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Abstract. Phenotyping nitrogen use efficiency (NUE) is labour-intensive and time-consuming,
often requiring destructive biomass sampling. Cost-effective sensing tools provide a promising
alternative for rapid assessment of numerous wheat genotypes. In this study, sixteen spring wheat
genotypes were evaluated in Latvia over three consecutive years (2021-2023) under two nitrogen
fertilization levels (N75 and N150) in a split-split-plot design with two replicates, totaling 64
plots. NUE consistently differed between N rates and was strongly influenced by year-specific
environmental conditions, providing contrasting scenarios for testing sensing approaches. To
capture this variation, two platforms were tested for spectral estimation of NUE: a low-cost
proximal phenomobile equipped with an RGB sensor, and an unmanned aerial vehicle (UAV)
with a multispectral sensor. Canopy reflectance was measured at three growth stages (tillering,
flowering, and milk development) to calculate 8 proximal and 9 UAV-based visible-spectrum
vegetation indices (VIs). Although relationships between VIs and NUE were environmentally
dependent, significant and robust correlations were found. Proximal sensing generally provided
stronger prediction models, with the Normalized Green-Red Difference Index (NGRDI) and
Green Area Index (GA) consistently most predictive across years. The milk development stage
(GS75) proved optimal for NUE estimation. Comparisons of NGRDI between platforms
demonstrated their compatibility, though UAVs offer higher throughput for large-scale
phenotyping. These findings highlight the potential of integrating agronomic evaluation with
canopy reflectance traits to support breeding and precision nitrogen management.

Key words: Triticum aestivum L., proximal and remote sensing, canopy reflectance, NUE
prediction, correlation.

INTRODUCTION

Wheat (Triticum aestivum L.) is the most widely grown cereal globally, including
in Latvia, and a major source of calories and protein. The primary goal of wheat
production is to maximize grain yield while ensuring adequate protein content. Grain
yield per unit area is a key indicator of productivity and nitrogen use efficiency (NUE),
which optimizes nitrogen utilization and reduces environmental losses (Malinas et al.,
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2022; Xu et al., 2024). NUE, defined as grain yield per unit of available nitrogen,
includes nitrogen uptake efficiency (NupE), reflecting a genotype’s ability to absorb
nitrogen, and nitrogen utilization efficiency (NutE), which measures how effectively it
uses nitrogen for grain production (Moll, et al., 1982). Evaluating NUE must consider
the relationship between nitrogen and grain protein content, as efficiently remobilized
nitrogen increases protein (Malinas et al., 2022). Both agronomy and breeding are
crucial for improving NUE and related traits (Hawkesford & Griffiths, 2019). Since
phenotyping NUE traits is labor-intensive, alternative, cost-effective methods like
sensing tools are needed for rapid assessment of wheat genotypes.

In agriculture, sensor-based measurements are powerful tools for assessing crop
characteristics like canopy health, growth stage, yield, biomass, nutrient status, water
stress, and vegetative density (Song, et al., 2021; Gano, et al., 2024). Several studies for
different crops have addressed aspects related to growing management, crop growth, and
vegetation indices. For example, Dominguez et al. (2017) has demonstrated the potential
of remote sensing indices to explain crop performance (e.g. yield in winter oilseed rape).
Anikkild et al. (2023) used UAV multispectral imaging and visible-band vegetation
indices to assess maize canopy traits (GLI, NDVI, etc.), demonstrating the potential of
UAV-based remote sensing for phenotyping crop status under varying management.
Another study, explored spatial variability in wheat using NDVI and related indices
(Abreu et al., 2023).

Such non-invasive approach is essential for long-term studies and monitoring
multiple plant varieties, making it especially useful for breeding programs that require
rapid screening of numerous accessions (Song, et al., 2021). Sensing methods capture
electromagnetic reflectance from crop canopies, influenced by plant surface properties,
while spectral vegetation indices (VIs), derived from various spectral bands, quantify
green vegetation. Each VI has unique advantages, limitations, and suitability for specific
applications (Vidican et al., 2023).

Canopy proximal phenotyping uses sensors or imaging systems placed near the
plant canopy on mobile platforms for real-time assessment of plant traits in the field
(Prey et al., 2020; Rui et al., 2024). These platforms capture high-resolution data on traits
like canopy height, growth, biomass, and VIs (Pour et al., 2021; Gano et al., 2024). The
advancement of unmanned aerial vehicles (UAVs) has revolutionized remote sensing by
capturing high-resolution images from low altitudes, providing greater flexibility than
ground-based platforms (Tanaka et al.,, 2024). UAVs with various sensors are
increasingly used to detect NUE related traits (Rasmussen et al., 2016; Quemada et al.,
2019; Yang et al., 2020). VIs derived from reflectance help monitor nitrogen status and
wheat performance (Prey & Schmidhalter, 2019; Fu et al., 2020), and studies show that
high-resolution UAV-based RGB images can measure vegetation fractions, grain yield,
physiological parameters, and nitrogen content (Fu et al., 2020; Feng et al., 2022; Prey
et al., 2022; Zhang et al., 2024; Rossi et al., 2025). Building on this concept, our study
evaluates visible-spectrum vegetation indices from proximal and UAV platforms to
estimate nitrogen use efficiency (NUE) in spring wheat across different environments
and fertilization levels.

