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Abstract. Biogas production as a renewable energy source is gaining more attention from 
different actors in the energy sector due to the use of different residual products for its generation. 
This interest also comes from the agricultural sector. A typical crop used for biogas production 
is maize, which poses environmental challenges related to soil erosion and nutrient depletion. 
Furthermore, land use changes can also reduce biodiversity and attract pests. An increasing 
number of strategies to diminish these issues rely on combining maize with other leguminous 
plants, improving the nutritional silage profiles, and potentially enhancing biogas production. 
Nonetheless, adopting these new approaches remains limited since the farmers hesitate to invest 
in new technologies without clear and quantifiable improvements. In this regard, in this study, 
we propose time-series-based models to predict biogas and methane production based on the 
silage features of crops and the time-series data. In particular, we fitted models based on 
Autoregressive Integrated Moving Average with eXogenous variables (ARIMAX) to capture the 
temporal dependencies, aiming to characterize the methane volume and methane concentration 
accurately. We used a previously validated measurement campaign, which included other 
anaerobic digestion variables like volatile solids, crude protein, cellulose, and hemicellulose, 
among others, from crops of maize and mixed maize-legume silages, along with the production 
of biogas and methane, with a sample period in days. The reactor was a 5 L fermenter operated 
at 40  °C with manual mixing daily. It used inoculum and silage, with a 21-day delay before 
measurement. Biogas volume was recorded using a measuring cylinder, and composition was 
analyzed with a Dräger X-am 8000. We tested our ARIMAX-based models regarding their 
goodness of fit using the determination coefficient R2 and the Root Mean Square Error (RMSE). 
In the case of the methane volume, we obtained an R2 of 0.92 and an RMSE of 0.001 liters, and 
for the case of methane concentration, our models exhibited an R2 of 0.908 and an RMSE of 
0.85%. Our promising models help farmers, researchers, and policymakers to accurately 
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characterize and forecast biogas and methane production as promising renewable energy 
generation technologies. 
 
Key words: anaerobic digestion, biogas production, time series, maize-legume silage, time-series 
forecasting. 
 

INTRODUCTION 
 

The global demand for energy sources has increased dramatically regarding the 
growing of production industries, data centers, computing for processing Artificial 
Intelligence (AI) based solutions, among others (Tiismus et al., 2025). In this regard, 
different alternative and renewable energy strategies have arisen to diversify the energy 
matrix, aiming to diminish the dependence on classical generation techniques based on 
fossil fuels, nuclear, or hydroelectric power plants (Mamidala et al., 2023). Among these 
approaches, anaerobic digestion has emerged as a suitable and promising option for 
biogas production to be further employed for thermal energy generation (Liu et al., 
2021). This biological process is based on the use of organic materials that are 
decomposed by microorganisms in an oxygen-free environment, resulting in methane, 
carbon dioxide, and minimal traces of other gases depending on the chosen feedstocks 
(Mao et al., 2015). Furthermore, anaerobic digestion offers unique advantages, like the 
types of feedstocks that can be used to produce biogas, including livestock manure, food 
wastes, and sewage sludge (Thakur et al., 2023). For instance, pig manure is commonly 
used since its broad production in dedicated farms, making this feedstock highly 
available and biodegradable (Ferreira et al., 2024). Nonetheless, animal-based 
feedstocks can be very variable according to the characteristics of the surrounding 
environment, as in other processes (González-Palacio et al., 2024). The factors include 
climate, animal diet, housing systems, and management practices. Recent studies have 
emphasized that these environmental conditions significantly influence the 
physicochemical composition of animal-derived materials, such as manure, fat, and  
by-products, which in turn affect their suitability for bioenergy production or nutrient 
recovery (Okolie et al., 2023). This variability challenges the prediction of methane 
production and concentration. 

In that way, promising alternatives of feedstocks based on crops started capturing 
the attention of the productive sector since they offer several advantages over other 
substrates, like the high level of biomass yield and convenient biochemical composition, 
among others (Hoang et al., 2022), which refers to the high content of fermentable 
sugars, cellulose, and hemicellulose, which are ideal for biofuel production due to their 
ease of conversion and high energy potential (Himmel et al., 2007). In particular, maize 
offers the advantage of high predictability since it can be produced to be consistent, 
facilitating a stable Anaerobic Digestion (AD) process. The consistency of maize silage 
is characterized by a relatively uniform chemical composition, particularly in terms of 
its carbohydrate content, which includes cellulose and hemicellulose. This uniformity 
contributes to predictable and stable biogas production rates and yields and stable AD 
performance (Kaparaju & Rintala, 2005). However, the cultivation of maize poses 
different environmental challenges, such as soil erosion and nutrient depletion 
(Ologunde et al., 2025). These issues can be mitigated by intercropping maize with  
 



leguminous plants, enhancing the soil structure, fertility, and nutritional profile, 
improving the biogas production (Kintl et al., 2024). Nonetheless, the prediction of 
biogas production to adequately forecast the performance under different configurations 
is a time-consuming and expensive process that can be threatened by multiple sources, 
such as weather variations or pests (Pfordt & Paulus, 2025). 

For this reason, active research is being conducted to develop reliable methods for 
predicting biogas production in nonlinear and highly variable AD processes, with the 
goal of identifying the best operational parameters, such as temperature, retention time, 
and feedstock mixture ratios, to enhance system efficiency and methane yield. Previous 
attempts at digester performance prediction employ mostly machine-learning models 
whose operation may not be traced back directly from the physical processes of the 
digester. The authors in (Kim et al., 2025) depicted the everyday evolution of a whey-
fed lab reactor on a graph-convolutional network. The study used laboratory-scale 
anaerobic digesters with a 50 mL working volume, operated at 37 °C, and fed with whey-
based substrate every three days to maintain a hydraulic retention time of 30 days. 
Different organic loading rates were applied, including high, medium, and low levels, 
with fluctuating patterns such as stepwise and abrupt changes to mimic real-world 
operational variations. Although the network simulated gas-rate dynamics highly 
accurately (MSE = 0.01) and identified shifts in the microbial community abundance 
with an R² of 0.72 and a microbial community composition with an R2 of 0.87, the large 
number of latent parameters prevents a straightforward explanation of such associations. 

The study conducted in (Zou et al., 2024) proposed a machine learning-based 
prediction model of biogas production in full-scale dry anaerobic digestion of kitchen 
food waste. The study employed operational data collected for 1.5 years from four full-
scale digesters, including parameters such as biomass amount, addition of centrifuged 
sludge, liquid level, digester capacity, amount of product, and biochemical parameters 
such as pH. Eight machine learning algorithms were evaluated, of which CatBoost was 
the most accurate with R² values from 0.604 to 0.915 for biogas prediction. Although the 
high predictive performance, the complexity of the model, and the many latent 
parameters complicate a direct understanding of the inter-variable relationships. 

