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Abstract. Wood is a potential construction material that provides a renewable source for this 
crucial task compared to other classical materials, such as steel or concrete, with high carbon 
fingerprinting levels. This suitable material minimizes energy use and adds more sustainability 
to ecological consciousness. Tree planting promotes the balance of the carbon dioxide ecosystem 
and captures and stores greenhouse gas emissions. Wood also has peculiar characteristics in terms 
of its structural strength and thermal insulation, optimizing energy consumption by reducing the 
need for cooling or heating needs. To use this material in construction, it is mandatory to study 
the resistance parameters like compressive, tensile, and shear strengths, enabling it for great-span 
structural projects. The traditional modeling strategies used for characterizing stress-strain 
performances usually simplify the assumptions, overpassing the complex mechanical behavior of 
the wood under different physical conditions.  Nonetheless, previous analyses have shown that 
the traditional models may exhibit significant deviations from the actual resistance parameters 
since they can be limited in predicting non-linear and anisotropic properties inherent in wood.  
To address these limitations, this study proposes using machine-learning-based regressors to 
predict the mechanical properties of wood. Notably, we propose Multiple Linear Regression 
models to preserve the model's interpretability while preserving the ability to model the linear 
properties in the studied scenarios. Furthermore, we use metaheuristic models based on deep 
learning and ensemble methods to increase the goodness of fit of the predictions. We used an 
experimental campaign with a widespread type of wood characterization of different parameters 
under tension parallel to the grain, compression parallel and perpendicular to the grain, and shear 
conditions. The results showed a lower root mean square error (RMSE) and a higher 
determination index (R2). Preliminary results demonstrated the ability of machine-learning-based 
modeling to obtain more accurate and reliable mechanical behavior of renewable construction 
materials like wood. 
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INTRODUCTION 
 
A challenge for the global construction industry is related to the growing 

infrastructure requirements that cause minimal environmental degradation. The sector is 
responsible for 37% of total global CO2 emissions and plays a critical role in contributing 
to climate change (Ding et al., 2022). To achieve this, it is necessary to use more 
sustainable, cost-effective, high-performance materials (Kumar et al., 2023) using the 
tools provided by Industry 4.0 (Giraldo & Palacio, 2020), such as the Internet of Things 
(Palacio et al., 2017; Gonzalez-Palacio et al., 2018), and Artificial Intelligence (AI)  
(Kim et al., 2024). However, the study of these materials has been mainly based on 
concrete and steel that have formed the backbone of construction over many years, and 
their environmental impacts, such as carbon footprint and resource depletion, have 
scarcely been studied using cutting-edge AI-based tools (Rane, 2023). 

In that way, researchers continue searching for alternative materials that would 
serve in a more sustainable direction using the paradigms of Industry 4.0. Among them, 
wood is one of the alternatives that presents the advantage of renewal, carbon 
sequestration, and mechanical properties comparable to traditional materials in many 
uses (Peng et al., 2023). Wood is one of the few construction materials that requires low 
energy consumption, resulting in lower CO2 emissions during production. Its versatility 
enables shorter construction times and reduces the need for specialized tools while 
providing an aesthetically pleasing appearance with an attractive visual design 
(Rodríguez-Grau et al., 2022). Despite such favorable factors, complete structural 
characterization of wood regarding mechanical resistance parameters, i.e., compressive, 
tensile, and shear strengths, remains a significant challenge. This is a limitation in the 
wide acceptability of wood for structural purposes, where there is a necessity for 
reliability and predictability of mechanical performance. 

Traditional methods for characterizing wood's mechanical properties rely on 
extensive experimental testing, which can be time-consuming and costly. Standardized 
testing procedures have used different recommendations to characterize the wood 
performance for construction, like those provided by the American Society for Testing 
and Materials and the International Organization for Standardization (ASTM, 2021), 
which demand large samples and special instruments in harsh environments with 
unfavorable conditions (M. González-Palacio et al., 2024) to measure all the resistance 
parameters of wood accurately. Many tests involve destructive procedures, resulting in 
material loss and higher research expenses. Besides, the need for competent personnel and 
extreme testing conditions may also raise the cost and duration of the characterization 
studies. Hence, there is an increasing interest in alternative approaches that can 
efficiently predict the mechanical properties of wood with a few experimental inputs. 

Several studies have explored different methodologies for modeling and predicting 
the mechanical properties of wood materials. Particular research efforts have been 
directed toward developing empirical models and advanced computational techniques to 
understand the relationships between different mechanical parameters better. Unlike 
materials such as steel and concrete, which have numerous studies on their mechanical 
properties and the correlations between them, wood has a more limited number of studies 
aimed at determining its mechanical properties (Arriaga et al., 2023). This limited  
 
 



information is primarily due to the wide variety of structural wood species used in the 
construction sector and the significant variability in mechanical properties among wood 
species across different production regions worldwide. 

However, some open issues are a matter of research nowadays. A crucial gap 
concerns diminishing the number of experiments performed to characterize the wood 
performance under different conditions. The current methodologies require large 
datasets containing stress and strain data, which demand extensive measurement 
campaigns. Thus, the current study fills this gap by introducing a novel methodology 
that uses parallel-to-the-grain stresses and strains to forecast perpendicular-to-the-grain 
stress using Machine Learning (ML) strategies, aiming to diminish the need for 
performing extensive measurement campaigns in different directions to characterize the 
wood behavior. The contributions of this research are threefold: 

1. We analyze variable correlations among the predictors to find relations between 
parallel and perpendicular grain stresses and strain. 

2. We model these relationships using different parametric and nonparametric 
strategies like Multiple Linear Regression (MLR) (Yan & Su, 2009), Artificial Neural 
Network (ANN) (Kim et al., 2024), and Random Forest (RF) (Sharma et al., 2024) using 
only a minimum experimental dataset required for wood property prediction. 