Studies on remote phenotyping of yield and NUE related traits in wheat highlight
the importance of selecting appropriate spectral indices (VIs) and optimal growth
stages for measurements, as different environments have unique characteristics (Prey &
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Schmidhalter, 2019; Prey et al., 2020). It is essential to evaluate the strengths and
weaknesses of each VI before choosing the most suitable one for the specific
environment, application, and platform. These studies show that there is an established
interest in nitrogen effects on cereal crops, remote sensing and/or indices, but to our
knowledge none have directly compared proximal vs UAV-based visible-spectrum
vegetation indices across multiple growth stages for prediction of NUE in spring wheat
over multiple years, which is what we aim to do in current study.

The first results on UAV multispectral estimation of grain yield (GY) under
different N rates in Nordic—Baltic environments are available at Jansone et al. (2024).
Our paper focuses on nitrogen use efficiency (NUE) estimated at maturity for the same
set of spring wheat genotypes grown under two nitrogen fertilization levels over three
years in Latvia.

The objectives were to (1) evaluate nitrogen use efficiency (NUE) under contrasting
nitrogen fertilization rates (N75 and N150) across multiple environments; (2) identify
the most suitable visible-spectrum vegetation indices (VIs) and optimal growth stages
for predicting NUE in spring wheat, (3) explore correlations between NUE traits and
selected VIs across environments to assess their robustness, and (4) compare the
predictive performance of proximal (RGB phenomobile) and UAV-based (multispectral)
sensing platforms for estimating NUE. This research offers valuable insights into using
spectral indices for breeding and precision phenotyping.

MATERIALS AND METHODS

Experimental site and methods

Field trials were conducted at the AREI Stende Research Centre experimental site
in northwest Latvia (57°18' N, 22°56" E; WGS84 coordinate system) during the
2021-2023 growing seasons (Fig.1, b). Trials were established as a split-split-plot design
including 16 spring wheat genotypes arranged in two randomized replicates (R1 and R2)
with two nitrogen fertilization levels (N75 and N150), for a total of 64 plots (Fig. 1, a;
Table 1).
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Figure 1. (a) The experiment design of established trials; (b) geographical location of study area.
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The main plots represented nitrogen (N) rates, while sub-plots were assigned to
wheat genotypes. A detailed description of the 16 varieties and breeding lines from
Latvia, Lithuania, Estonia, and Norway is provided in the previous study (Jansone et al.,
2024). Two N fertilization rates (75 kg ha™' N for N75 and 150 kg ha™ N for N150) were
applied before sowing. The field

consisted primarily of homogeneous Table 1. Spring wheat varieties and breeding
Albeluvisol (eutric) sandy loam. lines used in the study
Spring Wheat was sown at a c%epsny of Genotype name Provider* Country
500 germinable seeds per m” in rows of origin
spaced 12.5 cm apart. Plots were 1.2 m Runar NMBU Norway
wide and 8.4 m long. Trials were Zombi Graminor Norway
conducted between 23 April and 2 May Caress NMBU Sweden
. Betong Graminor Norway
each year, depending on weather " ;
diti Pesticid ncludi Hiie METK Estonia
conditions. esticides, including Voore METK Estonia
herblqlqes, 'fohar fungicides, 'and 876 METK Estonia
insecticides (if needed), were applied. 990-2 METK Estonia
Meteorological conditions varied Robijs AREI Latvia
each year: precipitation from May to 013-032 AREI Latvia
August was 334 mm in 2021, 332 mm 013-01 AREI Latvia
in 2022, and 238 mm in 2023, 013-074 AREI Latvia
compared to the 30-year long-term DS-17-16-DH LAMMC Lithuania
average (LTA) of 274 mm. 2021 had DS-638-5-DH LAMMC Lithuania
lower temperatures in April, May DS-635-7-DH LAMMC Lithuania
’ ’ DS-720-3-DH LAMMC Lithuania

and August, but higher temperatures in
gust, g P *NMBU — Norwegian University of Life Sciences;

(¢} o
June and July (4.2°C and 4.6°C METK - Centre of Estonian Rural Research and
above LTA). In 2022, temperatures Knowledge; AREI — Agricultural resources and
were cooler in April and May, with Economics; LAMMC - Research Centre for

June exceeding the LTA by 2.0 °C, Agriculture and Forestry.

and precipitation in June was 68% of

the LTA. In 2023, May was cool and rainfall in May and June was low (11% and 6% of
the LTA), affecting nutrient uptake and causing nitrogen deficiency, but July
temperatures were slightly below the LTA with sufficient moisture.

