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Abstract The implementation of precision agriculture is an urgent priority for Ukraine's
agricultural sector under climate change and restricted use of unmanned aerial vehicles in border
regions. This study aims to clearly define and evaluate the potential of Sentinel-1 radar data in
identifying temporal and spatial variations in oat crop density and structure during the growing
season under field conditions in Ukraine. The technique encompassed the acquisition of Sentinel-
1 satellite images in VV and VH polarizations, data processing by SNAP, field assessments of
height, plant density, and phenological development, along with statistical analysis of the
association between satellite data and land observations. The study demonstrated that the
reflectance coefficient values in VV and VH polarizations fluctuate according to the oat
development phase: a reduction in backscattering was noted at the onset of the growing season,
followed by an increase during the stem formation and earing phases. The VH/VV ratio is
responsive to variations in moisture, plant biomass, and stress conditions. The modelling
demonstrated a substantial correlation among planting rate, herbicide application, and
polarization markers. The findings validate the efficacy of Sentinel-1 for monitoring crop
structure irrespective of weather conditions. This method enables farmers to obtain dependable
information for making decisions regarding crop management, timely fertilizer application, or
harvesting. The regression model demonstrated a consistent association with a R?=0.61,
suggesting the potential for further research utilizing multi-year data to develop integrated yield
forecasting models.

Key words: precision agriculture, remote sensing, herbicide, agriculture, plant density,
polarization.

INTRODUCTION

Ukraine is well-known for its agricultural commodity production capacity, which
contributes significantly to its export volume. The exportation of agricultural products
from Ukraine frequently relies on worldwide price patterns, climatic circumstances, and
political influences (Shebanina et al., 2023). Ukraine has recently prioritized the
advancement of precision agriculture to enhance food security regulation and forecasting
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(Shelestov et al., 2020). Several scientists anticipate that the transition to precision
agriculture will lead to enhanced productivity, reduced environmental footprint, reduced
pesticide usage, transparent production, and more intelligent production techniques
(Liu et al., 2017; Finger et al., 2019; Zou et al., 2021; Fuentes-Peiiailillo et al., 2024).
The current availability of high-resolution optical data has exceptional prospects for
agricultural applications (Weiss et al., 2020). Satellite remote sensing (RS) offers vital
data to a wide range of consumers, including individual farmers, large food producers,
and national and international government agencies (Kumar et al., 2022). Optical
imagery has the capability to forecast crop yield, define areas for specific management
practices, facilitate the application of variable rates, and track variations within and
between fields over multiple years (Kansakar & Hossain, 2016). Oat (proxy indicator
Avena sativa L.) is a vital cereal crop in Ukraine, particularly in the Polissia region, due
to its resilience to cold climates and importance in both human consumption and
livestock feed. It is typically sown in early April and harvested between July and early
August (Singh et al., 2024).

The European Union (EU) urges Member States to modify the Integrated
Administration and Control System (IACS) and enhance the utilization of Sentinel
images to achieve complete surveillance of agricultural regions, taking advantage of the
abundant and accessible satellite data provided by the Earth observation program -
Copernicus (Sarvia et al., 2021). Currently, there are multiple sources for accessing
publicly accessible space images from MODIS, Sentinel-2, and other satellites.
Additionally, several organizations in Ukraine acquire satellite images from private
suppliers. Nevertheless, the cloud cover in Ukraine significantly diminishes the
dependability of optical images. On average, around 20% of the examined multi-time
data sets yield a distinct (<2 Octa) image throughout the plant growth period (Parisi et
al., 2021).

While unmanned aerial vehicles (UAVs) have gained significant popularity for
agricultural monitoring, the monitoring of broad areas in Ukraine continues to rely on
satellite RS. In Ukraine, the main reason for this is the temporary limitation on the use
of UAVs due to the military aggression of the Russian Federation in the territory of
Ukraine. This restriction particularly applies to border areas and zones near the conflict
zone.