The research carried out in (Avinash & Mishra, 2024) investigated the predictive 
potential of AI-based and kinetic models for AD biogas production. Batch digestion 
trials under various moisture content, organic load, and operational parameters like 
temperature, pH, and retention time were carried out to train the models. Different 
models, like artificial neural network (ANN), adaptive neuro-fuzzy inference systems 
(ANFIS), were trained and tested based on experimental biogas yield data. ANFIS 
network produced biogas yield with high precision (RMSE = 0.670, R² = 0.999) 
compared to traditional kinetic models that also provided good fits. Although the models 
were able to identify general trends, the dense input variable and biogas output relation 
within particular AI models had numerous parameters and hence may be hard to interpret 
as direct underlying biological processes. 

The investigation reported in (Farzin et al., 2024) evaluated the efficacy of auto-
tuning machine learning models for biogas yield prediction from a municipal wastewater 
treatment plant on a full scale. Data obtained from operation experiments collected from 
South-Tehran municipal wastewater treatment plant were utilized for parameters such as 
influent and effluent volatile solids, pH, temperature, and organic loading rates.  
 



Different combinations of hyperparameter tuning and feature selection were performed 
using genetic algorithms and particle swarm optimization for enhancing model 
performance. Support vector regression (SVR) and ANNs were used with the models. 
The most precise model was formed using SVR with R² = 0.77 for test and 0.49 for 
RMSE. Despite this achievement, the complex relationship among the selected 
parameters discourages simple interpretability of the relationships among operating 
variables and biogas production. 

The approach in (Geng et al., 2024) proposed a prediction model of food waste 
anaerobic digestion biogas production using an augmented mix-up data augmentation 
strategy and an improved global attention Long-Short Term Memory (LSTM) network. 
The data were derived from two AD food waste reactors with actual production data, 
including parameters such as pH, volatile fatty acids, total solids, volatile suspended 
solids, ammonia nitrogen, and chemical oxygen demand from a six-month monitoring 
period. Different feeding regimes and organic loading conditions were mimicked to 
simulate operational variances. Artificial training samples were generated by the 
proposed model via mix-up in an attempt to counteract the data sparsity issue, and 
utilized an improved global attention scheme in the LSTM architecture for better 
modeling of temporal dependency. Performance in prediction was adequate (R = 0.988), 
and the model strongly predicted the actual daily biogas production (MSE = 0.002) and 
was capable of providing recommendations for feed adjustment to optimal energy 
output. However, the interpretability of each input feature is lost with added complexity 
due to the attention mechanism and data augmentation methods. 

While these studies show that data-driven models are capable of representing 
highly variable processes, they are subjected to a key limitation since they are based on 
non-interpretable architectures, so practitioners lack explicit information about how 
different predictor variables can affect the prediction. Few recent studies have revisited 
statistical time-series models. The authors in (Prasad et al., 2023) compared SARIMAX 
and ARIMA with a variety of machine-learning baselines on 117 days of batch data.  
The results showed that plain ARIMA had the lowest error of prediction 
(RMSE = 3.26 L day⁻¹), indicating that plain parametric models perform similarly to 
black-box learners when faced with common temporal autocorrelations. 

The summary of the reviewed approaches is shown in Table 1 where the following 
can be noticed. While these efforts demonstrate that data-driven models are able to track 
highly variable processes, they both possess two limitations that are of particular 
importance for crop-based digestion: (i) none of them deals with dedicated energy crops 
or mixtures of forage, though these substrates form a growing fraction of agricultural 
biogas plants, and (ii) all are based on non-interpretable architectures, thus practitioners 
have no explicit guidance on how fibre, starch or protein content affects the prediction. 
In this paper, we present a method based on Autoregressive Integrated Moving Average 
with eXogenous variables (ARIMAX) models to estimate methane volume and content for 
several silage profiles. We used an extensive measurement campaign in (Kintl et al., 2024) 
where different silages were prepared for the experiment, including the monocultural 
maize silage (MA) and the mixtures of maize with white sweet clover (MA+WSC), 
white lupin (MA+LU), and fodder vetch (MA+VE) in a wet weight ratio of 70:30. 



Table 1. Comparison of techniques used to forecast biogas production in anaerobic digesters 

Author Variables considered to forecast biogas 
production Techniques Black-

box? 
(Kim et al., 2025) Temperature (37 °C), hydraulic retention 

time (30 d), organic loading rate 
(high/medium/low, stepwise & abrupt 
changes), feeding frequency (every 3 d), 
microbial community composition 

Graph-Convolutional 
Network (GCN) 

Yes 

(Zou et al., 2024) Biomass amount, addition of centrifuged 
sludge, liquid level, digester capacity, 
amount of product removed, pH 

CatBoost gradient-
boosted decision trees 

Yes 

(Avinash & Mishra, 
2024) 

Moisture content, organic load, 
temperature, pH, retention time 

ANFIS / ANN Yes 

(Farzin et al., 2024) Influent & effluent volatile solids, pH, 
temperature, organic loading rate 

Support Vector 
Regression (SVR) + 
GA/PSO tuning 

Yes 

(Geng et al., 2024) pH, volatile fatty acids, total solids,  
volatile suspended solids, ammonia 
nitrogen, chemical oxygen demand 

Global-attention  
LSTM with mix-up 
augmentation 

Yes 

 
Parameters of measurement considered during the experiments involved the silage 
chemical composition including measured variables like volatile solids, neutral detergent 
fiber, acid detergent fiber, crude fiber, starch, cellulose, hemicellulose, crude protein, 
lipids, and acid detergent lignin (Palacio et al., 2017); while volume and composition of 
the produced biogas were analyzed for methane yield through fermentation tests. Other 
physical parameters measured were the density of the silage and some other operational 
variables, namely, temperature of incubation, period of fermentation, and amount of 
silage used (Gonzalez-Palacio et al., 2018). Our original contributions are three-fold: 

1. A feature extraction process where we analyze how different variables affect the 
production and concentration of methane using statistical indexes. 

2. A modeling stage where we fit a parametric ARIMAX that considers the 
predictor variables that highly influence the AD process and methane production. 

3. We interpret how the different variables affect the process of methane 
production, providing valuable insights on how to improve anaerobic digestion 
processes. 

The rest of this paper is organized as follows: Section II describes the database we 
used to determine each variable's statistical features. Section III is divided into two 
subsections. The first subsection explains the feature analysis and extraction, and the 
second subsection shows the proposed models. Section IV shows the results after 
applying the proposed methodology and analyzes their practical implications. Finally, 
Section V concludes the paper. 