3. We improve the accuracy of the predictions using RF models that yield an R² up 
to 0.91 for the elastic and inelastic regions. The R2 was obtained from the test set once 
we randomly split the database into training and test sets. We used the training set to 
tune different hyperparameters according to the chosen methods, and the test set was 
used to measure the ability of the trained methods to generalize the results since this 
particular subset was unknown for the method in the training phase. Thus, we computed 
the R2 using the actual measured values from the test set and the forecasted values using 
our models.  As a consequence, we show that machine learning algorithms effectively 
enhance predictive accuracy performance. 

The rest of this paper is organized as follows: Section II establishes the theoretical 
foundations that support the research problem addressed in this study. Section III 
describes the database used and provides insights about the collected data. Section IV 
provides the methodology to fit diverse machine-learning-based models from the 
Extraction, Transformation, and Load (ETL) life cycle to topics related to grid search 
and cross-validation of the model's hyperparameters. Section V presents and discusses 
the results. Finally, Section VI concludes. 

 
THEORETICAL FRAMEWORK 

 
Wood is one of the most abundant biomaterials on Earth and has been a cornerstone 

in construction throughout history (Ding et al., 2022). In that way, wood has great 
potential as a construction material. Nonetheless, it has anisotropic mechanical 
properties, meaning that its strength changes depending on the grain direction. Besides, 
the anatomical structure of wood significantly influences its structural properties. Its 
microstructure considerably impacts parameters such as anisotropy, porosity, density, 
and mechanical strength (Arriaga et al., 2023). Thus, the mechanical properties of wood 
primarily depend on the direction in which loads are applied, with significant variation 
observed between samples from the same wood batch due to different growth conditions  
and variations in the trunk position during the cutting process. As a cultural and 



engineering tradition, wood construction has been passed down through generations, 
embodying the skills, techniques, and knowledge developed by our ancestors throughout 
history (Véliz-Fadic et al., 2024). Given its lightness, high strength-to-weight ratio, and 
aesthetic appeal, wood has seen a greater interest by engineers and architects in the last 
decades for applications from residential buildings to large-scale commercial projects. 
The applications of wood in such services have not yet been fully explained concerning 
the mechanical behavior for various loading conditions based on the resistance 
parameters that come in compressive, tensile, and shear strengths. The complexities 
associated with wood's natural variability, including moisture content, species 
differences, and growth conditions, further complicate its characterization. 

The structure of wood can be divided into three levels: macrostructure, 
microstructure, and sub-microstructure (Niemz & Sonderegger, 2017). Each level 
directly impacts its mechanical properties (Toumpanaki et al., 2021). Wood is classified 
as an orthotropic material, which exhibits different mechanical properties along each of 

The mechanical properties of wood refer to its ability to withstand loads while 
maintaining its structural integrity. Determining these properties requires laboratory 
testing using specialized testing equipment (Record, 1914). To determine the mechanical 
properties of a wood sample, homogeneous specimens are generally used, preferably 
free from defects such as knots, cross grains, cracks, or splits. Despite selecting test 
specimens to be as homogeneous as possible, variations in the obtained mechanical 
properties may be observed. While this variability is common in most materials used in 
the construction industry, wood tends to exhibit a high standard deviation (Senalik & 
Farber, 2021) due to its natural composition, which is influenced by a wide range of 
external factors that can alter its structure. Due to its cellular composition, wood often 
exhibits nonlinear behavior, making the parameters for assessing its mechanical 
performance in this inelastic range more complex (Holmberg et al., 1999). Inelastic 
behavior factors and changes in moisture content manifest over time as creep and stress 
relaxation in wood (Senalik & Farber, 2021). 

It has been evidenced that density, fiber angle, and ring angle influence the 
mechanical properties of wood and the microfibril angle. These factors affect properties 
such as the modulus of elasticity and strength (Arriaga et al., 2023). The apparent density  
of wood is one of the most influential variables in determining its modulus of elasticity  

its principal axes, i.e., longitudinal, 
radial, and tangential, which are 
perpendicular to each other 
(Fig. 1). To determine its 
mechanical properties under elastic 
and inelastic conditions, at least 
twelve resistance parameters must 
be identified, including elasticity 
moduli, shear moduli, and 
Poisson's ratios, nine of which  
are independent. However, its 
structural performance is affected 
over time by phenomena such as 
creep and relaxation (Senalik & 
Farber, 2021). 

 

 
 

Figure 1. Principal axes of wood of mechanical 
properties (Senalik & Farber, 2021). 



and mechanical strength. Another parameter that influences wood's mechanical 
properties and structural behavior is its hygroscopic moisture content. This property 
allows the wood to exchange moisture with the surrounding air, with values ranging 
from 30% to over 200% for green wood and below 12% for dry wood (Glass & Zelinka, 
2021). Moisture variation in wood, influenced by different drying processes, 
significantly correlates with its mechanical properties. During adsorption processes, wood 
conditioned from a dry state exhibits a higher modulus of elasticity and modulus of 
rupture compared to wood conditioned from a water-saturated state with the same 
moisture content (Ishimaru et al., 2001). ASTM D198 establishes a standard wood 
moisture content of 12% for the evaluation of mechanical properties as the standard 
value for structural wood. This percentage is used to standardize the determination of 
mechanical properties across most wood species, allowing for comparison between 
results obtained from different specimens. The 12% value represents the typical 
hygroscopic equilibrium of wood under average indoor environmental conditions, where 
its dimensional stability and mechanical properties remain relatively consistent and 
reliable for structural application (ASTM, 2021). An increase in wood density is directly 
associated with higher mechanical strength (Soares et al., 2021). In contrast, moisture 
content has the opposite effect: values below 12% result in low variability in mechanical 
properties, whereas moisture levels above 12%, particularly those approaching the  
fiber saturation point (28-30%) lead to a significant reduction in the strength of the wood 
(Yau et al., 2024). 
 