Simultaneously, the satellite RS provides many possibilities. Radar operating at
frequencies 1-10 GHz can penetrate cloud cover and remains unaffected by sunlight.
This makes it very suitable for agricultural applications, as it can offer accurate and
timely observations. The Sentinel-1 mission provides distinct advantages for agricultural
monitoring through radar observations due to two key factors: (1) its frequent flights
enable the generation of extensive and precise forecasts, and (2) the images are
accessible without any limitations or constraints (Pasternak & Pawluszek-Filipiak,
2022). Although Sentinel-1 was originally designed as a dual-satellite system (Sentinel-
1A and Sentinel-1B), the decommissioning of Sentinel-1B in 2022 has slightly impacted
revisit frequency. However, the extensive archive of unique and high-quality Sentinel-
1B data remains accessible through the Copernicus Data Ecosystem and continues to
support thousands of users worldwide in advancing Earth observation research. The
Sentinel-1 mission remains operational and effective with Sentinel-1A, and the
upcoming launch of Sentinel-1C aboard the Vega-C rocket, scheduled for late 2024, is



expected to restore the full capabilities of the mission and ensure continuity of data
delivery for Sentinel services and applications (The European Space Agency, 2024).

Presently, the mission comprises a pair of satellites that are identical in nature.
Specifically, the mission successfully launched two spacecraft, Sentinel-1A and
Sentinel-1B, operating in the C-band frequency in 2014 and 2015. They occupy the same
orbital plane and guarantee comprehensive and precise worldwide coverage every 12
days. In Europe, the default method for obtaining data over the ground is through
interferometric mode, which allows for the collection of both VV (vertical transmit,
vertical receive) and VH (vertical transmit, horizontal receive) data. By considering
numerous orbits, both ascending and descending, and accounting for the varying
geometries of the satellites, it is possible to reach a revisit time of less than two days for
most areas in Europe and available for Ukraine every 1-2 days as well (Khabbazan et
al., 2019; Kaushik et al., 2021; Beriaux et al., 2021). Sentinel-1 data used to classify the
landscape cover of particularly valuable protected areas (Romanchuck et al., 2017;
Fedoniuk et al., 2021), for weed detection on maize fields (Skydan et al., 2021; Fedoniuk
& Skydan, 2023; Fedoniuk et al., 2025). Previous and ongoing research highlights the
potential of Sentinel-1 for crop monitoring throughout the growing season. In their study,
Wang et al. (2019) compared Sentinel-1 data with estimates of the Normalized
Difference Vegetation Index (NDVI) based on observations of precipitation,
temperature, green area index, and fresh biomass made from optical and ground-based
data (Wang et al., 2019). They demonstrated that Sentinel-1 data, especially the VH/VV
ratio, can provide useful information on crop development. They highlighted the
potential for distinguishing cultures based on the temporal variation of backscatter
(Liu et al., 2017). The study also showed that for barley and maize, NDVI and VH/VV
correlated well with green area index and fresh biomass. Crop temporal and spatial
characteristics were analyzed using Sentinel-1 backscatter data by Harfenmeister et al.
(2019). Stude highlighted possibilities of Sentinel-1 backscatter and polarization ratio
(VH/VV) time series and found that they were related to vegetation water content,
height, biomass index, and leaf areca, demonstrated the ability to estimate vegetation
water content from Sentinel-1 imagery using Random Forest simulations (Harfenmeister
et al., 2019; Holtgrave et al., 2020).

The VH/VV polarization ratio can offer valuable insights into crop growth and
progress. A high ratio values can indicate increased moisture (Petropoulos et al., 2015).
Plant biomass can be accessed using the VH/VV ratio, as it correlates with changes in
plant growth and general condition (El Hajj et al., 2017; Greifeneder et al., 2018).
Furthermore, VH/VV ratio used to identify stressful conditions such as diseases or pests
that impact plant structure, as well as radio wave reflection (Mani et al., 2021). Also, the
VH/VV ratio is helpful in assessing structural changes in the vegetation cover, such as
plant height and density (Lopez-Granados, 2011).