Acquisition of ground data:

Plant measurements and calculation of N use efficiency trait

Development stages for each genotype were recorded to provide an accurate timing
for destructive plant sampling. Above-ground plant samples were collected from a
0.1 m? area in the center of each 8x1.2 m plot at physiological maturity, prior to
mechanical harvest, to determine total biomass and nitrogen concentration for NUE
calculation. Plant samples were weighed, grains were threshed and weighted, and
samples of both grain and straw biomass were analysed for the total N concentration
using the Kjeldahl method (ISO 20483:2013) expressed on an oven—dried weight basis.
The dry matter content of grain and straw biomass samples was determined after oven
drying at 130 °C for 2 hours (ISO 712:2009).
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Nitrogen use efficiency (NUE) was computed as the grain yield per unit of the N
supply, which comprises both uptake efficiency (NUpE) and utilization efficiency
(NUtE) (Moll et al., 1982) (1):

B _ Nt _GDM
NUE = NUPE X NULE = 3~ X — (1)

where, GDM is grain dry mass per unit area, Nt is total above-ground plant biomass N,
including grain N concentration (NG) and straw biomass N concentration (NB) at
maturity per unit area, and Ns is N supply including the available N in the soil and applied
N from fertilizer per unit area. GDM, Nt, and Ns are all expressed in the same units. NG
and NB were determined by the Kjeldahl-N analysis and was expressed on a dry weight
basis. The available nitrogen (N) in the soil was considered to be the total mineral N
concentration in the upper 0.2 m of the soil profile, as determined before sowing and
calculated taking into account the soil bulk density. The total N concentration in the soil
samples were determined by the Modified Kjeldahl method (ISO 11261:2002).

Spectral data acquisition and processing

Proximal (phenomobile) and UAV-based spectral measurements were performed
three times during each trial year, corresponding to specific stages of plant vegetative
and generative development based on the Zadoks growth scale — tillering (growth stage
25/GS25), flowering (GS65), and milk development stage (GS75) (Table 2). The
developmental stages varied slightly between genotypes due to differences in
phenological development.

Table 2. Dates of spectral measurements during dominant growth stages

Phenotyping platforms  Growth stage 2021 2022 2023

Phenomobile Tillering (GS25) 05/31 05/26 05/25
Flowering (GS65) 06/28 07/01 06/27
Milk development (GS75) 07/15 07/19 07/13

Unmanned aerial vehicle Tillering (GS25) 05/29 05/25 05/23
Flowering (GS65) 06/29 06/30 06/26
Milk development (GS75) 07/13 07/18 07/11

Although the proximal (phenomobile) and UAV measurements were not always
performed on the same calendar day due to slight differences in phenological
development among genotypes, all measurements were conducted under similar
environmental conditions (clear skies, low wind) and corresponded to the same dominant
growth stage. This approach minimized short-term environmental variability and
ensured reliable comparison of vegetation indices across platforms.

A low-cost sensing plant phenotyping platform (phenomobile) was used for spring
wheat canopy proximal phenotyping, equipped with a consumer-grade RGB camera, the
Canon EOS 1300D, and a focal length of 18 mm (Fig. 2, a).

Images were saved in high-resolution (4,288%2,848 pixel) JPEG format. One
picture per plot (from the middle part of the plot) was captured. A white balance card
(WBC), placed at same height as the canopy, was positioned in the corner of each image
taken by the camera by using a cardholder on phenomobile. The height between the
ground and the camera was fixed at 2 meters, consistent across all growth stages and
years. After the white balance corrections, the WBC was cropped out of the images.
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Figure 2. Proximal image acquisition using a low-cost phenomobile for spring wheat canopy
phenotyping. (a) Phenomobile platform used for proximal sensing at the flowering stage (GS65);
(b) Representative canopy images with a white balance card captured at tillering (GS25),
flowering (GS65), and milk development (GS75) growth stages under the N75 fertilization level;
(c) Representative canopy images with a white balance card captured at GS25, GS65, and GS75
under the N150 fertilization level.

The CerealScanner plugin (University of Barcelona), utilizing Imagel software,
was used to analyze images and generate RGB vegetation indices from the proximal
phenotyping platform (Kefauver, 2018; Kefauver et al., 2020). It incorporates the hue,
saturation, and intensity (HSI) model to quantify plant properties. Indices such as Green
Area (GA) and Greener Green Area (GGA) were calculated by classifying pixels as
green, with GA including yellow to bluish-green tones, and GGA focusing on a narrower
range excluding yellowish-green. The Crop Senescence Index (CSI) combines these
indices to assess senescence (Kefauver et al., 2020). Two additional vegetation index
adaptations, NGRDIveg and TGlveg, were derived from the original NGRDI and TGI
formulas, respectively (Table 3). These indices were calculated by applying a vegetation
mask (NGRDI>0) to include only vegetation pixels, thereby minimizing soil
background effects and improving the accuracy of canopy reflectance estimates
(Hamdane et al., 2023).
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Table 3. Vegetation indices (VIs) derived from RGB images captured by the phenomobile

Abbr. Vegetation indices Formula Reference
HUE  The main component of the hue, The color value, measured  Kefauver et al., 2020
saturation, and intensity (HSI)  as an angle between 0° and
color model that represents the ~ 360° on the visible spectrum
actual color of an object
GA Green Area Index 60 <HUE < 180 Jauregui-Beso et al., 2025
GGA  Greener Green Area Index 80 <HUE < 180 Jauregui-Beso et al., 2025
CSI Crop Senescence Index 100(GA-GGA)/GA Hamdane et al., 2023
NGRDI Normalized Green-Red (G-R)/(G+R) Jauregui-Beso et al., 2025

Difference Index

TGI Triangular Greenness Index

-0.5(190(R-G)-120(G-B))  Jauregui-Beso et al., 2025

R —red, G — green, B — blue. Red, Green, and Blue are the digital number values in the respective channels

extracted from the orthophotos.