DATABASE DESCRIPTION 
 
The research was supported by experimental data performed by (Loss, 2023) in 

which an extended measurement campaign conducted in the Department of Wood 
Science of the University of British Columbia to determine the mechanical material 
properties of Canadian small clear spruce-pine-fir wood, widely adopted in North 
America for constructing cross-laminated timber panels. A total of 690 specimens 
classified as visually graded No. 2 (sawn wood graded visually based on visible defects 
like knots, slope of grain or wane), and machine stress-rated 2100fb 1.8E (sawn wood 
evaluated for structural quality through non-destructive machine). Specimens were 
tested under compression, tension, and shear loads, in both parallel and perpendicular 
directions to the grain. The wood test samples were manufactured and treated by a high-
precision Homag Centateq P-300 CNC machine to turn the specimens into standardized 
ones, which would be left in a conditioning room to reach a stable weight with a relative 
humidity at 20 °C and 65% relative humidity for a period of 15 to 30 days according to 
the ASTM D143-22 standard to reach a stable weight. Moisture content in test specimens 
was then measured moisture content using a Sartorius Extend ED6202S-CW digital 
balance with a precision of 0.01% to be as accurate as possible. Each wood test sample 
was weighed just before testing. Mechanical tests were carried out using an MTS 810 
universal testing machine, and the calibration was performed according to the 
ASTM E4-01 standard. Other tests performed on the wood include compression and 
tension parallel and perpendicular to the wood grain, executed at controlled speeds.  
Real-time data with an acquisition rate of 2 Hz up to the failure of each specimen displays  
force and deformation. Test results of 690 specimens provide an essential database that  
will enhance the understanding of the structural performance of Spruce-Pine-Fir and 



enable the design and construction of larger-scale structures using this sustainable 
material. 

 
Table 1. Descriptive statistics of the parallel-to-the-grain experiment 
 Mean Min Q1 Median Q3 Max Std. Dev. 
Strain (%) 1.14 0 0.26 1.04 1.88 3.77 0.88 
Stress Parallel (MPa) 30.16 0 27.25 32.95 37.93 53.46 11.90 
 

For modeling purposes in the current paper, we present the descriptive statistics of 
the subsets related to parallel-to-the-grain and perpendicular-to-the-grain stresses and 
the corresponding strains, as shown in Tables 1 and 2. The results of these tables show 
a significant difference in the mechanical behavior of the material under these loading 
conditions. Regarding strain, the perpendicular-to-the-grain experiment shows much 
higher values according to all statistical measures: the mean value of strain is 4.82% in 
the case of perpendicular-to-the-grain versus 1.14% in the parallel-to-the-grain case. 
This means that the material deforms more when loaded perpendicular, supported by the 
broader range in the experiment for perpendicular, where the maximum strain reached 
9.99% compared to 3.77% from the parallel experiment. All these variations are 
correlated with the anisotropic structure of wood. Its load-bearing capacity varies 
depending on the direction in which the load is applied and primarily depends on the 
fiber orientation (Unsal & Candan, 2008). The standard deviation of strain in the 
perpendicular test was higher, showing more variation in the material's response. 
 
Table 2. Descriptive statistics of the perpendicular-to-the-grain experiment  

Mean Min Q1 Median Q3 Max Std. Dev. 
Strain (%) 4.82 0 2.2 4.79 7.38 9.99 2.95 
Stress Perpendicular (MPa) 7.30 0 5.68 7.55 9.19 14.92 2.91 
 

Conversely, the stress values show the opposite behavior. Thus, it can be noticed 
that the material resists more when loaded parallel to the grain, e.g., the average stress 
in the parallel experiment is 30.16 MPa compared with the perpendicular direction that 
achieved up to 7.30 MPa. Also, the interquartile range is more significant in the parallel 
case because of the increased spread of stress values within the sample. Furthermore, the 
maximum achieved stress in the parallel direction is higher at 53.46 MPa compared to 
the maximum of 14.92 MPa in the perpendicular experiment, highlighting the material's 
superior strength when aligned with the grain. The observed difference between tensile 
and compressive behavior was expected due to the anatomical differences in wood that 
result in its anisotropy. Consequently, this difference in strength is significant for the 
different elastic symmetry axes of wood, making its analytical understanding complex. 
However, various analytical models theoretically represent this behavior, establishing a 
possible relationship between wood strength in the principal orthotropic axes (Mascia et 
al., 2013). 

Although different in magnitude, the standard deviations for stress in both 
directions are relatively consistent proportionally with their respective means,  
suggesting similar degrees of relative variability in both cases. Overall, data indicate that 
material is significantly stronger but less deformable when subjected to parallel-to-the-
grain loading, whereas it is more compliant but weaker in perpendicular loading 



conditions. These differences agree with the expected anisotropic character of wood or 
similar material, where internal structure confers greater strength in the direction of the 
grain and flexibility across the grain. Finally, since the dimensions in strain, 
perpendicular stress, and parallel stress are in different scales, it suggests that we have 
to homogenize the input data of the proposed models to avoid possible bias. 
 

METHODOLOGY 
 

The process of obtaining the prediction models is depicted in Fig. 2 and comprises 
four stages. First, we perform the Extraction, Transformation, and Load (ETL) (Khan et 
al., 2024) to homogenize the data according to the modeling needs. Second, we conduct 
the feature extraction (Ehtisham et al., 2024) to check the correlations between the 
predictors and the objective variable. Third, we fit the models. Finally, we analyze the 
results. The following subsections comprehensively show each stage. Our goal is to find 
a set of models as 

Stressper  =  𝑓𝑓(Stresspar, Strain), (1) 
where Stress𝑝𝑝𝑝𝑝𝑝𝑝  is the perpendicular-to-the-grain stress, Stresspar is the parallel-to-the-
grain stress, and Strain is the strain. 
 

