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Abstract. Phenotyping nitrogen use efficiency (NUE) is labour-intensive and time-consuming, 
often requiring destructive biomass sampling. Cost-effective sensing tools provide a promising 
alternative for rapid assessment of numerous wheat genotypes. In this study, sixteen spring wheat 
genotypes were evaluated in Latvia over three consecutive years (2021–2023) under two nitrogen 
fertilization levels (N75 and N150) in a split-split-plot design with two replicates, totaling 64 
plots. NUE consistently differed between N rates and was strongly influenced by year-specific 
environmental conditions, providing contrasting scenarios for testing sensing approaches. To 
capture this variation, two platforms were tested for spectral estimation of NUE: a low-cost 
proximal phenomobile equipped with an RGB sensor, and an unmanned aerial vehicle (UAV) 
with a multispectral sensor. Canopy reflectance was measured at three growth stages (tillering, 
flowering, and milk development) to calculate 8 proximal and 9 UAV-based visible-spectrum 
vegetation indices (VIs). Although relationships between VIs and NUE were environmentally 
dependent, significant and robust correlations were found. Proximal sensing generally provided 
stronger prediction models, with the Normalized Green-Red Difference Index (NGRDI) and 
Green Area Index (GA) consistently most predictive across years. The milk development stage 
(GS75) proved optimal for NUE estimation. Comparisons of NGRDI between platforms 
demonstrated their compatibility, though UAVs offer higher throughput for large-scale 
phenotyping. These findings highlight the potential of integrating agronomic evaluation with 
canopy reflectance traits to support breeding and precision nitrogen management. 
 
Key words: Triticum aestivum L., proximal and remote sensing, canopy reflectance, NUE 
prediction, correlation. 
 

INTRODUCTION 
 

Wheat (Triticum aestivum L.) is the most widely grown cereal globally, including 
in Latvia, and a major source of calories and protein. The primary goal of wheat 
production is to maximize grain yield while ensuring adequate protein content. Grain 
yield per unit area is a key indicator of productivity and nitrogen use efficiency (NUE), 
which optimizes nitrogen utilization and reduces environmental losses (Malinas et al., 
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2022; Xu et al., 2024). NUE, defined as grain yield per unit of available nitrogen, 
includes nitrogen uptake efficiency (NupE), reflecting a genotype’s ability to absorb 
nitrogen, and nitrogen utilization efficiency (NutE), which measures how effectively it 
uses nitrogen for grain production (Moll, et al., 1982). Evaluating NUE must consider 
the relationship between nitrogen and grain protein content, as efficiently remobilized 
nitrogen increases protein (Malinas et al., 2022).  Both agronomy and breeding are 
crucial for improving NUE and related traits (Hawkesford & Griffiths, 2019). Since 
phenotyping NUE traits is labor-intensive, alternative, cost-effective methods like 
sensing tools are needed for rapid assessment of wheat genotypes. 

In agriculture, sensor-based measurements are powerful tools for assessing crop 
characteristics like canopy health, growth stage, yield, biomass, nutrient status, water 
stress, and vegetative density (Song, et al., 2021; Gano, et al., 2024). Several studies for 
different crops have addressed aspects related to growing management, crop growth, and 
vegetation indices. For example, Domínguez et al. (2017) has demonstrated the potential 
of remote sensing indices to explain crop performance (e.g. yield in winter oilseed rape). 
Änäkkälä et al. (2023) used UAV multispectral imaging and visible-band vegetation 
indices to assess maize canopy traits (GLI, NDVI, etc.), demonstrating the potential of 
UAV-based remote sensing for phenotyping crop status under varying management.   
Another study, explored spatial variability in wheat using NDVI and related indices 
(Abreu et al., 2023). 

Such non-invasive approach is essential for long-term studies and monitoring 
multiple plant varieties, making it especially useful for breeding programs that require 
rapid screening of numerous accessions (Song, et al., 2021). Sensing methods capture 
electromagnetic reflectance from crop canopies, influenced by plant surface properties, 
while spectral vegetation indices (VIs), derived from various spectral bands, quantify 
green vegetation. Each VI has unique advantages, limitations, and suitability for specific 
applications (Vidican et al., 2023). 

