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Abstract. Technology adoption in agriculture, particularly in precision livestock farming (PLF),
is often hindered by a range of barriers such as high investment costs, limited infrastructure, and
uncertainty regarding the reliability and integration of new systems. Understanding these barriers
is crucial for promoting the uptake of innovations that enhance sustainability and productivity.
This study investigates technology adoption barriers in precision livestock farming to support
sustainable agricultural development. A survey of 266 farms across several European countries
and Israel was conducted to assess existing infrastructure and farmers' attitudes toward smart
farming technologies. Using machine learning techniques, farmers were grouped into two clusters
representing different levels of technological readiness. The study identified the most prominent
factors influencing technology adoption, including the presence of smart technologies on-site,
market accessibility, cost efficiency, and the ability to manage labor shortages. A Logistic
Regression model further demonstrated high predictive accuracy for farmers' technological
readiness based on these characteristics. These findings provide valuable insights into the main
drivers and barriers of PLF adoption and highlight the relevance of data-driven approaches for
requirement analysis and targeted policy interventions. By uncovering critical user traits and
adoption barriers, this study offers structured guidance for policymakers, industry stakeholders,
and researchers to foster the broader adoption of precision livestock technologies.

Key words: cluster analysis, machine learning, precision livestock farming, survey design,
technological barriers.
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INTRODUCTION

Precision livestock farming (PLF) refers to the use of advanced technologies - such
as sensors, automated monitoring systems, and data analytics - to continuously observe
and manage livestock production at the individual animal level. By providing real-time
insights into animal health, welfare, and performance, PLF enables more efficient
resource use, carly detection of health issues, and targeted interventions. These
capabilities support agricultural activities by enhancing productivity, improving animal
welfare, and reducing environmental impacts (Wathes et al., 2008; Banhazi & Black,
2009; Banhazi et al., 2012; Banhazi et al., 2022). As global food demand grows, adopting
PLF becomes vital for ensuring sustainable practices and meeting population needs
(Araujo et al., 2021). However, successful implementation depends heavily on farmers'
willingness to adopt these technologies and on the development of strategies to address
existing barriers and concerns (Scown et al., 2019).

While PLF technologies offer significant advantages (Banhazi & Black 2009;
Banhazi et al., 2022), their potential can be undermined if technology development and
integration fail to align with the specific needs of farmers (Mallinger et al., 2022;
Mallinger & Baeza-Yates, 2024). Understanding which farm characteristics and user
traits distinguish technologically ready farmers from those less prepared is therefore
essential for conducting targeted requirement analyses and designing sustainable, user-
centered technologies. Hereby, technological readiness refers to the willingness and
ability of farmers to adopt and effectively implement new technologies within their
farming operations. However, existing research predominantly relies on traditional
statistical (e.g., distributions) or qualitative (e.g., interviews) approaches to characterize
PLF user groups and identify adoption drivers (Mallinger et al., 2023). These methods
often oversimplify complex relationships between user traits and technology adoption
behavior, limiting the ability to uncover distinct adoption patterns and hidden barriers.
Furthermore, these approaches are not able to either systematically group farmers based
on shared characteristics or investigate how the significance of adoption barriers varies
among different types of users.

This study addresses this knowledge gap by applying machine learning techniques,
specifically K-means clustering and a Logistic Regression classifier, to analyze survey
data from 266 farms and investigate user attitudes toward technological readiness in
PLF. The main objectives are to:

e Identify farm characteristics and user traits that differentiate farmers by their
technological readiness for PLF adoption.

e Uncover adoption barriers specific to different user groups to support targeted
interventions.

e Apply machine learning techniques to reveal latent patterns in survey data and
validate user groupings.

o Assess the predictive value of survey variables to identify key barriers to
technology adoption.

By uncovering user attitude clusters and understanding factors influencing
technological readiness, this study provides structured information for policymakers,
industry stakeholders, businesses, and researchers to support the adoption of precision
livestock farming technologies.



STATE OF THE ART

The research field of user attitudes toward precision livestock farming is well-
established. It is primarily relying on surveys and statistical analysis (Ugochukwu &
Phillips, 2018; Abeni et al., 2019; Pathak et al., 2019; Groher et al., 2020; Makinde,
2020; Boothby & White, 2021; Schukat & Heise, 2021b; Akinyemi et al., 2025).
Research in this field has identified a range of factors influencing farmers' technology
adoption, including economic, socio-demographic, ethical, legal, technological, and
institutional aspects, all of which play a role in ensuring broad acceptance (Dhraief et
al., 2018; Drewry et al., 2019; Makinde, 2020).