The current study focuses on continental Ukraine, a highly productive agricultural
region, to evaluate the effectiveness of Sentinel-1 in monitoring oats, a crop of regional
importance. Although Sentinel-2 provides high-resolution optical imagery and could
serve as an alternative to Sentinel-1, its application during the 2023 growing season was
hindered by persistent cloud cover in the study region. Therefore, Sentinel-1 radar data,
unaffected by atmospheric conditions, was preferred to ensure consistent temporal
coverage and data continuity across the crop growth stages.



This study aims to clearly define and evaluate the potential of Sentinel-1 radar data
in identifying temporal and spatial variations in oat crop density and structure during the
growing season under field conditions in Ukraine. The research objective was to
determine if such data could serve as a reliable alternative in precision agriculture where
UAYV deployment is restricted and optical imagery is hindered by cloud cover.

MATERIALS AND METHODS

Key characteristics of study area

The experimental plot was a part of larger the experimental field of the Polissia
National University (N 50°26'; E 28°4). The site has predominantly Gleic Albic Luvisol
(Endoclayic, Cutanic, Differentic, Katogleyic, Ochric type of soil according to Pr'WRB
(2022).

Data was collected with a frequency of one week using each source. During field
research, the parameters of main crops, cereal weeds, broadleaf, and short-leaved weeds
were measured by height and density for oat. We conducted in situ measurements of oat
crop vegetation parameters between April 5 and October 7, 2023, to test search schemes
based on various satellite sensors, including Sentinel-1. We selected sample points for
each field studied. While direct field measurements of soil moisture, salinity, and organic
matter were not recorded in this
campaign, we assumed relatively
homogenous soil properties across
the experimental site. Moreover,
the VH/VV polarization ratio
served as a proxy indicator of crop
moisture content and  stress.
Inclusion of these variables is
foreseen in follow-up research.

Weekly measurements of
vegetation height, density, and
plant  phenology  assessments
were made at each location.
Phenological stages were defined
using the BBCH scale. Plant height
was measured using a ruler;

Figure 1. Location of study area.

Here and further in the text: DP — double seed rate with
subsequent herbicide application; DN — double seed rate

density was determined by stem without herbicide application; NP — standard seed rate
count within a 1x1 m frame. with subsequent herbicide application; NN — standard
Planting density was measured seed rate without herbicide application.

by manually counting the number
of stems in a 1X1 m area around each sampling point. Sowing density refers to the total
number of stems,plants, and shoots in the accounting area, depending on the stages of
culture development. Simultaneously, we determined the number of plants and shoots
(pieces per m?) (Fig. 1).

Several variables are defined in this study. We assigned specific codes to each plot,
which contained data from multiple variables (Table 1).



Table 1. Variant coding principles

1% code symbol — sowing density 2% code symbol - protection Number

D double sowing norm P Protection 1,2,3 — replication
(440 kg ha™! or 12 million seeds ha™") (herbicides application)

N Normal sowing N No protection
(220 kg ha™! or 6 million seeds ha™") (herbicides-free)

Preparation of RS data

A space study was performed utilizing data obtained from the Sentinel-1 spacecraft
(Copernicus Open Access). The satellite channels were selected for their capacity to
deliver photos with superior spatial resolution (10 m) and the frequency of spacecraft
traversing the research area, thereby ensuring consistent observation circumstances.
Sentinel-1 measurements yielded space images in the radio wave spectrum using IWS
mode, featuring a resolution of 5x5 m and a bandwidth of 20x20 km with VV and VH
polarization. Data processing determined the average radiation intensity values at the
midpoint of each section. Fig. 2 displays the tails (frames) of the relative turns (160, 109,
36) of the Sentinel-1 spacecraft overlapping the territory of Ukraine.

Figure 2. Coverage of Ukraine's territory with the tails (frames) of relative turns (160, 109, 36)
of the Sentinel-1 spacecraft.

Sentinel-1 is in a near-polar, sun-synchronous orbit with a 12-day cycle and 175 revolutions per cycle. The
Sentinel-1 dataset and its corresponding image properties are summarized in Table 2.