 



EXPERIMENT & DATABASE DESCRIPTION 
 
The experiment in (Kintl et al., 2024) consisted of assessing biogas production from 

different silage mixtures, namely maize and legumes. The silages were made in mini-
silos, with the silage mixtures being monocultural maize silage (designated as MA) and 
mixtures of maize with white sweet clover (MA+WSC), white lupin (MA+LU), and 
fodder vetch (MA+VE) in a fresh weight ratio of 70:30. The maize for the silages was 
cut manually at a stubble height of 18 cm, shredded into pieces of approximately  
15–20 mm using a cutter (Deutz-Fahr MH 6505), then mixed with a bacterial inoculant 
(Silo Solve EF by Chr. Hansen Holding Ltd.) and filled into mini-silos and fermented. 
After that, the authors subjected the silages to 90 days of incubation in anaerobic 
conditions. Then, the mini-silos were sampled for subsequent analyses. For the 
fermentation, 24 batch fermenters of five liters each were used, preserving the anaerobic 
conditions throughout the experiment. There were three fermentation systems with eight 
fermenters each, totaling 24 fermenters. In each system, two fermenters were controls, 
and the remaining six fermenters were dosed with silage samples. Since there were four 
silage variants, each was tested in three replicate fermenters across all systems. After the 
incubation period of 90 days, the mini-silos were opened, samples were homogenized, 
frozen, and transported for chemical analyses and fermentation tests. Regarding 
sampling frequency, the samples were collected once after the 90-day incubation. 

The setup permitted daily measurement of biogas production, with the produced 
biogas displacing a salt-saturated solution from the measuring cylinder into an expansion 
tank. The biogas generated was passed through an instrument (Dräger X-am 8000) for 
its composition, especially methane content. The fermenter conditions were carefully 
controlled, where the temperature was at 40 °C ± 0.2 °C provided by water baths. From 
the fermentation process, the volume and composition of the produced biogas were 
determined. Besides, the efficiency and yield of the biogas and methane production were 
also assessed from the varying silage mixtures. The variables measured in the experiment 
trials are as follows: 

1. SUBSTRATE: The type of silage being analyzed (e.g., maize, mixed silage 
with legumes). 

2. DAY: The day of sampling during fermentation. 
3. DM: Dry Matter (%), representing the portion of the silage that remains after 

water is removed. 
4. VS: Volatile Solids (%), a measure of the organic matter in the silage that can 

generate biogas. 
5. NDF: Neutral Detergent Fiber (%), indicating the structural carbohydrates 

present in the plant material. 
6. ADF: Acid Detergent Fiber (%), a measure of the resistant fibrous fraction 

containing cellulose and lignin. 
7. CF: Crude Fiber (%), representing the indigestible portion of the feedstuff. 
8. STARCH: Starch (%), the amount of starch present in the silage, which is a key 

fermentation substrate. 



9. ASH: Ash (%), representing the inorganic mineral content remaining after 
combustion of the organic matter. 

10. CELLULOSIS: Cellulose (%), the content of cellulose, a major component 
of the plant cell wall. 

11. HEMI-CELLULOSIS: Hemicellulose (%), the content of hemicellulose, 
another digestible structural carbohydrate. 

12. CP: Crude Protein (%), measuring total protein content available in the silage. 
13. LIPIDS: Lipids (%), representing the fat content present in the silage. 
14. ADL: Acid Detergent Lignin (%), measuring the lignin content, which affects 

digestibility. 
15. BIOGAS: Biogas Volume (L), the total volume of gas produced during 

anaerobic digestion. 
16. METHANE: Methane Volume (L), indicating the volume of methane gas 

produced as part of the biogas. 
17. METHANE_CONTENT: Methane Content (%), the concentration of 

methane in the biogas, highlighting the fermentation efficiency. 
Furthermore, Table 2 shows the descriptive statistics regarding the mean, standard 

deviation, minimum, maximum, and quartiles. These statistics were calculated using the 
entire dataset, encompassing the maize and the diverse silage mixtures, illustrating  
the distributions and variability of the key chemical parameters across the experiments. 
 
Table 2. Descriptive statistics of the AD process  

Mean Std. Dev Min Q1 Median Q3 Max 
DAY 11 6.092 1 6 11 16 21 
DM 32.222 1.136 30.53 31.783 32.33 32.77 33.7 
VS 95.65 0.519 94.78 95.507 95.885 96.028 96.05 
NDF 33.825 3.347 30.17 32.03 32.95 34.745 39.23 
ADF 22.807 2.332 20.41 21.438 22.1 23.47 26.62 
CF 17.44 2.812 15.19 15.73 16.175 17.885 22.22 
STARCH 24.782 7.8 15.57 18.322 24.285 30.745 34.99 
ASH 4.35 0.519 3.95 3.973 4.115 4.492 5.22 
CELLULOSIS 22.727 3.342 19.49 19.97 21.775 24.533 27.87 
HEMI-CELLULOSIS 12.375 0.826 11.04 12.037 12.66 12.997 13.14 
CP 11.28 1.719 9.03 10.012 11.325 12.593 13.44 
LIPIDS 2.81 0.404 2.25 2.625 2.805 2.99 3.38 
ADL 0.568 0.268 0.32 0.35 0.48 0.698 0.99 
BIOGAS 0.652 0.18 0.145 0.605 0.658 0.713 1.026 
METHANE 0.254 0.085 0.022 0.22 0.254 0.304 0.383 
METHANE_CONTENT 38.815 10.441 12.22 28.689 37.537 42.601 55.106 
 

This statistical overview can be used to understand and model their influences on 
biogas production. From this table, the following can be noticed. The DM content did 
not exhibit high variability, with an average of 32.22% and a standard deviation of 1.136, 
which denotes homogeneity in the composition of the substrate. Similarly, the VS, which 
is important for methane production, had little variation, with an average of 95.65% and 
a small range between 94.78% and 96.05%, which also suggests homogeneity in the 
organic matter present and favorable to microbial degradation. On the other hand, NDF  
 