Currently, machine learning has yet to be fully leveraged to detect distinct clusters
of user attitudes in precision livestock farming. Some studies (Schukat & Heise, 2021a;
Mallinger et al., 2023) have previously explored clusters of farmer characteristics.
Schukat & Heise, 2021a adopted a hierarchical cluster analysis to understand the
attitudes of German livestock farmers towards smart products. However, the study did
not provide any validation of the cluster results and also did not analyze the complex
relationship between the questions associated with a cluster. Similar approaches have
been used in analyzing user characteristics and behaviors in water resource management
(Obringer & White, 2023), social media studies (Kaushik & Bhatia, 2022), and customer
segmentation (Tabianan et al., 2022).

This research builds on a prior publication that used clustering for the evaluation of
technological adoption barriers (Mallinger et al., 2023). The experiment design for this
study is kept the same for comparison. However, the prior study used different distance
metrics for the cluster creation of the k-mean algorithm as well as different algorithms
to assess the importance of farm characteristics for technological readiness (logistic
regression instead of decision tree). By following and extending the conceptual design,
the current study uses refined distance metrics to create improved cluster affiliations
(up to 97% accuracy) while providing statistical evidence for the significance of the farm
characteristics on technological readiness identified by the supervised machine learning
algorithm. Thereby, this study provides novel results while contrasting existing
literature.

MATERIALS AND METHODS

Fig. 1 illustrates the evaluation and validation of cluster characteristics reflecting
user attitudes and farm infrastructure about PLF adoption readiness. This encompasses
the entire data processing pipeline, from data aggregation and cleaning to validating
applied clustering methods. As depicted in Fig. 1, the experimental design steps will be
presented sequentially.

This study is part of the LivestockSense project!, aiming to develop a functional
prototype to assess and predict farmers' technological readiness. The machine learning
approach focuses on defining cluster boundaries representing this readiness and creating
amodel capable of accurately classifying new user questionnaires, as was primarily done
in the form of a web-based prototype to identify the technological readiness of precision
livestock farmers (Mallinger et a., 2023).

! https:/livestocksense.eu/}.
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Figure 1. Experiment design and processing pipeline chosen for this study (see also Mallinger et
al., 2023).

Survey and Data

This study builds on survey data collected by the LivestockSense research team.
Based on self-reported questionnaires, the survey gathered responses from 266 farms
across five European countries and one Middle Eastern country, covering the pig
(121 samples) and poultry (145 samples) sectors. The questionnaire was designed to
capture insights into existing infrastructure and farmers' attitudes toward smart farming
technologies.

To assess technological readiness, the survey incorporated multiple perspectives. It
examined infrastructure availability (question blocks 1, 2, and 6), the presence of expert
knowledge and market access to PLF technologies (question block 4), and farmers'
mental attitudes toward PLF adoption (question blocks 3 and 5). In total, 20 key
questions were selected to represent farmers' readiness for precision livestock farming.
Sub-questions were consolidated into single features, with responses rated on 5-point,
4-point, or 3-point scales to indicate levels of agreement, where 1 represented ‘Strongly
disagree’ and 5 indicated ‘Strongly agree,” for example. The complete list of survey
questions used in the analysis is in the Appendix.

Clustering

This study uses the k-means approach to cluster the results. The algorithm takes a
set of measurements, where each observation is an n-dimensional vector, and partitions
them into k clusters (where k <n, n representing the total farms contained in the survey)
based on their similarity (Jain, 2010). K-means clustering aims to minimize the within-
cluster sum of squares, the sum of the squared distance between each data point and its
assigned cluster centre. In other words, the algorithm aims to find the number of (k)
centres that minimize the distance between each point and its assigned centre, resulting
in clusters that are as compact and distinct as possible. Mathematically, the objective
function of k-means is:

argminSYki=1Y x € Si|[xi — ci| 2 (D)
where ci is the centroid of the points in Si, and xi is the individual data point that belongs
to the cluster Si. Therefore, Ixi—cil*2 represents the squared Euclidean distance between
a given data point xi and the centroid ci of the cluster Si that xi belongs to.