A commercial UAV model,
the DJI Phantom 4 Multispectral
quadcopter (DJI, Inc.,Shenzhen,
Guangdong, China), was used to
capture images from an altitude of
20 m and with a ground sample
distance (GSD) of 1 cm (Fig. 3, a).
The images were taken with a
minimum of 75% overlap in both
the front and side directions, using
a 90-degree (NADIR) camera
position. Each flight mission
generated approximately 5,000
TIFF images, with five images
captured for each shot. The result
was a series of average reflectance
values for field trial plots across
five spectral bands: red, green,
blue, red edge, and near-infrared.
Aerial images were processed
using PIX4Dmapper by Pix4D
(Switzerland), with orthophotos
georeferenced to an RMSE of
3-5cm. Ground control points
(GCPs) were established and
maintained throughout the
vegetation season to ensure
precision (Fig. 3,b). For each
flight, a multispectral photo
of the MAPIR calibration panel
was captured to standardize results
across locations and missions.
Spectral reflectance values were

I~

Figure 3. UAV-based remote sensing platform and
orthophoto of the spring wheat field trial. (a) UAV-
based multispectral platform before flight mission. (b)
UAV-derived orthophoto of the field trial at the
tillering stage (GS25), showing ground control points
and the split-split-plot design with 16 spring wheat
genotypes arranged in two replicates and two nitrogen
fertilization levels (N'75 on both sides and N150 in the
middle), totalling 64 plots.
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extracted from the orthophoto mosaics, cropped to field boundaries, and analysed using.
QGIS zonal statistics. A vector layer was created using a georeferenced orthophoto
image to delineate trial plots

A total of nine visible band vegetation indices, captured from UAV images, were
calculated based on a literature review of related previous studies (Table 4).

Table 4. Vegetation indices (VIs) derived from red green blue (RGB) images by unmanned aerial
vehicle

Abbr.  Vegetation indices Formula Reference

NGRDI Normalized Green-Red Difference Index  (G-R)/(G+R)  Rasmussen et al., 2016

GRRI  Green-Red Ratio Index G/R Du & Noguchi, 2017

NGBDI Normalized Green-Blue Difference Index  (G-B)/(G+B)  Rossi et al., 2025

ExG Excess Green Index 2G-R-B Lietal., 2022

VDVI Visible-Band Difference Vegetation Index (2G-R- Wang et al., 2013
B)/(2G+R+B)

BGI Blue Green Pigment Index B/G Prey & Schmidhalter, 2019

BRI Blue-Red Pigment Index B/R Prey & Schmidhalter, 2019

GMR  Green Minus Red Index G-R Wang et al., 2013

VARI  Visible Atmospherically Resistance Index  (G-R)/(G+R-B) Rossi et al., 2025

R —red, G — green, B — blue. Red, Green, and Blue are the digital number values in the respective channels
extracted from the orthophotos.

Statistical analysis

Although genetic variation in nitrogen use efficiency (NUE) was observed among
the 16 spring barley genotypes, the selection of vegetation indices (VIs) and growth
stages was based on the combined dataset across all genotypes to identify indices robust
for general NUE prediction.

The simple linear regression was used to develop predictive models for NUE based
on individual VIs (2):

y=a-+bx 2)

where, y is the predicted trait (e.g., NUE), x is the predictor (VI), b is the slope, and a is
the intercept.

Model performance was evaluated using Pearson correlation coefficient (), the
coefficient of determination (R?), and root mean square error (RMSE).

Pearson correlation coefficient (r) quantified the strength and direction of linear
relationships between variables (3):

o 20—y
(26— 7501 - 9)°

where x; and y; represent the observed values of variables x and y for observation i,
while x and y denote the mean values of the respective variables, the resulting Pearson
correlation coefficient r ranges from —1 to 1, with values close to 1 indicating a strong
positive linear relationship, values near —1 indicating a strong negative relationship, and
values around 0 suggesting no linear association.

3)
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The model accuracy was assessed using the coefficient of determination (R*), root
mean square error (RMSE). The coefficient R* gauges the alignment between the
estimated and measured values. R? represents the proportion of variance in the dependent
variable explained by the model and ranges from 0 to 1, a value closer to 1 signifies a
better model fit.

The coefficient of determination (R?) was calculated as (4):

&2
Rz 120 yi)2 @
Z()’l - yl)

Root mean square error (RMSE) measured the average prediction error to quantify

model accuracy (5):
. — )2
RMSE = ’M ®)

where y; denotes the observed value for observation ¥; represents the model-predicted
value for the same observation, and n is the total number of observations. RMSE
quantifies the average difference between predicted and observed values. Lower values
of RMSE indicate better model fit. Its units are the same as the dependent variable (e.g.,
kg ha™ for NUE).