 
 
Figure 2. Modeling process. 
 

Data extraction and transformation 
The process of data extraction and transformation is depicted in Fig. 3. The first 

step we followed to obtain the models was to conduct a data fusion between the diverse 
experiments. The database generally included 43 experiments for parallel-to-the-grain 
compression and 100 experiments for perpendicular-to-the-grain compression. In that 
way, the first step was to merge all the data into two files for each experiment. This 
fusion provides a well-established and repeatable way to capture the behavior of these 
two standardized experiments to capture the mechanical properties of the wood. 



The second step was to limit both experiments to the same strain range since the 
database characterization shown in Table 1 and Table 2 allowed us to understand that 
the parallel-to-the-grain campaign was limited to a lower value than the perpendicular-
to-the-grain campaign. It was performed to have a uniform range and ease the model 
fitting phase. In that way, the maximum value of both datasets was 3.77% strain. 

 

 
 
Figure 3. Data extraction and transformation. 

 
The third step was to run cubic splines interpolation to have uniform and equispaced 

rows in both datasets. To this end, we define a range from 0 to 3.77% strain with steps 
of 0.01%. Cubic spline interpolation approximates smooth, continuous functions through 
the measurement campaign using cubic polynomials. First, it divides the data points into 
intervals and fits a cubic polynomial in each interval. These polynomials are determined 
to satisfy continuity conditions at each given point: continuity of the function, first 
derivative, and second derivative of the function. To uniquely determine the cubic spline, 
additional boundary conditions must be imposed. This is commonly accomplished by 
specifying the second derivative at the endpoints (the natural splines), or the first 
derivative equals the slope of the data at the ends, which results in clamped splines. The 
system of equations obtained from these conditions is solved for the coefficients of the 
cubic polynomials that are then used to interpolate new values within the range and give 
smooth, accurate approximations of the underlying function. An example of the accuracy 
of this method is depicted in Fig. 4. 

 

 
 

Figure 4. Interpolation process using cubic splines for the first trial of the parallel-to-the-grain 
experiment. The red curve is the original data, and the blue curve is the interpolated data. 
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Finally, in the fourth step, we merged the resulting datasets to obtain a three-column 
database with the variables strain, parallel-to-the-grain stress, and perpendicular-to-the-
grain stress. 

 
Feature extraction 
The second stage of our framework is determining how the predictor variables 

correlate with the dependent variable. To this end, we propose the following steps. First, 
we plotted both independent variables versus the perpendicular-to-the-grain stress to 
identify linear and nonlinear zones. Then, we delimited these zones to calculate the 
Pearson and Spearman indices for both zones. The Pearson correlation index helps 
determine if there are linear relationships between the variables bounded in the interval 
[-1, 1]. Specifically, i) if the values are close to 1, it can be concluded that there is a 
positive correlation; ii) if the values are close to -1, the correlation is negative;  
and iii) if the values are close to zero, there is no correlation. Furthermore, the  
Spearman correlation index determines if a nonlinear monotonical function exists to 
perform regression and can be obtained by ranking the data in ascending order, then 
assigning a sequential order to each row in the database, subsequently calculating the 
difference d between the predictor and the dependent variable for each rank; and finally, 
obtaining the correlation rank 𝜌𝜌. 

 
Modeling 
In this section, we propose different parametric and nonparametric models to 

predict the perpendicular-to-the-grain stress using the results of another experiment 
(parallel-to-the-grain stress versus strain), improving the time to characterize the wood 
and reducing the costs associated with the destructive trials. 

Multiple linear regression. After obtaining the correlations between the predictors 
and the dependent variable, we propose a classical Multiple Linear Regression (MLR) 
model as a baseline to compare the results of different ML-based models. The proposed 
MLR model is 

Stressper = 𝑏𝑏0 + 𝑏𝑏1Strain + 𝑏𝑏2Stresspar  +  ϵ, (2) 
where 𝑏𝑏0 is the independent term, 𝑏𝑏1 is the weight for the Strain, 𝑏𝑏2 is the weight for 
Stresspar, and ϵ is the error that is assumed as independent and identically distributed 
(i.i.d) zero-mean gaussian variable. The weights' interpretation will help determine the 
effect of each predictor (positive/negative) on the dependent variable and its relative 
importance according to the magnitude of the corresponding coefficient. 

Artificial neural network. We propose an ANN-based regressor to improve the 
prediction ability of the fitted models to forecast the perpendicular-to-the-grain stress. In 
particular, we used a multilayer perceptron (MLP) regression architecture, a type of 
ANN that aims to approximate complex relationships between the input features and 
continuous target variables. In the first stage, we apply a max-min scaler to homogenize 
all the predictor variables in the same orders of magnitude. For instance, the scalization 
of the ith sample of the strain variable can be calculated as  

Strain𝑖𝑖 =
Strain𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑚𝑚(Strain)

𝑚𝑚𝑚𝑚𝑚𝑚(Strain) −𝑚𝑚𝑚𝑚𝑚𝑚(Strain) (3) 

The exact process is performed for the variable Stressper. The scaling process must 
be performed to avoid a specific variable dominating the other due to the difference in 



magnitudes. The architecture of an MLP includes an input layer, one or more hidden 
layers, and an output layer, as shown in Fig. 5. In our case, we have two input neurons 
(Strain and Stresspar), a set of n hidden layers with different numbers of neurons hij 
(where i indicates the number of the hidden layer and j indicates the neuron number of 
the corresponding layer), and an output layer (Stressper). The number of neurons in each 
hidden layer is an essential hyperparameter since it influences the capability of the model 
to learn the pattern of the data directly, so it is mandatory to find the most suitable 
configuration through hyperparameter tuning. 