This study used the Gower’s distance to determine the pairwise similarities between
observations and create equidistant categories when applying the k-means algorithm.
Gower’s distance is defined as:

sijk = |xi — xj|/Rk )
where xi and xj are two observations, and Rk is the range of the k-th variable. This means
that for two answer patterns, the absolute difference will be computed for each question
and then divided by the range of possible answer categories. This is particularly useful
in our case, as it normalizes the differences between each pair of observations and,
therefore, between different scales.

Validation

The validation process consisted of a multi-step mixed-method approach including
quantitative (UMAP, Internal Validation Metrics, Supervised Machine Learning) and
qualitative evaluation phases (Focus Group). This approach was chosen to ensure that
the cluster quality is not only measured based on a mathematical basis that usually
includes distance-based metrics but also represents qualities of user attitudes that are not
directly measurable. The validation process was iteratively conducted to ensure that the
survey questions and cluster results convey user attitudes and technological readiness
characteristics.

Firstly, Cluster quality was assessed using three internal validation metrics:

— Davies-Bouldin Index: Evaluates cluster similarity by comparing within-
cluster and between-cluster distances. Lower values indicate better clustering (Davies &
Bouldin, 1979).

— Calinski-Harabasz Index: Measures the ratio of the sum of between-cluster to
the sum of within-cluster dispersion, with higher values indicating well-defined clusters
(Calinski & Harabasz, 1974).

— Silhouette Score: This score assesses how well data points fit within their
clusters by comparing intra-cluster and nearest-cluster distances. Scores range from -1
(misclassified) to 1 (well-clustered), with values near 0 indicating overlap (Rousseeuw,
1987).

The validation process also includes the UMAP embedding (Mclnnes et al., 2018)
of the data into a two-dimensional space to assess the clustering results visually. UMAP
is a non-linear dimensionality reduction technique based on the widely used t-SNE
method that embeds the datapoint distribution from a high dimensional space into lower
dimensions. We chose UMAP, particularly for its ability to preserve structures, like
clusters, in high-dimension and lower-dimension representations. Another advantage of
UMAP is that it works with custom distance metrics such as Gower’s distance and does
not assume continuous variables or normal data distribution. In dimensionality
reduction, each explanatory variable represents a dimension, and each observation is a
point in this multi-dimensional space. For example, if height and weight are collected
for individuals, they can be plotted on a two-dimensional scatterplot with one variable
on each axis. However, with more variables - such as age, education, or family size - he
data exist in a higher-dimensional space that cannot be easily visualized. Dimensionality
reduction techniques like UMAP project this complex, high-dimensional structure into
a lower-dimensional space (typically two dimensions) while preserving essential
relationships, such as clustering patterns.



Finally, a Focus Group was assigned to assess outcomes throughout the experiment
pipeline continuously. This group included five specialists from four different countries,
covering areas such as livestock farming, PLF technology development, and survey
design. The evaluation process was carried out iteratively after each significant
processing stage, guaranteeing the logical consistency of the selected features and
clustering outcomes.

Logistic Regression

This study utilizes a Logistic Regression Model to (1) assess how well the survey
questions predict farmers' technological readiness, indicated by the cluster labels derived
from the k-means model, (2) develop a model for predicting farmer attitudes, and (3)
create an explainable framework that allows for assessing feature importance according
to the odds ratio, providing insight into predictions based on the contributions from each
feature. Logistic Regression models the probability that a given input belongs to a
particular class by applying the logistic function to a weighted sum of the features
(survey responses). This probability is expressed as:

1

1 + e~ (BotZiL; Bixi) 3)

where [yis the intercept, B; are the feature weights, and x; are the input features. The
model is trained by finding 3 values that maximize the likelihood of the observed labels.
In most software solutions, the optimization process is done by gradient descent or
iterative methods like the Newton-Raphson Method.

Regarding output interpretation, each 3; represents the effect of a one-unit change
in the corresponding feature on the log odds of the outcome occurring. Because
interpreting log odds directly can be unintuitive, using the odds ratio, given by ePi, is
common. The odds ratio indicates how much the odds of the outcome change for a
one-unit increase in the feature. In the case of predicting only two groups, odds ratios
greater than 1 suggest a positive association with group 1, while values less than 1
suggest an association with group 0.

Using a Logistic Regression Model to predict clusters with varying technological
readiness, we have two main goals:

1. To see if a supervised modelling method can summarise the correlation between
clusters (target variable) and input variables (survey questions).

2. To identify which survey questions provide the most significant insights for
distinguishing cluster associations.

For calculating all evaluation metrics, coefficients, p-values, and odds ratios,
we took the mean values of a 10-fold stratified cross-validation with a random state set
to 42. We assessed feature significance by calculating the p-value for each feature and
ranking the significant features according to their significance in descending order.