Table 2. The Sentinel-1 dataset and its corresponding image properties

. s oy Number and type
Shooting mode Product type Distinction Polarization of relative orbit
Interferometric Ground Range High resolution  Dual DV 36 (eastern)
Wide-swath mode  Detected (HR) (VV/VH) 109 (eastern)

(IW) (GRD) 160 (ascending)




Obtaining and preprocessing satellite imagery

Satellite data were acquired using the Copernicus Open Access Hub — an open
platform for downloading Sentinel-1 images. Sentinel-1 (radar images) were used
because of their ability to penetrate clouds and provide consistent data irrespective of
weather conditions. Preprocessing of the satellite images was done in the SNAP
(Sentinel Application Platform) environment and included the following steps:

1. Orbit correction — applying orbital files to correct satellite positioning.

2. Speckle filtering — reducing radar noise.

3. Terrain correction — ensuring accurate image geolocation.

4. Image mosaicking or cropping to the boundaries of the study areas.

To effectively conduct the experiment, we formed a panel database that
incorporated the results of physical examinations of plants and soil, data from Sentinel-
1. Observation took place in the same areas, which do not change over time in terms of
size and type of observation. The object of the sample was 2 oat plots, which were
formed from one experimental field. The database formation process provides the
sample depth, which determines the number of observations for a specific researched
field. A revisit time was achieved of 12 days by considering all available Sentinel-1
images for 2023 at the experimental field test site. A total of 78 Sentinel-1 scenes are
available throughout the field campaign.

We used vegetation indices and textural characteristics to determine the crop
density. The polarization channels VV and VH were present, representing the signal's
vertical and horizontal polarizations, respectively. We also analyzed the images using
reflectance values to identify areas with varying levels of vegetation density.

Three indicators determine the type of plot cultivation, ten indicators stem from a
visual survey, two indicators derive from data from the Sentinel-1, and the remaining
indicators come from soil tests at the experimental site.

After all preprocessing steps, the data were resampled to a spatial resolution of
10x10 m. Three different Sentinel-1 tracks, each with its own geometry and parameters
regarding incidence angle, azimuth angle, and orbit direction, covered the test site area
in 2023.

Statistical instruments

ANOVA and several statistical methods were employed to evaluate the impact of
herbicides and sowing density on each spectral channel image. Regression analysis was
employed to develop models for forecasting oat development levels.

The regression model used was a multiple linear regression of the form:

Y=B0+B1X1+p2X2+ -+ nXn+e (D)

where Y is the dependent variable (backscatter response), X_i are independent predictors
(e.g., VV, orbit geometry); B_i are coefficients, and € is the error term.

Only factors that retained statistical significance after correction were considered
credible.

ANOVA was used to evaluate variance among treatment groups, with p-values
adjusted using the False Discovery Rate (FDR) correction.



RESULTS AND DISCUSSION

The results of the search for satellite channels for surveys of the studied area

Weather conditions and the time of day directly affect the image's quality,
restricting the utilization of optical data. The data obtained from the radar equipped with
the Sentinel-1 spacecraft, which uses synthetic aperture technology, is free and
independent of defined conditions. For example, lighting conditions do not affect the
shooting process, and the data updates regularly every twelve days with a high spatial
resolution of 10 meters. This enables the resolution of a variety of environmental
monitoring issues, including those related to agriculture.

Merging different geospatial data allows for the effective use of high-quality time
sets of satellite information. The experimental field's region coincides with three tails
(frames) of relative turns (160, 109d, 36) of the Sentinel-1 satellite. Each frame measures
260%160 km. A total of 26 Sentinel-1 images were used within the specified time frame,
using the shooting settings outlined in Table 1.

The Sentinel-1 satellite orbits the Earth three times a day, with each orbit occurring
every 12 days. Each orbit has a designated direction and time. The first orbit of the
satellite, known as 36d, takes place at 6 to 7 in the morning, but this time is not ideal for
accurate measurements due to the presence of dew on plants. The second orbit, known
as 160a, occurs from 6 to 7 p.m. The third orbit, known as 109d, takes place at noon
(Fig. 3).