and ADF, indicative of carbohydrate substrate structure, were highly varied and ranged 
between 30.17% and 39.23% for NDF and 20.41% and 26.62% for ADF, thus showing 
variation in the composition of materials subjected to experiments, especially with 
respect to fiber contents. The same behavior was exhibited by the CF contents, which 
varied in the range of 16.175%, with the highest value as high as 22.22%, a fact 
suggesting variation in digestibility for samples. Besides, starch contents, impacting the 
immediate availability of fermentable carbohydrates, were very variable, with a mean of 
24.78% and a standard deviation of 7.8%, ranging from 15.57% to 34.99%, suggesting 
variation in silage composition, which might impact fermentation processes. 
Furthermore, ash contents were also variable, highly uniform, and showed values that 
cluster around 4.35%, reflecting the incorporation of inorganic matter. The cellulose and 
hemicellulose contents, contributing to the slow biomass decomposition, were relatively 
variable in their content. Cellulose ranged between 19.49 and 27.87%, with an average 
of 22.727%, while hemicellulose ranged between 11.04 and 13.14%, indicating a 
relatively uniform composition in this portion of the fiber. The crude protein content, 
which is important for microbial processes, averaged 11.28 and ranged between 9.03 and 
13.44%, indicating variable substrate compositions. Even though present in lesser 
concentrations, the range for lipids extended between 2.25 and 3.38%, with an average 
of 2.81%, and could impact methane yield through high-energy contents. The lignin of 
acid detergent, which represents the resistant biomass, was characterized by minimum 
values, with an average of 0.568 and a high of 0.99%. This indicates that lignin, which 
is one of the limiting substrates in anaerobic digestion, is at a minimum concentration 
and might, therefore, encourage higher biodegradability.The yield range for biogas 
production was from 0.145 to 1.026 liters (l), averaging (l). Similarly, the methane yield 
ranged between an average of 0.254 L and a high of 0.383 L. Methane in biogas had a 
high variance between 12.22% and 55.1%, averaging at 38.8%. This suggests that 
variable substrate compositions impact methanation concentrations notably. Together, 
the magnitude and spread of biogas, methane, and methane content (bolded in Table 2) 
provide a realistic, internally consistent dataset that reflects both the transient and the 
quasi-steady phases of AD, making it well suited for performance analysis and for testing 
predictive models that must cope with highly dynamic digester conditions. 

 
METHODOLOGY 

 
The modeling process is depicted in Fig. 1 and comprises four stages. The first 

stage is the Extraction, Transformation, and Load (ETL) step to transform the variables 
into a set of suitable measurements that can be used for modelling purposes. The second 
stage analyzes which predictor variables effectively explain the variability of the 
objective variables and selects the subset of them that is useful for the subsequent 
models. The third stage deals with the modeling, where ARIMAX-based models are 
fitted to predict methane volume and methane content. Our modeling framework is built 
upon the ARIMAX(p,d,q) model, an advanced version of the standard ARIMA model 
incorporating external predictors. In this context, p refers to the autoregressive terms 
representing the effect on the target variable at present due to values from the past, d is 
the number of differentiations necessary to fulfill the stationarity assumption,  
and q refers to the count of moving-average terms describing serially correlated shocks.  
The "X" in ARIMAX indicates that, in addition to its own history and past of error 



forecasts, the series is regressed on exogenous covariates (in this case, silage 
composition measurement) such that the model is able both to capitalize on internal 
temporal relationships and quantify the direct impact of external predictors on biogas 
and methane output. The parameters are estimated simultaneously (typically by 
maximum likelihood), and the selection of p, d, and q is based on standard diagnostic 
statistics such as the autocorrelation and partial autocorrelation functions. Finally, the 
fourth stage uses the models’ predictions to analyze the results and practical 
implications. The following subsections detail each stage. 

 

 
 
Figure 1. Modeling process that consists of four stages: data extraction and transformation, 
feature extraction, modeling, and analysis of results. 
 

Data Extraction and Transformation 
The first step we carried out to prepare the database includes two tasks: i) a one-hot 

encoding strategy to convert a non-ordinal categorical variable into a numerical one, like 
in the case of SUBSTRATE, whose order and values do not exhibit a particular order, 
and ii) a lagging strategy for the variables METHANE and METHANE CONTENT 
since past values of these variables affect the current and future state of them. 

 
One-Hot Encoding 
This technique is used to convert categorical variables into numerical 

representations without inserting a false ordinal relation between categories. If a 
categorical variable X has k categories, we can transform it into a binary matrix 
representation where each category represents a binary feature. Mathematically, the 
variable X can be represented as 

𝑋𝑋 =  {MA, MA + LU, MA + VE, MA + WSC}, (1) 
where each element in the set represents a particular combination of the maize and a 
certain leguminous. We can create a one-hot encoding representation using an indicator 
function by 

𝑋𝑋𝑖𝑖
(𝑗𝑗) =  �1, if the sample 𝑖𝑖 belongs to category 𝑗𝑗

0, otherwise  (2) 

where 𝑋𝑋𝑖𝑖
(𝑗𝑗)represents the presence (1) or absence (0) of category j in sample i. This 

transformation is required since the considered models cannot process or analyze 



categorical variables directly. It avoids the algorithms assuming a hierarchical or 
categorical relationship among the categories, which is incorrect in this context. 
 

Lagged Variables 
Since the methane concentration and methane volume can be modeled using  

time-series analyses, the incorporation of lagged variables is crucial to enhance the 
predictability of the fitted models. This dependence can be mathematically modeled as 
follows. Let Yt be a time-series variable (e.g., METHANE or METHANE_CONTENT) 
where t represents time (days in this case). A lagged variable is 

𝑌𝑌𝑡𝑡−𝑘𝑘 =  Value of 𝑌𝑌 at time 𝑡𝑡 − 𝑘𝑘, (3) 
where k represents the lag order (e.g., 1, 2, ..., n days before). In that way, each lag 
indicates a new variable that can be considered for the time-series analysis for feature 
extraction purposes. 

 
Features Extraction 
The second step deals with the relationship between predictor variables with respect 

to the dependent variable. To this end, we conduct the following steps. First, we plot 
each independent variable versus the METHANE and METHANE_CONTENT to 
understand if a predictable pattern can be found from these relationships. After defining 
these regions, we use the Pearson correlation factor which describes the linearity 
between the variables within the range of [−1, 1]. That is, i) a value close to +1 means a 
strong positive correlation; ii) a value close to -1 means a strong negative correlation; 
and iii) a value close to zero means an insignificant correlation. 

Besides this, the Spearman correlation coefficient measures whether there is a 
monotonic nonlinear function that captures the patterns and relationships between two 
variables. It is performed by ranking data from lowest to highest, assigning sequential 
ranks across every row in the dataset, calculating a difference d for both the predictor 
and dependent variables at every rank, and computing the rank correlation coefficient ρ. 
Our design criterion was to consider the variables whose Pearson and Spearman indices 
were above 0.5, meaning that the chosen variables can explain more than 50% of the 
variability of the corresponding dependent variables. 