Predictions were evaluated using the following metrics:

Py =1[x) =

Accuracy = (TP + TN)/(TP + TN + FP + FN) )
TP
Precisi = 5
recision = 75— ®)

TP
Recall = 7 (6)
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core 2+TP + FP + FN
TP represents the True Positive, TN the True Negative, FP the False Positive, and

FN the False Negative result.

RESULTS AND VALIDATION
As a first step, we deploy the K-means clustering described in Section 3.2. We use
three internal validation metrics: the Davies Bouldin Score, the Calinski Harabasz Score,

and the Silhouette Score, to estimate a suitable number of clusters.

Comparison of internal validation metrics and number of Clusters
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Figure 2. Davies-Bouldin Score on the left (lower is better), Calinski Harabasz Score in the
middle (higher is better), and the Silhouette Score on the right (higher is better).

The score development for each number of clusters and each metric is shown in
Fig. 2, which depicts the Davies-Bouldin Score in the left diagram, the Calinski
Harabasz Score in the centre, and the Silhouette Score to the right. All internal validation
metrics indicate that the best separation can be achieved for choosing two clusters, as
the Davies Bouldin Score is the lowest at 1.68, and the other two scores are the highest
at 86.51 and 0.258, respectively, for all compared clusters.

Of the 266 survey results, 118 belong to Cluster O (later defined as technologically
not ready), and 148 to Cluster 1 (later defined as technologically ready). To evaluate if
the two clusters are distinct from each other and form logical opposites, we used a
UMAP embedding. This embedding represents the 20-dimensional farm characteristics
in two-dimensional space, enabling a visual inspection of the data distribution. Fig. 3
shows this representation, with the clusters each lying in different regions of the plot,



highlighting the differences between the two clusters. Some overlap exists between the
clusters, which is to be expected, as some farmers' answers indicate behaviour belonging
to the other cluster compared to the one they were assigned to. However, these clusters
do not bear any semantic meanings yet, as the separation is currently based on
mathematical evaluations. To overcome this, we analyse the distribution of given
answers for each cluster.

2D data mapping of clustered Questionnaire
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Figure 3. UMAP representation of the two clusters for the visual evaluation of cluster
distriubtion. On the left (orange) are the data points later considered as technologically not ready,
where as on the right (purple) the datapoints defined as technologically ready. The x- and y-axes

correspond to the two reduced dimensions obtained through UMAP, capturing the main structure
of the high-dimensional data.

Farmer characteristics per cluster

We first analyse the distribution of cluster and survey question characteristics using
grouped bar charts, such as those depicted in Fig. 4. We chose these figures in particular
because we have six questions, some of which have subquestions. For Questions 3, 4,
and 5, each containing multiple subquestions, the response patterns within each cluster
are somewhat comparable across the subquestions. Consequently, we selected one
subquestion from each as a representative. The plots for the remaining questions can be
found in the appendix section.



Cluster composition for representative Questions
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Figure 4. Distribution of answer results as a comparison for Cluster 0 (Technologically not ready)
vs. Cluster 1 (Technologically Ready). The number of bars represents the amount of possible
answer options. The height of the bars represents the share of an answer category compared to
the other categories. In every question, the sum for each cluster, therefore, results in 100.

In each diagram, the answers to one of the survey questions are shown so that the
clusters are drawn on the x-axis, and for each cluster, there are as many bars as possible
answer categories. As the clusters vary in size, we cannot just represent the absolute
values per answer category per cluster to ensure comparability, as it would capture too
much cluster size information. Instead, the bar heights represent the fraction of each
answer category per cluster.

Fig. 4 compares responses to six questions related to technological readiness across
two clusters (Cluster 0 and Cluster 1). Notably, five of these questions (Q1, Q3, Q4, QS5,
and Q6) show pronounced differences in how each cluster responded, whereas Q2
(average level of automation) appears more similar between the two groups.



For Q1 (average availability of internet), Cluster 1 shows a substantially higher
proportion of respondents in the upper rating categories (e.g., 4 and 5), while Cluster 0
leans toward lower or moderate ratings. A similar pattern emerges in Q3 (technology
helps day-to-day decision-making), where Cluster 1 overwhelmingly endorses strong
agreement, contrasting with the more moderate or disagreeing responses in Cluster 0.

