of 
particles improved result stability and reduced the width of confidence intervals. 
Specifically, median concentration values from simulations of horizontal dispersion 
increased with higher particle counts up to 30,000. Confidence intervals also decreased 
with greater downwind distance and with increasing number of particles. A particle 
number of at least 50,000 is recommended to ensure robust model outputs, despite the 
increased computational demand. 

The study also identified several limitations. The limited number of sensing units 
prevented the estimation of emission rates for individual sources, restricting the analysis 
of their relative contributions to overall CO2 emissions. In addition, the proximity of the 
downwind sensor to the emission sources may have influenced concentration 
measurements due to local turbulence effects caused by nearby structures. The short 
duration of the measurement period (20 minutes) and the selected averaging time 
(5 minutes) may have amplified the influence of wind fluctuations on emission 
estimates. Furthermore, the use of an anemometer capable of measuring both wind speed 
and direction-preferably in 2D or 3D-would have improved the characterization of local 
atmospheric conditions. 

Despite these limitations, the WindTrax protocol proved practical and applicable 
within a livestock farming context, provided that careful attention is paid to sensor 
placement. Future studies should incorporate a greater number of sensing units and 
extended monitoring periods to capture diurnal, seasonal, and annual variability in 
emission rates. Such efforts are essential to improve the bottom-up assessment of 
greenhouse gas emissions from livestock farming and to support the development of 
effective mitigation strategies. 
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