On the other hand, we also have to analyze how the past values of METHANE and 
METHANE_CONTENT can affect the current values of both variables, that is, how the 
lagged versions of them can be used to forecast their current and future values. It can be 
performed using the following analysis: i) first, we determine if the time series for both 
variables are stationary, using the Augmented Dickey-Fuller (ADF) test, ii) in case of 
non-stationarity, differentiate the time series until stationarity, iii) obtain the Partial 
Autocorrelation Function (PACF) and the Autocorrelation Function (ACF), and iii) with 
these results, determine the lagged variables and past errors that affect the current and 
future predictions. Regarding the ADF test, we can calculate the following expression 
for p lags by 

Δ𝑌𝑌𝑡𝑡 = δ𝑌𝑌𝑡𝑡−1 + �α𝑖𝑖Δ𝑌𝑌𝑡𝑡−1

𝑝𝑝

𝑖𝑖=1

+ ϵ𝑡𝑡, (4) 

where Δ𝑌𝑌𝑡𝑡 = (ρ − 1)𝑌𝑌𝑡𝑡−1 represents the first-order difference, δ is a coefficient obtained 
using Ordinary Least Squares which represents how the prior value 𝑌𝑌𝑡𝑡−1 affects the  



current value 𝑌𝑌𝑡𝑡, α𝑖𝑖 are the coefficient for p lagged values of 𝑌𝑌𝑡𝑡, and ϵ𝑡𝑡 is zero-mean 
independent and identically distributed gaussian noise. Then, we calculate the ADF 
statistic by 

ADF statistic =  
ρ

SE(ρ), (5) 

where SE(ρ) is the standard error of ρ. The ADF statistic is then compared with the 
critical value of 0.05 (95% confidence) and if it is less than the critical value, we 
conclude that the time series is stationary. In case that the series is not stationary, we 
compute the first difference as 

𝑌𝑌lag1 = 𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑖𝑖−1, (6) 
where 𝑌𝑌𝑖𝑖 is the ith value of the series and 𝑌𝑌𝑖𝑖−1 is the prior value of the series. The same 
procedure can be implemented for more lags if needed. 

 
Modelling 
Once we have selected the features that are essential in the prediction of 

METHANE and METHANE_CONTENT, we fit a parametric method (ARIMAX). The 
ARIMAX(p, d, q) model is a time-series model that aims to incorporate the dependence 
of the dependent variable on their p past values, q past forecasted errors, d 
differentiations over the dependent variable, and the influence of the exogenous 
variables. It can be represented by 

𝑌𝑌𝑡𝑡∗ = 𝛽𝛽0 + �𝛽𝛽𝑘𝑘𝑋𝑋𝑡𝑡,𝑘𝑘

𝐾𝐾

𝑘𝑘=1

+ �𝜙𝜙𝑖𝑖𝑌𝑌𝑡𝑡−𝑖𝑖∗
𝑝𝑝

𝑖𝑖=1

+ �𝜃𝜃𝑗𝑗𝜖𝜖𝑡𝑡−𝑗𝑗

𝑞𝑞

𝑗𝑗=1

+ 𝜖𝜖𝑡𝑡, (7) 

where 𝑌𝑌𝑡𝑡∗ represents the differenced series after applying d levels of differencing to 
achieve stationarity. The term 𝛽𝛽0 is the intercept, 𝛽𝛽𝑘𝑘 represents the coefficients 
associated with the exogenous variable 𝑋𝑋𝑡𝑡,𝑘𝑘, considering that there are K exogenous 
variables. The coefficients 𝜙𝜙𝑖𝑖 correspond to the autoregressive terms that capture the 
dependence of the series on the past values. The moving average terms are weighted 
using 𝜃𝜃𝑗𝑗, accounting for the past forecast errors on the current observation, and 𝜖𝜖𝑡𝑡 is the 
error noise. We use the PACF and ACF to determine the values for p and q. We use the 
Pearson/Spearman indexes to determine the exogenous variables that affect METHANE 
and METHANE_CONTENT from Table 2. Finally, we differentiate the series until the 
ADF test indicates stationarity. 
 

RESULTS 
 

This section presents the results of the proposed framework for modeling 
METHANE and METHANE_CONTENT. We used Anaconda Python for the statistical 
analysis regarding correlations, stationarity, and ARIMAX modeling. The time series 
are depicted in Fig. 2. From these trends, it can be noticed that the production and 
concentration of methane exhibit two stages. First, the variables rapidly increase, and 
then they tend to stabilize. The changes in the substrates influence the system's capacity 
to produce methane. In that way, we will provide ARIMAX-based models for both 
METHANE and METHANE_CONTENT. 
 



a)  b)  
 
Figure 2. Raw time series from (Kintl et al., 2024) of (a) methane production in liters, and (b) 
concentration of methane in %. 

Features Extraction 
After applying the one-hot encoding previously discussed in Eqs (1) and (2), we 

computed the Pearson and Spearman correlation indexes to elucidate which predictor 
variables can explain the variability of the dependent variables. The results of both tests 
are depicted in Fig. 3 and Table 3, from which it can be noticed how various parameters 
of silage composition are related to methane production since the absolute volume of 
methane (METHANE) and the methane percentage in biogas (METHANE_CONTENT) 
exhibit high correlations. The strongest positive correlations are between Crude Fiber 
(CF) and METHANE and METHANE_CONTENT with Pearson correlation 
coefficients of 0.547 and 0.766, respectively. This would suggest that all of the silages 
with higher fiber content yield more methane, likely due to these silages having more 
degradable fibrous material available for microbial degradation. Acid Detergent Fiber 
(ADF) and Neutral Detergent Fiber (NDF) also show moderately high positive 
correlations with methane production, once again in agreement with the fact that 
substrates of fiber lead to greater production of methane. 

Furthermore, DAY of sampling has a high correlation with methane formation, i.e., 
METHANE (0.625 Pearson, 0.634 Spearman). This would be an indication of an 
increase over time in the formation of methane due to successive degradation of organic 
matter during fermentation. Its correlation with METHANE_CONTENT is less (0.214 
Pearson, 0.194 Spearman), so the amount of methane is rising over time, but its 
proportion in the gas phase is relatively more stable. Cellulose (CELLULOSIS) and 
Hemicellulose (HEMI-CELLULOSIS) also correlate positively with methane 
production at METHANE_CONTENT (0.479 Pearson, 0.471 Pearson for 
CELLULOSIS and HEMI-CELLULOSIS, respectively). This would imply that these 
structural carbohydrates are being enriched by methane through their most likely 
microbial degradation pathways. Conversely, Crude Protein (CP) and Lipids are 
inversely related to both measures of methane. The crude protein is -0.252 and -0.466  
 
 



Pearson correlated with METHANE and METHANE_CONTENT, respectively, and 
lipids have a stronger inhibitory effect on METHANE_CONTENT (-0.324 Pearson, -
0.353 Spearman). These patterns suggest that substrates that have greater protein and 
lipid content may inhibit the production of methane, perhaps due to microbial inhibition 
or redirection of the metabolic pathways to produce alternative fermentation end 
products. 

 

 
 

Figure 3. Correlation matrix of the raw data from (Kintl et al., 2024) based on the Pearson index. 