The best regression models for NUE prediction were defined as those exhibiting
the highest R? and lowest RMSE values.

For each growth stage, RMSE values were used to rank the VIs for their predictive
ability of NUE (Eq. 6). Ranking of vegetation indices (VI) (6):

Rank — Rank,;,,

Rank,,,, — Rank iy

Rankyorm = (6)

The best-performing VI received the lowest rank. To account for differences across
growth stages, ranks were normalized for each stage and summed to produce a total rank
sum for each VI (7):

Total Rank Sum = Z Rank,orm (7

stages

Higher total rank sums indicate better overall predictive performance across stages.

All analyses were conducted using the Real Statistics add-in for MS Excel and R
statistical software version 4.2.3 (R Core Team, 2021), utilizing the packages: /mridge,
tidyverse, corrr, ggplot2, and ggpubr.

RESULTS AND DISCUSSION

Implementing affordable high-throughput phenotyping tools to monitor wheat
traits throughout growth stages provides valuable insights for breeders investigating
genotype-phenotype correlations. This study offers an opportunity to validate VIs under
contracting management and environmental conditions. This paper identifies an optimal
set of RGB VIs for nitrogen use efficiency in spring wheat, evaluating their performance
under low and high N fertilization conditions. Because sensor data can be influenced by
lighting, platform inconsistencies, and canopy structural changes at different growth
stages, identifying robust indices is essential.
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Nitrogen use efficiency under contrasting nitrogen rates and environments

Nitrogen use efficiency (NUE) showed pronounced variation between nitrogen
fertilization levels, years, and genotypes (Fig. 4). Across all six environments (three
years x two N levels), NUE was consistently higher at the reduced fertilization rate (N75)
compared to the higher input (N150). In 2021, mean NUE reached 30.6 kg grain kg N
under N75, while it decreased to 20.1 kg grain kg N! under N150. In 2022, the highest
values were recorded, with 50.2 and 28.9 kg grain kg N' at N75 and N 150, respectively.
In 2023, NUE was again higher under N75 (32.2) than N150 (19.5). The differences
between nitrogen treatments were statistically significant (P < 0.05) within each year.
Boxplots further revealed considerable phenotypic variation among the 16 genotypes,
indicating genetic diversity in the capacity to utilize nitrogen efficiently.
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Figure 4. Boxplot showing the phenotypic distribution of Nitrogen use efficiency (NUE) for 16
spring wheat genotypes grown in six environments. The black horizontal line in each boxplot is
the median, the lower and upper box edges are the first and third quartiles, respectively, and the
whiskers are the data minimum and maximum. The black circle in each plot is the mean for that
class. Outliers are shown as open circles; 2021, 2022 and 2023—year of trials; N75—-N rate with
75 kg N ha™'; N150-N rate with 150 kg N ha™!; a, b-significant differences (P < 0.05) between
the mean values of two N rates within each year are shown by different superscript letters.

The strong year-to-year variation was closely related to meteorological conditions.
In 2021, although precipitation (334 mm) was above the 30-year long-term average
(274 mm), elevated temperatures in June and July (+4.2 °C and +4.6 °C above LTA,
respectively) likely accelerated crop development, limiting the time for N uptake and
reducing NUE under higher fertilization. In 2022, rainfall was near average (332 mm)
and temperatures during grain filling were favorable, which likely contributed to the
highest NUE values observed across the study. In contrast, 2023 was characterized by
exceptionally dry conditions in May and June (11% and 6% of LTA precipitation), which
restricted nutrient uptake and caused visible nitrogen deficiency symptoms, resulting in
markedly lower NUE despite adequate rainfall in July. These results confirm the strong
environmental dependence of NUE and are consistent with earlier findings that nitrogen
efficiency in cereals is highly sensitive to seasonal weather patterns and soil moisture
availability (Frels et al., 2018; De Santis et al., 2025).
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The decline in NUE under higher nitrogen rates (N150) across all years highlights
the diminishing returns of excessive N fertilization. Results of Litke et al (2018) obtained
also in Latvian conditions indicated that the nitrogen fertilizer rate affected significantly
(P <0.001) NUE, and higher NUE was in the variants with the lowest nitrogen rates. It
demonstrating that increased N input beyond crop demand can lower N efficiency in
cereals, primarily due to limited uptake and higher losses. From an agronomic
perspective, these findings underscore the importance of identifying wheat genotypes
capable of maintaining high NUE under reduced nitrogen supply.

Identifying optimal visible light spectral VIs and growth stages for
predicting NUE

The observed phenotypic variation in nitrogen use efficiency (NUE), with
consistently higher values under N75 and strong year-to-year dependence on
meteorological conditions, provides a solid basis for evaluating the capacity of VIs to
capture these agronomic differences. Such an approach aligns with previous work
showing that optical/photometric diagnostics can effectively reflect crop nitrogen status
under varied fertilization in spring barley and rapeseed (Shchuklina et al., 2022).
Also, the study on evaluation of useability of vegetation indices has employed UAV plus
RGB multispectral imaging and proximal sensors to monitor crop leaf properties and
canopy structure in different phenological stages (Jelinek et al., 2020). The research on
wheat demonstrated that various image features derived from UAV RGB images,
including RGB-based vegetation indices (VIs) and color parameters, can effectively
estimate the nitrogen status (Fu et al., 2020). Timing is crucial for obtaining accurate
phenotyping results (Prey et al., 2020). Together, these studies help frame our analysis
of how proximal and UAV-based spectral tools can estimate NUE reliably across
environments.