Likewise, Q4 (proper education is available for using smart technologies) and Q5
(technology can be maintained at a reasonable cost) reveal that Cluster 1 is more likely
to perceive educational support and affordability favourably, whereas Cluster 0 exhibits
relatively lower levels of agreement. Finally, Q6 (overall technology usage) follows this
trend: Cluster 1 reports higher usage, whereas Cluster 0 indicates less frequent or more
constrained use. Similar patterns can be found in the other questions presented in the
Annex.

Based on the intended focus of the questions that highlight certain barriers to
technology adoption, these findings suggest that Cluster 1 is characterized by a high
degree of technological readiness - reflected in stronger internet availability, more
positive attitudes toward technology's utility, better access to education, perceived
affordability, and higher overall usage. In contrast, Cluster O consistently reports lower
levels of agreement or usage across these dimensions, indicating limited technological
readiness. As a result, we define users in Cluster 0 as ‘not technologically ready,” while
Cluster 1 represents farm characteristics who are generally perceived as ‘technologically
ready’ to deploy PLF technologies at their farms.

Feature Importance Analysis

As an additional means of result validation, we used a Logistic Regression model
to test whether the survey questions are a reliable predictor for each respondent’s cluster
membership. Table 1 presents the
average accuracy, precision, recall’ Table 1. This table depicts the result of the IOgiStiC
and F1 score value for a stratified regression model, which was used to predict the
technological ready and not ready cluster based on
the survey questions

five-fold  cross-validation  and
demonstrates that predictions using
the questions allow for high scores in Classifier Accuracy Precision Recall
each computed metric. With a total
of 97% accuracy and F1-Score,
the model provides almost no false
negatives or false positives and can,
therefore, be used as a robust model to distinguish technological-ready from less
technology-ready farmers.

In addition to the results presented in Section 4.1, we chose Logistic Regression as
an interpretable means to analyse the farm characteristics that separate the
technologically ready from less-ready farmers. If the model accurately classifies
respondents, it confirms that the survey items capture meaningful differences in
technology adoption. Furthermore, we can pinpoint the key factors that distinguish the
clusters by computing the p-value and the log odds for each question's estimator. The
odds ratio thereby shows the difference in the odds of the outcome occurring for a one-
unit increase in the predictor variable, holding all other variables constant. We deemed
features corresponding to estimators that are significant on a 0.05 significance level and
have a high odds ratio as the most influential questions for predicting cluster association.

F1
Score
Logistic  0.97 0.96 0.98 0.97
Regression




Table 2 shows the features, corresponding estimator, p-value, and odds ratio. The
non-significant entries in the table are ranked according to their p-value, and the
remaining five variables (and the intercept term) are ranked according to their odds ratio
to uncover their importance in separating respondents into ‘technologically ready’ and
‘less ready’ clusters. Q6, ‘TECH usage’, has the highest odds ratio, followed by Q4 a,
‘It is easy to access TECH on the market’, Q5 a, ‘TECH can be maintained at a
reasonable cost’, Q3 a, ‘TECH helps labour shortage’, and Q5 e, ‘“TECH is secure in
terms of data management’. These questions highlight economic considerations and
affinity towards technical solutions as the most influential factors for predicting
technological readiness. Interestingly, data security is a strong predictor for
technological readiness, which indicates that technologically ready farmers value
privacy more than non-ready groups.

Table 2. The table shows the features used in the Logistic Regression model. The features are
sorted based on the coefficient. Higher coefficients represent a higher degree of importance or
influence on the modelling output. Statistical significance for the importance is tested and
represented in the column p-value

Feature Description Co-efficient p-value g?i(ci)s
Q6 TECH usage 1.554 0.03 4.731
Q4 a Itis easy to access TECH on the market 1.258 0.024 3.520
Q5 _a TECH can be maintained at a reasonable cost 1.057 0.025 2.876
Q3 _a  TECH helps labour shortage 0.952 0.011 2.592
Q5 e TECH is secure in terms of data management 0.854 0.031 2.348
- Intercept -44.888 <0.01 O
Q3 _d TECH helps meet environmental pollution reduction ~ 0.790 0.060 2.204
obligations
Q4 ¢ Itis easy to get information on TECH and distributors  0.991 0.075 2.693
Q3 b TECH helps day-to-day decision making 0.865 0.093 2.375
Q4 b TECH can be purchased at an affordable price 0.805 0.105 2.236
Q5 d TECH operates in a reliable manner 0.918 0.134 2.505
Q4 d Itis easy to get technical assistance to smart 0.917 0.161 2.501
technologies
Q5 b TECH is easy to operate 0.789 0.188 2.201
Ql Average availability of internet 0.647 0.190 1.911
Q3 ¢ TECH helps enterprise, marketing and investment 0.471 0.237 1.602
decisions
Q3 e TECH enables the increase production effectiveness 0.552 0.461 1.736
Q4 e  Proper education is available for using smart 0.348 0.468 1.416
technologies
Q3 g TECH provides reliable information 0.538 0.526 1.712
Q5 ¢ TECH can be connected well with other 0.236 0.610 1.266
equipment/software
Q3 h TECH provides information in a real-time manner 0.469 0.637 1.598
Q2 Average level of automatization 0.104 0.911 1.110