 



Table 3. Pearson and Spearman correlation indexes for METHANE and METHANE_CONTENT 
versus possible predictor variables of the whole dataset provided by (Kintl et al., 2024). Variables 
highlighted in bold indicate correlations over 0.5. As a design parameter, we chose these variables 
since they can explain the variability of the dependent variables over 50% 

Predictor variable 
Pearson Spearman 

METHANE METHANE 
CONTENT METHANE METHANE 

CONTENT 
DAY 0.625 0.214 0.634 0.194 
DM 0.037 0.382 -0.007 0.353 
VS -0.017 -0.012 -0.191 -0.019 
NDF 0.402 0.536 0.230 0.169 
ADF 0.519 0.649 0.465 0.363 
CF 0.547 0.766 0.649 0.735 
STARCH 0.125 -0.132 0.144 -0.181 
ASH 0.017 0.012 0.191 0.019 
CELLULOSIS 0.436 0.479 0.465 0.363 
HEMI-CELLULOSIS 0.114 0.471 0.090 0.375 
CP -0.252 -0.466 -0.180 -0.346 
LIPIDS 0.001 -0.324 0.007 -0.353 
ADL -0.069 -0.156 -0.180 -0.346 
SUB_MA -0.320 -0.221 -0.424 -0.247 
SUB_MA+LU -0.264 -0.679 -0.293 -0.706 
SUB_MA+VE 0.066 0.154 0.182 0.255 
SUB_MA+WSC 0.518 0.746 0.535 0.698 

 
The correlations also indicate that silage compositions incorporating white sweet 

clover (MA+WSC) exhibit the strongest positive correlation with 
METHANE_CONTENT (0.746 Pearson, 0.698 Spearman), suggesting that this mixture 
enhances methane enrichment in the produced biogas. This could be attributed to the 
biochemical composition of white sweet clover, which may provide optimal fermentable 
substrates for methanogenesis. In contrast, silages containing white lupin (MA+LU) 
show a strong negative correlation with METHANE_CONTENT (-0.679 Pearson, -
0.706 Spearman), indicating that its inclusion may reduce methane concentration in the 
biogas. The high protein content and potential presence of bioactive compounds in white 
lupin might inhibit methanogenic activity, leading to lower methane yields. The impact 
of fodder vetch (MA+VE) appears to be more neutral, with weak positive correlations 
(0.066 Pearson, 0.255 Spearman), suggesting that while it does not significantly enhance 
methane concentration, it also does not strongly inhibit it. These findings imply that 
white sweet clover is the most favorable silage component for maximizing methane 
content, while white lupin may hinder methane production, potentially making it less 
desirable for biogas optimization. In summary, the exogenous variables for the 
ARIMAX models for METHANE are ADF, CF, and SUB_MA+WSC. Regarding the 
exogenous variables for METHANE_CONTENT, we selected NDF, ADF, CF, 
SUB_MA+LU, and SUB_MA+WSC. 

Regarding the use of ARIMAX models, we have to assess the following 
conditions: i) determine if the METHANE and METHANE_CONTENT series are 
stationary using the Augmented Dickey-Fuller (ADF) test (Eqs (4) and (5)), 
ii) differentiate the series until stationarity (Eq. (6)), and iii) use the ACF and PACF to 



elucidate which lags and past errors contribute to the predictions. For the first and second 
steps, we conducted the ADF tests, whose results are depicted in Table 4. From this, it 
can be noticed that the differentiation of the time series achieved stationarity since the 
ADF statistics are greater than the critical values and the p-values are less than 0.05, 
equivalent to a statistical significance of 95%. In that way, we chose d = 1 in the 
ARIMAX model; that is, we will use the first difference instead of the raw time series. 

 
Table 4. Augmented Dickey-Fuller Test for METHANE and METHANE_CONTENT time 
series without differentiation and with differentiation. If the ADF statistic is greater than the critical 
value or the p-value is less than 0.05 (95% confidence), the resulting time series is stationary 

Differentiation  
order 

METHANE METHANE_CONTENT 
Conclusion ADF 

statistic 
Critical  
value p-value ADF  

statistic 
Critical  
value p-value 

No differentiation -2.416 -4.137 0.137 0.757 -3.889 0.99 No stationary 
Differentiation 1 -4.58 -3.517 0.0001 -6.862 -3.516 1.59E-09 Stationary 
 

For the third step, we computed the ACF and PACF to elucidate which lags and 
past errors should be considered for the corresponding models using the differentiated 
series. The plots of these functions are depicted in Fig. 4. Each vertical line indicates the 
lag in the case of the ACF and the past error in the case of the PACF. If a line is over the 
blue-shaded region, it means that the corresponding lag/error should be considered for 
the regression. 

From Fig. 4 (a), it can be noticed that the plot of the ACF of the differenced 
METHANE series is positive at lag 0 and negative at lag 1, and the remaining values 
fluctuate within the confidence band (blue-shaded area). It shows that the moving 
average term has to include error terms at lag 0 and 1 and because the subsequent lags 
do not show any correlation. Besides, from Fig. 4 (b), it can be noticed that the PACF 
also shows that the lags 0, 1, and 2 are significant, indicating that an autoregressive term 
of order 3 would be sufficient to capture dependencies in the data. These patterns indicate 
that an ARIMAX model for METHANE would consist of three autoregressive terms, 
two moving average terms, and the exogenous variables ADF, CF, and SUB_MA+WSC, 
that is, an ARIMAX(3,1,2) expressed as 

CH4𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1ADF + 𝛽𝛽2CF + 𝛽𝛽3WSC + ϕ1CH4t−1 + ϕ2CH4t−2  + ϕ3CH4t−3
+ θ1ϵt−1  +  θ2ϵt−2 , (8) 

where CH4t represents the methane volume at the time t, ADF represents the Acid 
Detergent Fiber content, CF represents the Crude Fiber content, WSC represents the 
silage with maize and white sweet clover, CH4t represents the methane volume in the 
previous day, CH4t-2 represents the methane volume two days ago, 𝛽𝛽0 represents  
the independent term, 𝛽𝛽1 is the weight for the ADF, 𝛽𝛽2 is the weight for the CF, 𝛽𝛽3 is the 
weight for the silage prepared with maize and white sweet clover WSC, ϕ1 is the weight 
for the lag 1 of CH4, ϕ2 is the weight for the lag 2 of CH4, ϕ3 is the weight for the  
lag 3 of CH4, θ1 is the weight for the lagged error ϵt−1, and θ2is the weight for the 
lagged error ϵt−2. 
 



a)  b)  
 

c)  

 

d)  
 
Figure 4. Plots of (a) ACF of METHANE, (b) PACF of METHANE, (c) ACF of 
METHANE_CONTENT, and (d) PACF of METHANE_CONTENT. The plots are for the 
differentiated series. 