We are particularly focused on vegetation indices (VIs) strongly linked to nitrogen
use efficiency (NUE) that remain consistent across different environments. The three
highest-ranking VIs for the NUE trait, based on the summed rank across growth stages
in 2021, 2022, and 2023 are presented in Table 5.

The top ranked VIs varied depending on growth stage and environmental factors
(N fertilizer rate and year of investigation). In 2021 RMSE was lowest for VI prediction
of NUE at flowering (GS65) and at the milk development stage (GS73), under high N
(N150) conditions. In 2022 RMSE was lowest for VI prediction of NUE trait under
both low and high N treatments. In turn in 2023 RMSE was lowest for VI prediction of
NUE trait at GS65 and GS75, but only under N75 fertilization rate. The highest ranked
VI for NUE trait was different for each environment. Common VIs often was identified
among the three most predictive indices base on ranking results in the varied
environments.

The Normalized Green-Red Difference Index (NGRDI) was the vegetative
index consistently identified as the most predictive over the three-year study
period. In 2021, at GS75, NGRDI accounted for 23% of the NUE variation,
while it explained 29% in 2022 and 55% in 2023. The NGRDI index, proposed
by Hunt et al.,, 2005 to assess dry biomass and nutrient status, is similar to the
NDVI but uses the green and red bands instead of the red and near-infrared (NIR) bands.
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Table 5. Root mean square error (RMSE), and rank (R) for VI and NUE regression in three years
of investigation

Growing stage

VI GS25 GS65 GS75 SR
RMSE R? R RMSE R? R RMSE R® R

2021

N75

HUE 0.24 0.04ns 3 024 0.05ns 7 0.24 0.02ns 6 16

GA 0.24 0.03ns 4 023 0.1lns 3 0.24 002ns 2 9

GGA 0.24 0.0lns 7 0.22 0.20%* 1 0.24 0.0lns 10 18

N150

NGRDI? 0.21 0.09ns 6 0.19 0.22*%* 3 0.19 0.23** 3 12

GRRI 0.21 0.10* 4 0.19 0.21** 4 0.19 0.22** 6 14

VARI 0.21 0.09 5 0.19 0.20** 5 0.19 0.22** 5 15

2022

N75

HUE 0.20 0.09ns 6 0.20 0.06ns 3 0.18 0.28** 4 13
GA 0.19 0.14* 1 021 0.02ns 10 0.17 031*** 1 12
NGRDI' 0.20 0.10ns 4 0.21 0.02ns 11  0.18 0.29*%* 3 18
N150

NGBDI  0.27 0.05ns 5 0.28 0.02ns 7 0.26 0.17* 3 15
ExG 0.27 0.05ns 4 0.28 0.05ns 2 0.25 023** 1 7
BGI 0.27 0.05ns 6 0.28 0.02ns & 0.26 0.17* 2 16
2023

N75

VDVI 0.25 0.06ns 7 0.22 030* 5 0.19 0.46** 5 17
GA 0.25 0.04ns 12 0.21 031* 4 0.16 0.60*** 2 18
NGRDI' 0.26 0.0lns 14 0.20 037 1 0.17 0.55** 4 19
N150

HUE 0.25 0.05ns 3 024 0.10ns 3 0.25 0.03ns 12 18

GGA 0.25 0.02ns 6 024 0.1lns 2 0.25 0.05ns 10 18
NGRDI' 0.25 0.04ns 4 0.25 0.08ns 4 0.25 0.06ns 9 17

3 years — 2021, 2022 and 2023; 2 N levels — N75: 75 kg N ha™', N150: 150 kg N ha™'; across four crop growth
stages (GS): GS25 — tillering growth stage; GS65 — flowering growth stage; GS75 — milk development growth
stage; R’ - determination coefficients, SR — Summed Rank; HUE — the main component of the hue, saturation,
and intensity (HSI) color model that represents the actual color of an object; GA — Green Area Index;
GGA - Greener Green Area Index; NGRDI — Normalized Green-Red Difference Index; GRRI — Green—Red
Ratio Index; VARI — Visible Atmospherically Resistant Index; NGBDI — Normalized Green-Blue Difference
Index; ExG — Excess Green Index; BGI — Blue Green Pigment Index; VDVI — Visible-Band Difference
Vegetation Index; 'Phenomobile; 2 UAV, *#*P<(.001; **P<0.01; *P<0.05; ns — non-significant.