An intercept term was added to the regression model to ensure unbiased coefficient
estimators and accounts for the base case, where all other variables are 0. The intercept
is also statistically significant at a p-value close to 0, but the odds ratio is almost 0, thus



removing its importance in predicting cluster associations. This means it is very unlikely
that a respondent answered with ‘0’ on each question.

While most features do not have statistical significance, this does not mean these
questions are irrelevant. Instead, their influence on the prediction is not high enough to
rule out a random connection to the prediction outcome.

DISCUSSION

This research explores farmers' attitudes and technological readiness toward
PLF technologies. Rather than directly assessing technology adoption, it examines
general perceptions of farmers, calculates clusters of similar characteristics and
identifies critical farm characteristic and personal perceptions on technology that
distinguish technologically ready from non-ready farmers. Methodologically, it
highlights the value of machine learning techniques for survey and requirement analysis.

The two primary clusters labelled ‘Ready’ (technologically ready) and ‘Not
Ready,’ (barriers to technology adoption) exhibit distinct and consistent attitudes toward
PLF technologies. The ‘Ready’ group (148 farms) shows strong agreement with the
benefits of these technologies, indicating a high level of acceptance and readiness for
adoption. In contrast, the ‘Not Ready’ group (118 farms) demonstrates lower agreement,
suggesting a lower preparedness for technological adoption. The distinction between
these clusters was further confirmed using UMAP, which revealed a clear separation in
the reduced-dimensional space. This separation was also validated by a supervised
machine learning model, which could successfully predict the cluster affiliation based
on survey responses.

A prior study about barriers to technological readiness (Mallinger et al., 2023)
highlighted the ‘case of access to smart technologies’, ‘the interoperability’ ‘the ability
to cope with a labour shortage’, and the ‘ease of operability’ as four distinct
characteristics that distinguish technologically ready from non-ready farmers. The
current study partially supports these results, as the ‘access to smart technologies’ as
well as the ‘ability to cope with labour shortage’ are also highlighted as significant
variables. However, this study also highlighted the prior existence of smart technologies
as a primary factor used to distinguish the two clusters. This is not particularly surprising
and supports the findings of (Mallinger et al., 2024), in which the distribution of said
characteristic was used to validate the usefulness of the cluster results. As the tree-based
mechanisms in the study of Mallinger et al., 2023 use the concept of diminishing
entropy-values as a factor for identifying important features, it is possible that some farm
characteristics were not highlighted adequately if a high degree of predictions are already
successful with a small subset of survey questions. As a logistic regression approach
automatically uses all questions, the differences between the characteristics are less
pronounced compared to a decision-tree algorithm. This highlights that logistic regression
might provide a more suitable approach to identifying important characteristics for
cluster differentiation. However, more research is necessary to better understand the
usability of different machine learning classifiers and regressors in this context.

Prior studies have reported high investment costs as a major barrier (Ugochukwu
& Phillips, 2018; Abeni et al., 2019; Pathak et al., 2019; Groher et al., 2020; Makinde,
2020; Boothby & White, 2021). Our study shows a clear separation of farmers’ answers
between the two clusters regarding the affordability of precision livestock technology.



The trained algorithm for predicting technological readiness exhibited stronger links to
maintenance costs (coefficient 1.057) than to the initial purchase price (coefficient
0.805), with the prior links also supported by stronger p-values. Robustness and
reliability are also frequently cited barriers (Drewry et al., 2019; Makinde, 2020;
Boothby & White, 2021). We also observe a visible divergence of opinions between the
clusters on this point, as shown in Fig. 7, and record a high coefficient of 0.918, although
the feature-importance score (coefficient) was not statistically significant. Persistent
apprehension about data security was further analysed in this study, again supporting
carlier findings (Drewry et al., 2019). Finally, accessibility to the market emerged as one
of the most prominent factors separating the clusters, with a high feature-importance
coefficient of 1.258 and statistical significance (p-value 0.024). As this factor is rarely
highlighted in previous work, it should be considered more closely in future research on
technological barriers.