 
Regarding the METHANE_CONTENT, we analyze Fig. 4 (c) and (d) where the 

following can be noticed. First, Fig. 4 (c) shows the ACF plot and indicates that only the 
lag 0 is significant (the first difference), so it suggests that only the first lagged error 
should be included in the model because the other lags are inside the blue-shaded region. 
Besides, Fig. 4 (d) shows the PACF, suggesting the same configuration, i.e., only the 
first lagged difference should be considered. This implies that a single moving average 
and a single autoregressive term would be appropriate. Since both series required one 
difference to become stationary, an ARIMAX(1,1,1) specification is a feasible model of 
the underlying dynamics described by 
C_CH4𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1ADF + 𝛽𝛽2CF + 𝛽𝛽3WSC + 𝛽𝛽4NDF + 𝛽𝛽5LU + ϕ1C_CH4t−1 + θ1ϵt−1, (9) 

where C_CH4t represents the methane content at the time t, CH4t-1 represents the 
methane content in the previous day, NDF represents the Neutral Detergent Fiber, LU 
represents the silage with maize and white lupin, 𝛽𝛽0 represents the independent term, 𝛽𝛽1 
is the weight for the ADF, 𝛽𝛽2 is the weight for the CF, 𝛽𝛽3 is the weight for the silage 
prepared with maize and white sweet clover WSC, 𝛽𝛽4 is the weight for NDF, 𝛽𝛽5 is the 
weight for the silage prepared with maize and white lupin, ϕ1 is the weight for the lag 1 
of C_CH4, and θ1 is the weight for the lagged error ϵt−1. 
 



Modeling 
This subsection shows the fitted models and the corresponding results in predicting 

METHANE and METHANE_CONTENT. We also provide a goodness-of-fit analysis 
for each fitted model. 

 
ARIMAX model for METHANE 
We fitted the model in Eq. (8), obtaining the coefficients in Table 5. To carry out 

the fitting process, we used the first 16 days of METHANE values and the values from 
17 to 21 to perform the goodness-of-fit analysis. We aim to evaluate how the models 
perform with unknown data that has not been observed previously in the training phase. 

The coefficients in Table 5 help analyze the contribution of different factors to 
methane production from physical and statistical standpoints. The variables of substraate 
composition, ADF, CF, and WSC have coefficients expressed as liters per percentage 

coefficient is 0.0697 liters per unit percentage,or a 1% increase in ADF causes an 
increase of 0.0697 liters of methane. This relatively low value suggests that ADF exerts 
a very small effect on methane production, most likely because it is composed of 
cellulose and lignin, which are broken down slowly. For the case of Crude Fiber (CF), 
the model obtains a more pronounced effect with a coefficient of 0.1327 liters per 
percentage unit, which implies that substrates with more crude fiber produce more 
methane. Besides, this suggests that CF is a more effective predictor of methane yield 
than ADF. Finally, the coefficient for WSC (0.6045 liters) showed the largest 
contribution, which indicates that the availability of this substrate significantly triggers 
methane production. 

On the other hand, the autoregressive coefficients (ϕ1, ϕ2, ϕ3) capture the impact of 
past methane values on current methane output. The positive value of ϕ1 at 0.2016 
indicates that an increase in methane production at the time t-1 causes an increase in 
methane at the current time t, indicating some persistence in methane production. 
However, the negative values for ϕ2 = -0.0402 and ϕ3 = -0.427 imply a suppression effect 
with lag, where methane levels two and three times in the past contributed to lowering 
current methane output. The more negative value of ϕ3 indicates that this oscillatory 
effect is stronger after three-time steps, perhaps due to substrate depletion, microbial 
adaptation, or inhibitory compounds affecting methane production in the long term. 

unit or liters and indicate how the 
methane yield is affected by variation 
in the feedstock composition. The 
moving average components (θi) and 
autoregressive components (ϕi) are 
adimensional because they measure 
the impact of past values of methane 
and past errors of forecasting on the 
observed output. Furthermore, we can 
analyze the magnitudes and signs of the 
coefficients to draw conclusions about 
the effects of the different variables. 
For instance, the Acid Detergent Fiber 

 
Table 5. Fitted weights for the ARIMAX(3,1,2) 
model for METHANE 
Coefficient Variable Value Units 
𝛽𝛽1 ADF 0.0697  liter/% 
𝛽𝛽2 CF 0.1327 liter/% 
𝛽𝛽3 WSC 0.6045 liter 
ϕ1 CH4t−1 0.2016 Adim 
ϕ2 CH4t−2 -0.0402 Adim 
ϕ3 CH4t−3 -0.427 Adim 
θ1 ϵt−1 0.6417 Adim 
θ2 ϵt−2 -0.413 Adim 
 



The parameters of the moving average (θ1, θ2) capture the effect of past errors in 
predicting the current methane production. The positive value of θ1 = 0.6417 means that 
higher-than-average methane production in the previous time step increases the current 
value, and this helps support short-term fluctuations. The negative value of θ2 = -0.413 
means that two periods' past errors work in the opposite way and counter or reduce very 
large fluctuations. 

Regarding the accuracy of the ARIMAX model for METHANE, we obtained an R2 
of 0.92 and an RMSE of 0.001 liters, which demonstrates the ability of the fitted model 
to forecast the methane volume production when different exogenous and time  
series-based variables are considered. To show graphically the quality of the forecasts 
provided by the ARIMAX model, we present Fig. 5 from the following can be noticed. 

 

 

 

 
 

 

 

 
 

Figure 5. Performance of the ARIMAX model for METHANE for (a) maize, (b) maize plus 
white sweet clover silage, (c) maize plus white lupin silage, and (d) maize plus fodder vetch silage. 
 

a) b) 

c) d) 



The forecast accuracy (red dashed line with square markers) adequately captures the 
methane production as time increases. The forecasted values closely follow the real data 
trend, accurately catching the initial increase as well as the later stabilization phases. The 
predicted and actual values show low deviations, particularly in the initial and  
mid-periods of methane production. However, there are some minor deviations at later 
stages since the calculated values occasionally fall below or above the measured values. 
Despite these minor differences, the model can create the overall trend and show its high 
predictive power. 
 