This approach enables the use of lightweight digital cameras due to spectral differences
between vegetation and soil, though it has certain limitations. A study on wheat found
that UAV-based remotely sensed multispectral traits were more effective in predicting
variations in NUE among genotypes (Yang et al., 2020). Although NGRDI, recorded
using UAV as a reliable replacement for destructive measurements, showed high r
values, they concluded that multispectral indices containing the near-infrared band, such
as NDVI, GNDVI, NDRE, and RECI, were more sensitive for NUE prediction.
Similarly, a study by Kefauver et al., 2017 indicated that different multispectral indices
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are often more complementary in a multivariate model than the quantification provided
by high-resolution RGB, which covers only broad electromagnetic regions within the
visible spectrum. In the study by Prey & Schmidhalter, 2019, a quantitative index
ranking was used to assess growth stage-independent indices. They found that near-
infrared (NIR) and red-edge indices were particularly effective for estimating grain and
total nitrogen uptake, outperforming traditional visible light indices.

The study also noted that the ear emergence and anthesis phases were less effective
for detecting grain N uptake due to variations in plant development. Similar to our
findings, it was concluded that the milk development stage is optimal for spectral
measurements, offering the best relationships for estimating N use traits, while stem
elongation also showed promise for earlier estimations (Prey et al., 2020). Biomass dry
matter is closely linked to NUE, as higher biomass per unit of nitrogen indicates higher
NUE, making biomass a key indicator for assessing nitrogen efficiency. A remote
sensing study with NGRDI found that dry biomass in crops like soybeans and corn was
linearly correlated with this visible light index up to a certain biomass threshold, beyond
which NGRDI saturated, indicating it could no longer capture additional biomass
variation. Additionally, in a corn fertilization experiment, NGRDI did not reflect
nitrogen status differences despite visible low nitrogen areas in late-season images
(Hunt et al., 2005).

Green Area Index (GA) was another one VIs identified as the most predictive over
the three-year study period. GA at GS75 explained 2%, 31%, and 60% of the NUE
variation over the three years of the study, respectively (Table 4). Casadesu et al., 2007
found a high correlation between RGB VIs (e.g., GA, GGA) and NDVI. In rainfed
conditions, each visible light VI provided estimations similar to or slightly better than
NDVI. However, in high-productivity conditions during anthesis, neither the RGB VIs
nor NDVI accurately estimated productivity, likely due to VI saturation in areas with
full soil cover and high plant density.

The Visible Atmospherically Resistant Index (VARI) is commonly used for
vegetation data collection with RGB cameras. In our study, we did not select VARI as
index a consistently correlated with NUE, as it provided significant regression only in
2021, at both the flowering and milk development stages (Table 4). However, other
studies have shown strong correlations with VARI at the tillering stage (Ge et al., 2021)
and the initial grain-filling stage (Liu et al., 2022).

In general, in our study the vegetation indices obtained from the proximal platform
provided a comparatively better NUE prediction model. It should be noted that in 2021
and 2022, at the high fertilization rate, only the vegetation indices obtained from UAVs
were at the top of the RMSE ranking. Prey & Schmidhalter, 2019 highlighted that while
spectral proximal sensing can optimize nitrogen management in wheat cultivation,
improvements in index selection and understanding of plant traits are needed. This is
because nitrogen partitioning to the grain is not always detectable by sensors, limiting
the effectiveness of spectral sensing methods.

Correlation between NUE trait and selected VIs across varied environments

Correlation analysis was conducted to evaluate the relationships between NUE and
the four most predictive VIs under contrasting N rates and over three years
environmental conditions: ExG and VDVI obtained from the UAV sensing platform,
and GA and NGRDI from the phenomobile (Table 6).

39



Table 6. Correlation between NUE and selected VI across nitrogen rates and years

Year N rate GS ExG VDVI GA NGRDI Ph
2021 N75 GS25 0.028 -0.072 -0.178 -0.032
GS65 -0.270 -0.007 0.328 0.276
GS75 0.055 0.111 0.148 0.123
N150 GS25 -0.364* -0.316 -0.325 -0.268
GS65 -0.130 0.303 0.517** 0.480**
GS75 0.349 0.418%* 0.472** 0.463**
2022 N75 GS25 0.295 0.277 0.376* 0.320
GS65 0.070 -0.159 0.155 -0.132
GS75 0.191 0.198 0.557*** 0.539**
N150 GS25 -0.230 -0.186 -0.132 -0.032
GS65 -0.220 -0.039 0.035 -0.035
GS75 -0.479%* 0.035 0.322 0.355%
2023 N75 GS25 -0.438* -0.413* -0.364* -0.384*
GS65 -0.225 0.604*** 0.609%** 0.612%**
GS75 0.288 0.662%** 0.638%** 0.717%%**
N150 GS25 -0.281 -0.246 -0.193 -0.118
GS65 0.091 0.546* 0.560* 0.610%*
GS75 0.367 0.681** 0.776%** 0.741%**

3 years — 2021, 2022 and 2023; 2 N levels — N75: 75 kg N ha™!, N150: 150 kg N ha™'; across four crop
growth stages (GS): GS25 - tillering growth stage; GS65 — flowering growth stage; GS75 — milk
development growth stage; ExG — Excess Green Index; VDVI — Visible-Band Difference Vegetation Index;
GA - Green Area Index; NGRDI Ph — Normalized Green-Red Difference Index calculated from
Phenomobile images; ***P<0.001; **P<0.01; *P<0.05; ns — non-significant.