More generally, the cluster analysis showed that farmers were nearly evenly
divided between those classified as technologically ready and those not ready. This
suggests substantial potential for intervention strategies targeting the less-ready group.
Notably, the average level of farm automatization did not differentiate between the two
groups, suggesting that general mechanization alone is not a sufficient indicator of
readiness. In contrast, prior use of smart devices emerged as one of the strongest
predictors of technological readiness. Furthermore, the analysis highlights that barriers
to technology adoption in livestock farming are not singular but multivariate in nature.
Multiple factors must be considered simultaneously to accurately capture the diversity
of farmer needs and the complexity of the adoption process.

A limitation of this study is the potential variability of the machine learning
techniques. K-means clustering involves randomness in initialization, which can lead to
slight differences in cluster assignments across runs. Consequently, small distances
between clusters with high standard deviations should be interpreted cautiously, as some
data points may shift clusters in different iterations. Similarly, the feature importance
analysis from the Logistic Regression should be interpreted carefully. Changes in the
distribution of answers could potentially change the order of highlighted questions. To
give a more complete picture, these results should be combined with other tools to
evaluate importance, such as the principal component analysis or explainable Al
techniques like Partial Dependence Plots or SHAP values. A framework to apply this
can be found in (Mallinger et al., 2024).

A key limitation of this quantitative machine learning approach is its data-driven
nature. Unlike theory-driven qualitative studies, machine learning identifies patterns
without considering the broader context. As a result, it may highlight correlations that
do not imply causation. Careful research design, including survey questions, expert
analysis, focus groups, or interpretable models, is essential for meaningful interpretation.
Additionally, this approach cannot capture nuanced human behaviours during data
collection, such as emotions, response delays, or non-verbal communication.

Finally, this research evaluated the predictive power of survey questions in
determining farmers' technology readiness. Some questions demonstrated strong
predictive value for cluster affiliation, making them particularly useful for identifying
the readiness levels of user groups. These insights support the development of more
targeted and efficient survey instruments, enhancing data collection strategies for future
research. Furthermore, this process can be utilized as a data-driven approach to inform



requirements and market analysis, facilitating the development of precision livestock
farming technology by aligning it with targeted consumer needs. For example,
companies can focus on special offers that keep maintenance and service costs at a
minimum. By doing so, it enhances ease of operation and promotes the effective use of
economic and environmental opportunities. As a result, the likelihood that these
technologies improve production efficiency or animal well-being is significantly
increased. Companies can also provide targeted market strategies based on these results.
By recognizing that farmers highly value the support of precision livestock equipment
in combating labour shortages, they can effectively highlight this aspect in their
marketing activities.

This study aimed to demonstrate the benefits of supervised and unsupervised
machine learning in this domain, particularly using interpretable models like Logistic
Regression. More research is needed to explore the full potential of machine learning for
technology adoption studies and to apply different algorithms to specific survey analysis
tasks. A comparison to other machine learning approaches can be found here (Mallinger
et al., 2023; Mallinger et al., 2024). For an in-depth statistical analysis of the survey data,
we refer the interested reader to (Tikasz et al., 2023a; Tikasz et al., 2023b). Primary
factors that distinguished these two groups inclubbded prior adoption of smart
technologies, market accessibility, cost efficiency, and the ability to cope with labour
shortages. The study showed that a Logistic Regression model could successfully predict
97% of farmers' technological readiness while highlighting statistically significant farm
characteristics. Depending on the goal of one’s work, further research could include a
more detailed examination of farm characteristics (e.g., farm age, geography, farm type)
and assess farmers’ willingness to adopt technologies.