ARIMAX model for METHANE_CONTENT 
We fitted the model in Equation (9), obtaining the coefficients in Table 6. To carry 

out the fitting process, we used the same process of separating the first 16 days of 
METHANE_CONTENT values and used the values from 17 to 21 to evaluate how the  

there is still a portion that is fermented by microbes, producing methane. The coefficient 
for CF (β₂ = 0.2532) indicates that crude fiber has a more important positive effect 
compared to ADF. Crude fiber consists of cellulose and a fraction of the hemicelluloses, 
which are fermented in part by methanogenic microorganisms. This indicates that the 
digestibility of the fiber component plays a key role in the methane concentration. With 
respect to the coefficient for WSC (β₃ = 0.3815), it can be noticed that the use of a 
combination of maize and white sweet clover has a significant positive effect on 
regulating methane.Since WSC includes fermentable sugars, which are readily 
fermented to volatile fatty acids and, eventually, methane in anaerobic conditions, this 
is directed towards the key driving role of fermentable substrates in methane emission. 
Conversely, the coefficient for NDF (β₄ = 0.0824), which symbolizes neutral detergent 
fiber, exhibits a significantly smaller positive effect. This small effect means that while 
some part of its composition is responsible for the generation of methane, the NDF does 
not allow microbial fermentation to produce high concentrations of methane. 
Furthermore, the coefficient for LU (β₅ = -0.5245) is negative, and the suggestion is that 
the addition of white lupin inhibits the methane concentration increase. This inhibition 
suggests that white lupin constrains microbial activity, reduces the level of fermentable 
substrates, or disrupts the anaerobic digestion. 

The autoregressive coefficient ϕ₁ = 0.3241 indicates that a previous methane 
content significantly affects the current values. This means that the methane 
concentration has an autoregressive pattern, which holds that environments that are 
supportive of methane creation in earlier stages are likely to maintain production for 

model performs with unknown data. 
Physically, the coefficients in 

Table 6 define the effect of different 
factors on methane concentration 
dynamics. For instance, the coefficient 
for ADF (β₁ = 0.1823) shows that acid 
detergent fiber has a positive effect on 
methane production at a moderate 
level. ADF is the least digestible 
fraction of fiber, primarily cellulose 
and lignin. Its positive effect shows 
that although it is not fully degradable,  

 
Table 6. Fitted weights for the ARIMAX(1,1,1) 
model for METHANE 
Coefficient Variable Value Units 
𝛽𝛽1 ADF 0.1823  Adim 
𝛽𝛽2 CF 0.2532 Adim 
𝛽𝛽3 WSC 0.3815 % 
𝛽𝛽4 NDF 0.0824 Adim 
𝛽𝛽5 LU -0.5245 % 
ϕ1 C_CH4t−1 0.3241 Adim 
θ1 ϵt−1 0.2841 Adim 

 



longer periods. The coefficient for the moving average θ₁ = 0.2841 explains how past 
random errors impact the current methane concentration. It indicates that a variation in 
methane generation is explained in part by omitted variables in the last period. 

Regarding the accuracy of the ARIMAX model for METHANE_CONTENT, we 
obtained an R2 of 0.908 and an RMSE of 0.85, which demonstrates the fitted model's 
ability to forecast the methane concentration with the lagged variables, errors, and 
exogenous variables chosen. We depict the actual and predicted trends in Fig. 6. 

 

 
 

 

 
 

 

 

 

 
 
Figure 6. Performance of the ARIMAX model for METHANE_CONTENT for (a) maize, (b) 
maize plus white sweet clover silage, (c) maize plus white lupin silage, and (d) maize plus fodder 
vetch silage. The y-axis is in units of % of methane. 

From Fig. 6, the following can be observed. First, it can be noticed that the 
ARIMAX model has a strong predictive power for the considered substrates, as observed 
from the very close convergence of true and forecasted values. The model captures the 
sharp early increase in methane production accurately and also the subsequent 

a) b) 

c) d) 



stabilization. Based on y-axis values, white sweet clover + maize (MA+WSC) possesses 
the maximum methane content with values of more than 55%. This verifies the 
hypothesis that there are readily fermentable substrates present in white sweet clover, 
through which there can be rapid microbial degradation leading to the generation of 
methane. For MA only, methane content levels are at about 38-40%, with a slightly lower 
terminal concentration than MA+WSC. Despite this difference, the model is highly 
predictive in accuracy, tracking the actual path very closely with little variation. For the 
case of MA+LU silage, a fluctuating trend can be noticed, a methane peak of 
approximately 30%, with a subsequent drop, and then a flat line. In all the cases, the 
prediction accuracy of the ARIMAX model suggests an adequate ability to forecast the 
methane concentration under different conditions of exogenous variables. 

With these results, we show that our ARIMAX models exhibit an adequate 
predictive ability (an R² of 0.92 and an RMSE of 0.001 L for methane volume, and an 
R² of 0.908 with 0.85 % RMSE for methane concentration), indicating that silage 
composition and its time variation can predict gas outputs with confidence. In practice, 
this means that operators can use these models for real-time process control, adjusting 
feedstock mix (for example, favoring maize + white sweet clover, which our forecasts 
show yields maximum methane concentrations above 55 %) in an effort to maximize 
biogas quality and quantity. Most significantly, the coefficients associated with the 
exogenous variables (e.g., CF's 0.1327 L/% and WSC's 0.6045 L unit change) directly 
translate to operational recommendations on how most strongly individual silage 
components affect the creation of methane, allowing decision-making regarding crop 
mix and settings from evidence to farmers and managers. 

 
CONCLUSIONS 

 
Generation of biogas from mixed maize-legume silages is a renewable-energy 

source that is sustainable, but its wider adoption may have been prevented by uncertainty 
about the quantitative value of different mixtures of feeds. To bridge this knowledge 
gap, we developed a time-series-based forecasting model founded on parametric 
ARIMAX(p,d,q) techniques that aim to explain a series' internal dynamics and 
exogenous silage chemistry variables, which can be selected through Pearson and 
Spearman correlation analyses. By translating categorical types of substrates into one-
hot encoded representations and choosing the most effective predictors, our 
methodology empowers statistical integrity with functional usability. 

Our feature-selection analysis showed that acid detergent fiber (ADF) and crude 
fiber (CF) are the most important positive predictors of methane yields. The CF 
contributes to biogas volume, confirming the principal role of digestible fiber in 
facilitating sustained methane production. The ADF contributes a smaller effect, as 
would be expected because of its lower rates of digestion in the digester. Conversely, a 
rise in crude protein and lipid levels inhibits methane production, most likely due to 
ammonia accumulation and long-chain fatty-acid toxicity, directing microbial 
metabolism towards non-methanogenic products.  



The ARIMAX(3,1,2) model for methane volume yielded an R² of 0.92 and RMSE 
of 0.001 L, while the ARIMAX(1,1,1) model for methane concentration achieved an R² 
of 0.908 with RMSE of 0.85 %. Unlike black-box regressors such as LSTM networks, 
which provide minimal insight into the effect of individual feedstock components on 
performance, our transparent ARIMAX approach offers insightful coefficient 
estimations. This transparency allows operators to make real-time silage blend 
adjustments to maximize biogas yield and quality using evidence-based process control. 
 
USE OF GENERATIVE AI DECLARATION: The authors confirm that they used 
ChatGPT to fix typo errors, improve grammar, translate some excerpts from Spanish, 
and enhance the readability of the manuscript. However, they declare that the manuscript 
is original, and the improved texts obtained from the language models have been 
carefully reviewed. 
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