 

 
 

Figure 5. Multilayer Perceptron Architecture for the regressor. 
 
The neurons hij are part of the fundamental computing unit. They receive weighted 

inputs, with an activation function applied to an output propagating to subsequent layers. 
Each neuron sums all the inputs based on an optimized weight, adds a bias, and 
transforms the obtained calculation using an activation function that introduces the non-
linearity needed to learn complex relationships. We used the rectified linear unit (ReLU) 
activation function due to its computational efficiency and involvement in preventing 
vanishing gradient problems. Furthermore, we varied different learning rates since this 
hyperparameter regulates the optimization algorithm's step size for updating the model 
weights during backpropagation. The learning rate is a crucial hyperparameter since too 
high values cause the model to oscillate around an optimal solution, and too low values 
generate slow or suboptimal convergence. Often, the choice of learning rate is empirical 
or dynamically adjusted during training using optimization strategies that adaptively 
modify the learning rate, such as Adam or Stochastic Gradient Descent (SGD). In that 
way, we generated a grid varying the MLP architecture regarding the number of hidden 
layers, the number of neurons per layer, the learning rate values, and the adaptative 
algorithm to adequately balance the learning rate variation. 

Once the hyperparameters grid is configured, we divide the dataset into training 
and test sets. This split was performed with a proportion of 80% for training and 20% 
for testing. We used the training set to find how a particular configuration of 
hyperparameters learns the patterns and measure the goodness-of-fit using the Root 
Mean Square Error (RMSE) for the corresponding network configuration. Furthermore, 



we implemented a five-fold cross-validation strategy as follows. First, we divided the 
training set into five subsets, namely S1, S2, S3, S4, and S5. Then, we trained with four 
subsets, e.g., S1, S2, S3, and S4, and measured the RMSE with S5. Subsequently, we 
performed the same procedure, varying the subset to calculate the RMSE; that is, we 
trained four models with the same hyperparameters. Finally, with the obtained RMSEs, 
we calculated the standard deviation to assess the generalization ability of each 
configuration. We chose the hyperparameters which exhibited the lowest RMSE and 
best R2. With the fitted MLP model, we used the test set to find the RMSE and R2 to 
assess how the fitted model performs in the presence of unknown data.  

Random Forest. We fitted a Random-Forest-based model to improve the accuracy 
in the prediction of the perpendicular-to-the-grain stress, as depicted in Fig. 6. From that 
figure, it can be noticed that this architecture has different stages, from the scalization of 
the variables, the regression using Decision Trees (DTs), and the aggregation of the 
prediction of the DTs to obtain the final prediction. 

 

 
 

Figure 6. Random Forest architecture. 
 
Subsequently, we train a set of n DTs. The DTs are machine-learning strategies that 

can be used for regression using the Classification and Regression Trees (CART) 
algorithm. The operation principle behind the CART algorithm is to partition the input 
space recursively into different regions to minimize a cost function based on the Mean 
Square Error (MSE). To this end, the algorithm CART computes all the possible 
partitions for the predictor variables, calculates the MSE for each, scores the partitions, 
sorts them to find the lowest MSE, and configures a set of nested if-else clauses verifying 
if the current value of the predictor variables meets any of the criteria in the conditionals. 
The partitions finish when a stop criterium is met, like the number of nested conditionals 
(number of branches) or the minimum number of points per each conditional (number 



of leaves per branch). Both stop criteria are hyperparameters for this strategy and must 
be fine-tuned using grid search and cross-validation, as previously discussed in the MLP 
section. Finally, the DT delivers the mean of the values for the corresponding region.  

However, the DTs are prone to cause overfitting, an undesirable balance between 
the prediction performance when the training is performed, usually high, versus the 
performance when the test set is used, usually low. Because of that, a set of n DTs is 
fitted using bootstrapping and aggregation (bagging), as shown in Fig. 6. Thus, the 
bootstrapping randomly splits the training set using fewer rows and augments the size of 
the corresponding subsets, repeating some rows. Each DT uses a different subset to 
incorporate a random character into the random forest. Finally, the results of all the DTs 
are aggregated by computing the mean of each prediction. The value for n is also a 
hyperparameter that has to be fine-tuned using grid search and cross-validation. 
 

RESULTS AND DISCUSSION 
 
In this section, we present the results of the feature extraction stage, where we 

determined if the predictor variables could predict the dependent variable's variability. 
After fitting all the proposed models in Section III, we present the obtained models and 
performance metrics.  

 
Feature extraction 
The first step to validate the relationships between the predictor variables and the 

perpendicular-to-the-grain stress was to plot the different trials for the same experiments. 
Figs 7 and 8 provide a graphical compilation of all the original data used in the analysis 
conducted in this study. They highlight the contrast in data behavior when plotting the 
stress–strain relationship (Fig. 7) versus the relationship between stresses perpendicular 
and parallel to the grain (Fig. 8). 
 

 
 

Figure 7. Trends for different trials for perpendicular-to-the-grain stress versus strain and. 
 



For the case of Fig. 8, the following conclusions can be drawn. First, it can be 
noticed that there is a linear region for each trial that exhibits the elastic material 
behavior, i.e., when the load is applied and subsequently released, and when the wood 
can recover the original shape without alterations. This linear relationship is maintained 
up to strain values close to 0.5% for the higher-strength samples, and up to 
approximately 1% for the lower-strength specimens. It can also be noticed that there is 
a nonlinear region, i.e., an inelastic region, where the wood cannot recover its original 
shape after a load-release operation, and after the unloading of the structural element, 
permanent residual deformations remain. Although there is a clear relationship between 
the strain and the perpendicular-to-the-grain stress, we can remark that there is 
considerable variability among the diverse trials since some of them stabilize at 4 MPa 
while the most resistant stabilize within the range of 6 MPa to 12 MPa. These variations 
are associated with the specimen’s heterogeneity, caused mainly by grain orientation, 
density, moisture content, and natural defects like knots or fiber misalignment. 
Specifically, it can be noticed that this variability does not follow a single universal 
pattern. In that way, machine-learning-based models can predict this nonlinear behavior 
and capture the variability efficiently. 