The location of the tiles (frames) in which the experimental field is registered is
shown on the layout.
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Figure 3. Coverage of the experimental field with tails (frames) of the Sentinel-1 spacecraft's
relative turns (160, 109d, 36).



The characteristics of the signals emitted from the spacecraft, the type of land cover,
the relative location of the experimental site, and the spacecraft's flight path determine
the parameters of the registered image.

Utilization of polarization channels VV and VH for the estimation of oat crop
density

To determine crop density, the Sentinel-1 radar polarization channels VV (vertical
transmit, vertical receive) and VH (vertical transmit, horizontal receive) were used.
Throughout the oat cultivation period, reflected signals were standardised to facilitate
the comparison of various images. Recent research (Skydan et al., 2022; Fedoniuk et al.,
2025) clearly shows that the VV channel is better for analyzing vertical plant structures,
while the VH channel is more sensitive to different leaf orientations and structural
differences in crops. The analysis of texture during the examination of crop structure
features enabled us to categorize zones based on varying crop densities.

A study established that Sentinel-1 data, particularly the VH/VV ratio, can yield
valuable insights on crop development. They specifically emphasised the findings from
the time series study of the Sentinel-1 backscatter and ratio (VH/VV), noting their
correlation with plant water content, height, and biomass index. The correlation between
the observed Sentinel-1 data fluctuated during the growing season, with backscatter
variations mostly influenced by structural changes during certain intervals.

The backscatter values VH and VV of oat fields exhibit a little decline until early
June, followed by an increase leading up to harvest (Fig. 4). The backscatter signal is
often more robust in VV polarization, commencing at approximately —9 dB (option
NN - 26 April 2023) and around —11dB (option NP - 26 April 2023), subsequently
diminishing to approximately —15.5 to —18 dB by June 6, 2023. By the end of July, it
rose once more to —12 dB (DN) and —18 dB (NN).
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Figure 4. Backscatter VV values of oat fields.



VH backscatter commences approximately —20 dB (DP) and —22.5 dB (NP) on 26
April 2023, then decreasing to its lowest levels of approximately —21.8 to —24.2 dB in
June (Fig. 5). The VV polarization backscatter rates demonstrate a msore significant
yearly fluctuation in comparison to the VH backscatter rates. The reduction in
backscatter value till the end of June is particularly pronounced in VV backscatter. In
April, preliminary results are significantly lower, exhibiting greater variability due to
several cold snaps.
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Figure 5. Backscattering value of VH in oat fields.

The VH/VYV ratio exhibits an increase from the onset of the growth season until
early June, following which it stabilizes or experiences a minor decline. VH/VV values
commence at approximately —8 and attain their peak at roughly —2.5 in early June.

Table 3. The model depicting the correlation between the components of expanding oat fields
and the polarization indicator

Call: L, (Formula = Value~SowingNorm + Protection + VV + Pyg9q + Pigoq + P36q4, data = data)
Residuals: Min -11.117; 1Q -1.802; Median -0.147; 3Q 2.001; Max 8.475

Indicator Coc?fﬁcients:

Estimate, S Std. Error t-value Pr(>t)
(Intercept) -12.435 0.138 -154.924 <0.001
SowingNorm -0.256 0.119 -2.145 0.032
Protection -0.425 0.117 -3.618 <0.001
\'AY% 7.217 0.114 63.178 <0.001
P 109d 0.852 0.136 6.239 <0.001
P 160a 0.279 0.142 1.964 0.050
P 36d NA NA NA NA

Significance codes: 0 "***' 0.001 '**' 0.01 "*' 0.05 "' 0.1 ' '1; Residual standard error: 2.89 on 2554 degrees
of freedom; Multiple R-squared: 0.613; Adjusted R-squared: 0.613; F-statistic 809.9 on 5 and 2554 DF;
p-value <0.001.