In all years of the study, VIs such as VDVI, GA, and NGRDI were most strongly
correlated with NUE at Zadoks growth stage 75 (GS75). However, unlike in 2021 and
2022, in the 2023 environment, these same VIs were also correlated with NUE at the
flowering stage (GS65) under both N rates. In another study of wheat N use traits under
four nitrogen treatments across two experimental sites, the Normalized Green-Red
Difference Index (NGRDI) showed low correlations with N-content at flowering and
maturity in high N treatments (180-240 kg N ha™'), but strong correlations (r = 0.81 to
0.89) in low N treatments (0—120 kg N ha') (Yang et al., 2020). Vegetation indices in
spring wheat strongly correlated with NUE at the jointing stage (GS30 on the Zadoks
scale, when the first signs of stem elongation are visible) from visible light indices with
also NGRDI showing the highest correlation coefficient (Liu et al., 2022). All selected
VIs, except ExG, were mostly positively correlated with NUE at GS65 and GS75.
Overall, the ExG index demonstrated variability in the correlation relationship across
different environments.

In all years of the study, at the early stage of development (GS25), the rank-based
best VIs showed mostly negative correlation relationships with the NUE trait. The
Pearson correlation analysis was performed between RGB-VIs from UAV images and
plant N concentration also across rice growth stages. At the jointing stage, very strong
correlations were observed with Green-Red Ratio Index (GRRI) (r = 0.89) and NGRDI
(r=0.89). At the flowering stage, GRRI showed the highest correlation with N content
(r=10.84) among all RGB-VIs (Ge et al., 2021). The study of Prey at al., 2020 noted
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that index differentiation was most pronounced in the highest-yielding year, highlighting
the impact of environmental conditions on spectral data and the importance of
year-specific calibration.

Comparison of Visible Spectrum VIs Performance: Proximal vs. UAV-Based
Remote Sensing Platforms

According to the results of regression analysis (Table 4), the VIs obtained with the
proximal platform (phenomobile) were most frequently found at the top three of the
ranking. To compare the results between the two phenotyping platforms, we used
NGRDI, calculating the correlation between the VIs obtained from the unmanned
aerial vehicle (NGRDI UAV) and the phenomobile (NGRDI Ph) by each year of
investigation (Fig. 5).

2021 GS = 25 =+ 65 = 75 2022 GS = 25 + 65 = 75
04] 04|
’ R=0.74, p = 4e-12 ’ ‘ R=0.87,p<2.2e-16
R=0.55; p=2.5e-06 R=0.74, p=2.3e-12
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Figure 5. Relationship between Normalized Green-Red Difference Index obtained from the
unmanned aerial vehicle (NGRDI UAV) and the phenomobile (NGRDI Ph) in 2021,
2022 and 2023.
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High regression coefficients (R?> =0.56—0.93) were obtained withing all years of
the study, indicating the comparability of the sensor results from both platforms. Minor
discrepancies in the data alignment between the two platforms may arise because
measurements in certain years and plant development stages differed by one to two days
(Table 1). A study on barley also compared UAV-based and field-based high-throughput
plant phenotyping using the free, open-source image analysis software FIJI. This
analysis utilized RGB images from conventional digital cameras in combination with a
matching set of ground sensors. The highest correlations with final grain yield came
from the GGA and GA indices from RGB images taken at the ground level followed
closely by the same indices measured from the UAV aerial platform (Kefauver et al.,
2017). Two sensing systems including RGB and a multispectral camera were compared
in the study of Quemada et al., 2019. The findings indicate that the use of optical sensors,
both at ground level and from unmanned aerial vehicles (UAVs), can significantly
enhance the understanding of crop nitrogen status and yield potential. They concluded
that VIs obtained from ground measurements were highly correlated with those from the
aerial platform.

CONCLUSIONS

Nitrogen use efficiency (NUE) in spring wheat was strongly influenced by nitrogen
fertilization level, year-specific environmental conditions, and genotype. Lower
fertilization consistently resulted in higher NUE, while considerable genetic variability
indicated opportunities for breeding improvements. The clear interaction between
management and environment provides a robust basis for testing the capacity of
vegetation indices to capture differences in NUE across diverse conditions.

Although the relationships between vegetation indices (VIs) and NUE were
environmentally dependent, significant and robust correlations were identified. In
general, proximal sensing platforms provided comparatively stronger prediction models
for NUE. The Normalized Green-Red Difference Index (NGRDI) and Green Area Index
(GA) consistently emerged as the most reliable predictors across three years, with the
milk growth stage (GS75) proving to be the optimal timing for NUE estimation.
Comparisons of NGRDI between proximal and UAV-based platforms confirmed the
comparability of visible-spectrum canopy reflectance indices, though UAVs offer higher
throughput in data acquisition.

Taken together, the results demonstrate that combining agronomic evaluation under
contrasting N fertilization rates and environments with canopy reflectance traits
enhances the capacity to phenotype NUE. This highlights the potential of low-cost
proximal and UAV sensing platforms to complement traditional destructive methods and
support both breeding and precision nitrogen management.
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