 

 
 

Figure 8. Trends for different trials for perpendicular-to-the-grain stress versus parallel-to-the-
grain stress. 

 
This accurate prediction of material behavior in both its linear elastic range and 

plastic performance region provides a significant advantage of Machine Learning over 
traditional analytical and numerical finite element models commonly used to predict the 
structural performance of various materials, including wood. The nonlinear behavior of 
materials is primarily influenced by parameters such as plasticity, anisotropy, and 
material defects, which are, in most cases, complex to model using conventional 
mathematical approaches. 

In addition, the following can be noticed in Fig. 8, which presents the trend between 
the perpendicular-to-the-grain stress versus the parallel-to-the-grain stress. First, a 
relatively linear trend is presented, where a proportional increase as the parallel-to-the-



grain stress increases. All specimens, regardless of their maximum load-bearing 
capacity, exhibit linear elastic behavior up to approximately 30 MPa of stress parallel to 
the wood grain. Again, this behavior corresponds to the elastic region where the material 
deforms predictably under different loads. Nonetheless, the curves become highly 
nonlinear as the predictor variable increases, exhibiting a complex and scattered 
distribution. Since wood is an anisotropic material, the microstructural failures become 
noticeable, mainly explained by different phenomena like cracking, fiber buckling, and 
delamination. Furthermore, the same effect of high variability in different specimens is 
presented due to differences in moisture content and density, among others. Finally, the 
nonlinear behavior can also be attributed to the microcracks and shear deformations 
caused when the parallel-to-the-grain load is applied, affecting the perpendicular-to-the-
grain stress. Machine Learning algorithms, deep learning models, and regression 
techniques may identify highly complex patterns in the mechanical behavior of wood 
under different stress conditions. This capability may enable accurate predictions of 
wood behavior under both parallel and perpendicular loading to the fiber. These models 
efficiently handle large volumes of data, perform multivariable analysis, and adapt to 
different behavioral models to effectively predict mechanical properties, failure 
mechanisms, and long-term performance of materials such as wood with high precision. 

The nonlinear relationship between stress and strain shown in Fig. 7 exhibits a trend 
with a stable and well-defined transition. In contrast, Fig. 8 shows that the nonlinear 
relationship between stress perpendicular to the grain and stress parallel to the grain does 
not follow a clear pattern, as each test displays an independent behavior. Despite the 
observed nonlinearity in both the stress-strain relationship and the interaction between 
parallel and perpendicular grain stresses, machine learning techniques can effectively 
predict the mechanical behavior of wood in the perpendicular-to-grain direction based 
on its structural performance in the parallel-to-grain direction. 

particularly on the other hand, we used the Pearson and Spearman indices to determine 
the relationship among the strain, the parallel-to-the-grain stress, and the perpendicular-
to-the-grain stress, as shown in Table 3, from the following can be noticed. First, both 
indices show that the strain influences the perpendicular-to-the-grain stress, particularly 
in the elastic zone, where a simple linear regression can be effective and computationally 
inexpensive to predict this variable. Nonetheless, the inelastic region, characterized by a 
nonlinear behavior, shows that the parallel-to-the-grain could be used to find a 
monotonic parametric or nonparametric function to improve the quality of the prediction. 
In that way, both variables contribute to predicting the variability of the dependent 
variable and validate our hypothesis previously depicted in Eq. (1). 
 

On the other hand, we used the 
Pearson and Spearman indices to 
determine the relationship among the 
strain, the parallel-to-the-grain stress, 
and the perpendicular-to-the-grain 
stress, as shown in Table 3, from the 
following can be noticed. First, both 
indices show that the strain influences 
the perpendicular-to-the-grain stress,  

 
Table 3. Correlations between predictor variables 
and the perpendicular-to-the-grain Stress. We 
used the Pearson correlation factor R2 and the 
Spearman index ρ 
 R2 (%) ρ (%) 
Strain (%) 0.58 0.62 
Stress Parallel (MPa) 0.299 0.52 
 



Multiple linear regression model 
The following stage of the proposed framework was fitting the different parametric 

and nonparametric models. To this end, we randomly divided the collected data into 
training and test sets with a proportion of 80%–20%, using the Python library 
sklearn.model_selection and the method train_test_split. Subsequently, we fitted the 
model in Eq. (2) and found the coefficients and 95% Confidence Intervals (CIs) shown 
in Table 4. Our modeling was conducted for the elastic region, where the parallel-to-the-
grain stress is less than 30 MPa, and the strain is less than 0.8% since the results from 
Table 3 and Fig. 7 showed that an MLR model could be suboptimal in the inelastic 
region. Notice that the independent term obtained a value of -0.296 MPa with a CI in the 
range [-0.473, -0.121]. This suggests that when no loads are parallel or perpendicular, 
the load has a slightly negative value, which can be attributed to a measurement error 
without a physical interpretation. Regarding 𝑏𝑏1, note that a 1% increase in the strain 
means that the perpendicular-to-the-grain stress also increases by 3.411 MPa, which is 
expected for this material that is prone to deflect due to its nature. Besides, the narrow 
confidence interval shows that this variable adequately approximates the dependent 
variable behavior. Besides, the estimation for 𝑏𝑏2 suggests that for 1 MPa increase in the 
parallel-to-the-grain stress, an increase of 0.042 MPa occurs in the dependent variable. 