The derived model indicates (Table 3) that the sowing rate serves as the indicator
for the satellite reaction. The variation in backscatter throughout the growing season can
be attributed to the effects of soil and crop density, alongside structural alterations in
plants and their moisture levels. In April, oat fields commence vigorous vegetative
growth. The regression model used for evaluating the relationship between oat
development and satellite indicators is described as follows:

Y = —12.435-0.256 X Sowing norm—0.425 X Protection + 7.217 X VV @)

+0.852 X Pygog + 0.279 X Pgoa + €

where Y is the predicted backscatter response, and ¢ is the error term. The model yielded
an R? of 0.613, indicating a moderate to strong relationship.

A standard p-value was employed to assess statistical significance, with an adjusted
p-value. The false discovery rate (FDR) control method was employed to ascertain this.
This strategy reduces the likelihood of obtaining false-positive results when numerous
hypotheses or variables are concurrently examined.

At this stage, the plant's height typically measures only 12—15 cm, insufficient for
generating a discernible reaction in satellite imagery. Consequently, the condition of the
soil surface at this moment is the primary factor influencing backscattering. The value
of backscatter diminishes as the vegetative portion of plants develops, attributed to
increased signal attenuation, a phenomenon documented in various publications
(Harfenmeister et al., 2019; Getahun et al., 2024). These circumstances are mostly
indicative of VV backscattering and are less prominent in VH backscattering. The VV
backscatter is primarily influenced by the direct contributions of soil and vegetation,
whereas the presence of vertical plant structures (stems) progressively attenuates the
signal. VH backscattering is often more responsive to vegetation volume scattering;
nevertheless, for oat plants, soil backscattering remains predominant during early
phenological stages. Backscatter oscillations at the onset of 2023 are attributed to snow
covering the fields, resulting in alterations to the scattering properties.

During May and June, oats undergo the phenological phases of vigorous growth.
During these phases, the plants commence stem development, increase in height, and
produce flag leaves. Backscatter values attain a minimum during the development of oat
flag leaves, leading to maximum signal attenuation.

When the backscatter rates reach their minimum, the impact of plants on scattering
surpasses the impact of the soil, leading to a backscatter rates increase for both
polarizations.

Subsequently, the signal is predominantly scattered by vegetation, which
increasingly overshadows the influence of the soil, leading to a continuous rise
thereafter. In the following growth season, the soil's contribution rises once more as the
plants' phytomass dehydrates. This results in a reduction in the increase in backscatter
during late phenological phases to stable or diminishing values.

During the latter part of summer, the backscatter signal indicates alterations in
vegetation structure and moisture content. The alteration in vegetative structure is
particularly evident in oats. Following the decline of backscatter readings to their nadir
in June, they commence an upward trajectory once more. However, in early June, the
backscatter levels significantly rise by around 8 dB during a brief duration. The plants
are currently sufficiently desiccated, with a moisture level below 50%. The backscatter
values of oat fields decline once more following their peak during ear bending.



The experiment demonstrates that utilizing polarization channels VV and VH from
Sentinel-1 data efficiently estimates oat crop density. This enables farmers to
comprehend the status of their crops and make informed judgments regarding crop
management. Sentinel-1 data, particularly the VH/VV ratio, can yield valuable insights
into crop development. They emphasized the ability to differentiate cultures based on
the temporal variation of backscatter. Outcomes of time series study of Sentinel-1
backscatter and polarization ratio (VH/VV) and their observed correlation with plant
water content, height, and biomass index. The correlation between observed Sentinel-1
data and plant development fluctuated during the growing season, with backscatter
fluctuations mostly influenced by structural changes during certain intervals.

The limitations of the research

A multisensory approach, utilizing satellites, was implemented to alleviate the
impact of mistakes in evaluating oat development parameters. However, while collecting
data from different sources, several types of errors may occur owing to differing factors.
The primary category of errors, associated with meteorological conditions (cloud cover,
fog, aerosols), may distort the image and undermine the integrity of the original data.