CONCLUSIONS

In this study, the authors identified and analysed two distinct clusters of farmers
based on their attitudes toward technology adoption using unsupervised and supervised
machine learning approaches. Our findings demonstrated the effectiveness of K-means
clustering in revealing overarching similarities in user attitudes and technological
readiness, highlighting inherent characteristics within each group and the prominent
factors distinguishing them. The cluster analysis showed a balanced split between
farmers classified as technologically ready and those not ready, thereby indicating
substantial potential for targeted intervention strategies. The less-ready group expressed
particular concern about the ability of PLF technology to address labour shortages and
support day-to-day decision-making, as well as a lack of available education.
Comparatively, the factors that most strongly distinguished the two groups include
market accessibility, available education, cost efficiency, and the ability to cope with
labour shortages. Notably, the average level of automatization did not differ between
groups, suggesting that general mechanization is not a sufficient indicator of readiness.
However, prior use of smart devices showed clear differences and was among the
strongest predictors in the applied Logistic Regression model, along with market
accessibility, maintenance costs, and data management security. The model successfully
predicted 97% of farmers' technological readiness while highlighting statistically
significant farm characteristics. The analysis further confirms that barriers to technology



adoption are multivariate in nature and must be considered in combination to capture the
diversity of farmer needs and the complexity of the adoption process.

Therefore, the integration of unsupervised and supervised machine learning
methods facilitated the identification of survey questions that play a crucial role in
differentiating cluster affiliations based on user attitudes. The authors highlighted the
need to investigate the potential of machine learning in this field and its ability to analyse
user attitudes. The results can be used to unveil targeted information for survey design,
requirement analysis, and policy intervention strategies.
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APPENDIX

APPENDIX Al — Remaining Distribution of Survey Answers that haven’t been displayed in the
result section

Cluster composition for remaining Q3 Questions

Q3_a. TECH helps labor shortage Q3_c. TECH helps enterprise, marketing and investment decisions
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Figure 5. The figure shows the distribution of survey questions in the third category that haven't
been shown in the result section. Cluster 0 represents technologically non-ready and Cluster 1
technologically ready farmers.



Cluster compasition for remaining Q4 Questions

Q4 _a. Itis easy to access TECH on the market Q4_b. TECH can be purchased at an affordable price
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Q4 _c. It is easy to get information on TECH and distributors Q4_d. It is easy to get technical assistance to smart technologies
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Figure 6. The figure shows the distribution of survey questions in the fourth category that haven't
been shown in the result section. Cluster 0 represents technologically non-ready and Cluster 1
technologically ready farmers



Q5_b. TECH is easy to operate

Cluster composition for remaining Q5 Questions

Q5_c. TECH can be connected well with other equipment/software
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Figure 7. The figure shows the distribution of survey questions in the fifth category that haven't
been shown in the result section. Cluster 0 represents technologically non-ready and Cluster 1
technologically ready farmers.



APPENDIX A2 — Survey questions used in this study

Table 6. All survey questions and subquestions that have been used in this study are represented here as
well as their range of answer categories

Feature Question

Q3 a
Q3 b
Q3 ¢
Q3 d
Q3 e
Q3 f
Q3_¢g

Q4 a
Q4 b
Q4 ¢
Q4 d
Q4 e

Q5 b
Q5 ¢
Q5 d
Q5 e

1.

2.

4.

Please state the average availability of internet access at your farm (0: I don't know, 1: No
availability... 4: High availability)

Please state the average level of automatization at your production farm (0: I don't know, 1:
Less than 10 y/o, 2: 10-20 y/o, 3: diverse, 4: Over 20 y/o0)

Please indicate how much you agree with the statements on smart devices/technologies
(sensors, cameras, robots, farm management information system etc.), regardless of whether
you use them or not on your farm. (0: I don't know, 1: Strongly disagree... 5: Strongly agree)
help/support to cope with labour shortage.

help/support day-to-day decision-making in the livestock buildings.

help/support enterprise, marketing, and investment decisions.

help/support to meet environmental pollution reduction obligations.

enable an increase in the effectiveness of production.

provide reliable information.

provide information in real-time.

Regarding the availability of smart technologies, please indicate how much you agree with the
following statements. (0: I don't know, 1: Strongly disagree... 5: Strongly agree)

It is easy to access smart technologies on the market.

Smart technologies can be purchased at an affordable price.

It is easy to get information on smart technologies and distributors.
It is easy to get technical assistance for smart technologies.

Proper education is available for using smart technologies.

5.

Regarding the operation of smart technologies, please indicate how much you agree with each
of the statements. (0: I don't know, 1: Strongly disagree... 5: Strongly agree)

can be maintained at a reasonable cost.

are easy to operate.

can be connected well with other equipment/software.

operate in a reliable manner.

are secure in terms of data management.

Do you use smart devices (sensors, cameras, robots, etc.) at the farm you represent? (0: I don't
know, 1: Yes, 2: No.)
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