 
Table 4. Coefficients and 95% CIs for the MLR model 
Variable Symbol Value 95% CI Units 
Independent term 𝑏𝑏0 -0.296 [-0.473, -0.121] MPa 
Strain (%) 𝑏𝑏1 3.411 [3.297, 3.526] MPa/% 
Stress Parallel (MPa) 𝑏𝑏2 0.042 [0.031, 0.052] Adim 

 
This value can be explained since a more pronounced deformation arises in parallel 
deformation, while perpendicular behavior is more resilient under stress conditions. This 
behavior is primarily due to the anisotropic structure of wood and the arrangement of its 
cells, which influence how stresses are transmitted within the material's internal 
structure. Since the cellulose fibers are aligned parallel to the applied load, stress 
transmission occurs efficiently without significant interruptions. In contrast, in the 
perpendicular direction, wood exhibits lower load-bearing capacity due to its anatomical 
structure. The application of load in this direction tends to separate the fibers, leading to 
faster failure. In the same way, the narrow confidence interval suggests that this variable 
accurately predicts the perpendicular-to-the-grain stress in the elastic zone. 

R2 and the RMSE, the model can explain about 91% of the variability of the wood 
behavior and exhibit about 1 MPa of error for the elastic zone, indicating that for normal 
operational conditions, an MLR-based model is a computationally effective and highly 
interpretable model, even considering that wood is anisotropic and depends on 
uncontrollable variables like moisture and density. 

On the other hand, we present the 
numerical performance of the fitted 
MLR model in Table 5. Notice that the 
results of the training and test sets are 
similar, indicating that the model  
has adequate generalization ability and 
a low risk of overfitting. Regarding the  

 
Table 5. MLR model performance for training 
and test sets 
Subset R2 RMSE (MPa) 
Training 0.909 1.039 
Test 0.916 1.036 
 



Artificial neural network 
We fitted the MLP-based regression model in Fig. 5 using the library 

sklearn.neural_network and the class MLPRegressor. First, we used the same database 
split described in the previous section, with 80%–20% proportion. However, our aim in 
fitting this model is to find a regressor that can accurately forecast the elastic and 
inelastic regions, different from the MLR-based model that was fitted only for the elastic 
region. In that way, we conducted a grid search and cross-validation to find the best 
configuration to achieve the lowest bias, variance, RMSE, and the highest R2. The  
summary of the hyperparameters is shown in Table 6. Specifically, we tested the 
following network architectures: i) a single hidden layer with 50 neurons, ii) a single 
layer with 100 neurons, and iii) two hidden layers with 50 neurons in each layer. 
Regarding the activation function responsible for introducing the nonlinear behavior to 
the regressor, we tested the ReLU and hyperbolic tangent options since they are 
commonly used for regression tasks. Regarding the learning rate, we used a static 
strategy with values of 0.0001 and 0.01, aiming to have slow and fast responses in 
convergence. Furthermore, we also set a dynamic scheme to adjust the network weight 
updates using well-known algorithms like Adam and SGD. Finally, we performed the 
five-fold cross-validation scheme to avoid overfitting, controlling the standard deviation 
of the fitted models. In that way, we tested three network configurations, two activation 
functions, two learning rates, two weight optimizers, and five-fold cross-validation, so 
we trained 120 models. 

 
Table 6. Hyperparameter ranges and best configurations for the MLP model 
Hyperparameter Configurations tested Best configuration 
Network architecture (2, 50, 1), (2, 100, 1), (2, 50, 50, 1) (2, 50, 50, 1) 
Activation functions ReLU, hyperbolic tangent ReLU 
Learning rate 0.0001 and 0.01 0.0001 
Optimizer Adam and SGD Adam 

 
The best model achieved the results shown in Table 7 using the following 

configuration: i) a ReLu activation function, ii) a learning rate of 0.0001, iii) a network 
architecture with two layers with 50 neurons per layer, and iv) the weight optimizer 
Adam. With the selected configuration, the following observations can be drawn. First, 
the MLP-based achieved a considerably high R2 when comparing the predictions versus 

of the cross-validation process was 0.104 MPa, a relatively negligible value considering 
the high variability of the material. Finally, the RMSE ranges from 1.3 to 1.4 MPa, which 
can be high considering the scale of the experiments. However, a visual exploration 

the actual data from the test subset since 
we achieved a capacity to predict 
variability up to 70% compared to the 
obtained correlations up to 0.62 in 
Table 3, which denotes a noticeable 
improvement of the nonparametric 
machine-learning-based regressors to 
learn nonlinear patterns like those 
exhibited by the anisotropic behavior  
of wood. Besides, the standard deviation  

 
Table 7. MLP-based model performance for 
training and test sets considering elastic and 
non-elastic regions. The training includes the 
standard deviation s to show the model's 
generalization ability 
Subset R2 RMSE (MPa) 
Training 0.729 1.311, s = 0.104 
Test 0.708 1.378 
 



performed in Fig. 9. showed that the MLP-based regressor can predict with acceptable 
accuracy the behavior of the dependent variable when using the strain and the parallel-
to-the-grain stress. Although these results seem less accurate than those obtained by the 
MLR-based model, it is essential to note that this model was fitted to predict the material 
performance in the inelastic zone, which is highly variable. 
 

   
(a) Trial 9 (b) Trial 15 (c) Trial 21 
 
Figure 9. Prediction of the perpendicular-to-the-grain stress versus strain for some experiment 
trials using the MLP-based model. The dark purple scatters represent the actual data, and the blue 
scatters represent the predictions. 
 