The influence of weather conditions was alleviated by standardising the shooting
parameters for satellite imagery: ensuring a consistent cloud cover percentage (not
surpassing 10%) and aligning the date of the satellite's transit over the research site. The
insufficient resolution of satellite imaging can impede oat development detection. Thus,
the satellite channels were chosen for their ability to provide photos with the highest
spatial resolution (10 m) and the frequency of spacecraft passing over the research area,
assuring uniform observational circumstances. Spectral offsets may affect the accuracy
of vegetation type categorisation; hence, the study incorporated calibrated sensors and
multispectral analysis.

The second block of factors may include data collection and processing errors, such
as georeferencing inaccuracies (deficiencies in determining coordinates). RTK-GNSS
was utilised for precise positioning to reduce errors. Noise and artefacts, such as
reflections, shadows, and variable lighting, were corrected by image pre-processing and
illumination normalisation. Furthermore, inconsistencies may occur when utilising
different formats and procedures for processing data from satellites and other sources.
The methodologies and timing of data gathering, processing techniques, and the
application of standardised algorithms were synchronised. The identical conditions and
observation timeframe were selected; specifically, the drone flyby occurred between
11:00 and 12:00 in the afternoon and the processing level is S2MSI2A.

The third group of errors may pertain to possible misclassifications of plants,
arising from the similar spectral characteristics of cultivated plants and weeds. The risk
was alleviated by sampling (5—8 pixels per microfield) and doing triplicate experiments,
utilising machine learning, deep neural networks, and additional spectral indices (NDVI,
GNDVI, MSAVI). Due to persistent cloud cover, it was not possible to derive NDWI or
other optical vegetation indices from Sentinel-2 imagery. This limitation constrained our
ability to directly assess vegetation water content via optical indices. Future research will
consider multi-sensor integration to incorporate NDWI alongside radar-derived metrics.
The various stages of oats growth confound identification; hence, multi-temporal data
were utilised, conducting the investigation across vegetative periods. Furthermore, the



human factor may affect outcomes, especially through inaccuracies in model training or
result interpretation. To prevent this, all data were verified by field validation utilising
independent test sets.

CONCLUSION

Utilizing Sentinel-1 data to assess oat crop density is an efficient method owing to
its distinctive characteristics. Weather-independent radar imagery yields precise and
dependable outcomes for effective agricultural management: polarization channels VV
(offers insights into vertical vegetation structures, aiding in the estimation of plant
density and height) and VH (responsive to varying leaf orientations and crop structural
inhomogeneities, beneficial for identifying density fluctuations).

Graph analysis and regression analysis enable us to infer the mechanisms of
dispersal of oat fields at various phenological growth stages. The temporal behavior of
oat fields exhibits sensitivity to alterations in plant structure, such as earing, and
variations in moisture levels. The temporal patterns reflect the phenological progression
of oat plants, evidenced by heightened signal attenuation due to vegetative growth in
spring and alterations in scattering upon attaining a specific height and the emergence of
flag leaves. This information might assist farmers in identifying the ideal periods for
fertilizer application or harvesting. The disparities across fields are typically more
pronounced than the variability within a field, attributable to the geometric properties of
the images. Moreover, structural alterations in plants are not consistently reflected in the
assessed yield indices.

The study confirms that the stated objective of using Sentinel-1 data to evaluate oat
crop density and structure was achieved. The model demonstrated sufficient accuracy to
warrant future exploration and practical application. The regression analysis results are
notably favorable for oat fields during the early phenological stages, from tillering to full
maturity. R? values about equal to 0.61 were characteristic of VV backscatter.

Nevertheless, regression outcomes exhibited considerable variation between fields
attributable to disparities in data quality, incidence angle, planting density, or fertilizer
application. A more extensive database encompassing extra years and observational
fields is required to derive universally applicable regression equations for estimating
yield parameters from backscatter measurements. The regression equations remain
highly reliant on the available field data; nonetheless, discernible trends are evident and
beneficial for subsequent research.
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