Random forest 
The last model we fitted was based on the Random Forest according with the 

architecture presented in Fig. 6 using the library sklearn.ensemble and the class 
RandomForestRegressor. As discussed in the previous section, we kept the same 
database split into 80%–20% proportions for the training and test sets. We also 
performed the grid search and five-fold cross-validation procedures to preserve low bias, 
variance, and high accuracy. In the same way as the MLP-based regressor, we aimed to 
predict the behavior of the perpendicular-to-the-grain stress based on the elastic and 
inelastic zones. The summary of the considered hyperparameters is shown in Table 8. 

 
Table 8. Hyperparameter ranges and best configurations for the RF model 
Hyperparameter Configurations tested Best configuration 
Forest size 50, 100, 200 100 
Tree Depth No restriction, 10, 20 10 
Min number of simples per split 2, 5, 10 5 

 
Specifically, we tested different forest sizes, with values of 50, 100, and 200 trees in the 
forest. Regarding the trees’ depths, we limited the DTs with no restrictions and 
constrained this hyperparameter to 10 and 20 levels. This configuration allowed us to 
examine how deeper trees influence the model’s performance regarding overfitting. 
Finally, we also varied the hyperparameter related to the minimum number of samples 
required to split a node with values of 2, 5, and 10, ensuring that these settings allow the 
trees to grow sufficiently while preserving the generalization capacity of the random 
forest. Since we set three different forest sizes, three tree depths, and three values for the 
minimum number of samples per split and used five subsets for the cross-validation 
process, we trained a total of 135 models. The selected model was the one that provided 



the best tradeoff between accuracy and generalization, aiming to capture the linear and 
nonlinear behavior of the perpendicular stress of the wood. 

The best model achieved the results in Table 9 using the following configuration: 
i) a forest size of 100 DTs, ii) a tree depth of 10, and iii) a minimum number of samples 
to split a node of 5. From this table, it can be noticed that the RF-based model achieved 

that obtained using the MLP-based regressor with values up to 0.62 MPa. Finally, the 
standard deviation was 0.082 MPa, indicating an adequate generalization ability of the 
model in the presence of unknown data. The visual exploration of some experiment trials 
in Fig. 10 confirms the fitted model's accuracy since most predicted values are close to 
the actual ones when using the test set. 

 

   
(a) Trial 9 (b) Trial 15 (c) Trial 21 

 
Figure 10. Prediction of the perpendicular-to-the-grain stress versus strain for some experiment 
trials using the RF-based model. The orange scatters represent the actual data, and the blue 
scatters represent the predictions. 

CONCLUSIONS 
 
This study showed how machine learning techniques can enhance the prediction of 

mechanical behavior in wood, a sustainable construction material that is becoming 
increasingly important in engineering. Conventional modeling approaches in the 
characterization of wood, like multiple linear regression, have demonstrated a lack of 
capability in representing nonlinear and anisotropic material properties, particularly in 
the inelastic region. We further proposed applying ANN and RF models to balance 
interpretability and computational complexity in improving predictive accuracy and 
generalization capability. The MLR model, computationally efficient and interpretable, 

the best performance compared to the 
MLP-based model and the MLR model 
since it could predict the data variability 
up to 91% in the test set; that is, our 
fitted model could adequately forecast 
the inelastic behavior of the wood in the 
perpendicular-to-the-grain stress when 
using the strain and the parallel-to-the-
grain stress. Note also that the RMSE 
achieved was considerably lower than  

 
Table 9. RF-based model performance for 
training and test sets considering elastic and 
non-elastic regions. The training includes the 
standard deviation s to show the model's 
generalization ability 
Subset R2 RMSE (MPa) 
Training 0.95 0.58, s = 0.082 
Test 0.91 0.62 
 



showed an adequate performance for the elastic region but limited capabilities for the 
inelastic zone.  The MLP-based model was trained using hyperparameter tuning with 
cross-validation to result in a better nonlinear relationship capture capability, especially 
around the transition between elastic and inelastic behavior. While this provided a higher 
capability in learning complex patterns, the model had higher RMSEs: 1.31 MPa for 
training and 1.38 MPa for testing. That may indicate that neural networks are struggling 
with wood's inherently variable and anisotropic nature and could require more extensive 
feature engineering or larger datasets to achieve optimal performance. However, the 
random forest model had the best performance among all three techniques, with the most 
generalizable and closest predictions in elastic and inelastic regions. Giving a high R2 of 
0.95 for training and 0.91 for testing, with a significantly lower RMSE at 0.58 MPa for 
training and 0.62 MPa for testing, the RF-based approach showed the best adaptability 
to learn linear and nonlinear behaviors. It also seemed that the variance in this model, 
when cross-validated, was relatively low, pointing toward its robustness and strong 
generalization capabilities. This result now points toward ensemble learning, especially 
tree-based models, for modeling such mechanical responses for complicated materials 
like wood. 

As expected, the data observed in the experimental tests show a strong correlation 
that can be predicted using ML-based models. This prediction of the main mechanical 
properties along the different anisotropic axes is primarily attributed to the anatomy of 
the wood, which consists mainly of elongated cells organized in a predominant direction. 
The orientation of these cells plays a crucial role in determining the structural 
performance of the material. Although the fitted models achieved an adequate prediction 
capacity with high accuracy, this research also outlines essential conclusions regarding 
wood characterization and sustainable construction since it showed that the use of 
machine learning techniques can reduce the need for extensive experimental setups and 
campaigns, reducing the associated costs, since the experiments associated with the 
perpendicular-to-the-grain stress can be forecasted using a different experiment, in this 
case, the characterization of the parallel-to-the grain stress versus the strain. These 
findings can be extrapolated for different structural methodologies with high reliability 
in civil engineering. 

 
USE OF GENERATIVE AI DECLARATION. The authors confirm that they used ChatGPT to 
fix typo errors, improve grammar, translate some excerpts from Spanish, and enhance the 
readability of the manuscript. However, they declare that the manuscript is original, and the 
improved texts obtained from the language models have been carefully reviewed. 
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