Canopy proximal phenotyping uses sensors or imaging systems placed near the 
plant canopy on mobile platforms for real-time assessment of plant traits in the field 
(Prey et al., 2020; Rui et al., 2024). These platforms capture high-resolution data on traits 
like canopy height, growth, biomass, and VIs (Pour et al., 2021; Gano et al., 2024). The 
advancement of unmanned aerial vehicles (UAVs) has revolutionized remote sensing by 
capturing high-resolution images from low altitudes, providing greater flexibility than 
ground-based platforms (Tanaka et al., 2024). UAVs with various sensors are 
increasingly used to detect NUE related traits (Rasmussen et al., 2016; Quemada et al., 
2019; Yang et al., 2020). VIs derived from reflectance help monitor nitrogen status and 
wheat performance (Prey & Schmidhalter, 2019; Fu et al., 2020), and studies show that 
high-resolution UAV-based RGB images can measure vegetation fractions, grain yield, 
physiological parameters, and nitrogen content (Fu et al., 2020; Feng et al., 2022; Prey 
et al., 2022; Zhang et al., 2024; Rossi et al., 2025). Building on this concept, our study 
evaluates visible-spectrum vegetation indices from proximal and UAV platforms to 
estimate nitrogen use efficiency (NUE) in spring wheat across different environments 
and fertilization levels. 

Studies on remote phenotyping of yield and NUE related traits in wheat highlight 
the importance of selecting appropriate spectral indices (VIs) and optimal growth  
stages for measurements, as different environments have unique characteristics (Prey &  
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Schmidhalter, 2019; Prey et al., 2020). It is essential to evaluate the strengths and 
weaknesses of each VI before choosing the most suitable one for the specific 
environment, application, and platform. These studies show that there is an established 
interest in nitrogen effects on cereal crops, remote sensing and/or indices, but to our 
knowledge none have directly compared proximal vs UAV-based visible-spectrum 
vegetation indices across multiple growth stages for prediction of NUE in spring wheat 
over multiple years, which is what we aim to do in current study. 

The first results on UAV multispectral estimation of grain yield (GY) under 
different N rates in Nordic–Baltic environments are available at Jansone et al. (2024). 
Our paper focuses on nitrogen use efficiency (NUE) estimated at maturity for the same 
set of spring wheat genotypes grown under two nitrogen fertilization levels over three 
years in Latvia. 

The objectives were to (1) evaluate nitrogen use efficiency (NUE) under contrasting 
nitrogen fertilization rates (N75 and N150) across multiple environments; (2) identify 
the most suitable visible-spectrum vegetation indices (VIs) and optimal growth stages 
for predicting NUE in spring wheat, (3) explore correlations between NUE traits and 
selected VIs across environments to assess their robustness, and (4) compare the 
predictive performance of proximal (RGB phenomobile) and UAV-based (multispectral) 
sensing platforms for estimating NUE. This research offers valuable insights into using 
spectral indices for breeding and precision phenotyping. 

 
MATERIALS AND METHODS 

 
Experimental site and methods 
Field trials were conducted at the AREI Stende Research Centre experimental site 

in northwest Latvia (57°18′ N, 22°56′ E; WGS84 coordinate system) during the  
2021–2023 growing seasons (Fig.1, b). Trials were established as a split-split-plot design 
including 16 spring wheat genotypes arranged in two randomized replicates (R1 and R2) 
with two nitrogen fertilization levels (N75 and N150), for a total of 64 plots (Fig. 1, a; 
Table 1). 

 

 
 
Figure 1. (a) The experiment design of established trials; (b) geographical location of study area.  
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The main plots represented nitrogen (N) rates, while sub-plots were assigned to 
wheat genotypes. A detailed description of the 16 varieties and breeding lines from 
Latvia, Lithuania, Estonia, and Norway is provided in the previous study (Jansone et al., 
2024). Two N fertilization rates (75 kg ha−1 N for N75 and 150 kg ha−1 N for N150) were 

the LTA. In 2023, May was cool and rainfall in May and June was low (11% and 6% of 
the LTA), affecting nutrient uptake and causing nitrogen deficiency, but July 
temperatures were slightly below the LTA with sufficient moisture. 

 
Acquisition of ground data: 
Plant measurements and calculation of N use efficiency trait 
Development stages for each genotype were recorded to provide an accurate timing 

for destructive plant sampling. Above-ground plant samples were collected from a 
0.1 m² area in the center of each 8×1.2 m plot at physiological maturity, prior to 
mechanical harvest, to determine total biomass and nitrogen concentration for NUE 
calculation. Plant samples were weighed, grains were threshed and weighted, and 
samples of both grain and straw biomass were analysed for the total N concentration 
using the Kjeldahl method (ISO 20483:2013) expressed on an oven–dried weight basis. 
The dry matter content of grain and straw biomass samples was determined after oven 
drying at 130 °C for 2 hours (ISO 712:2009). 

applied before sowing. The field 
consisted primarily of homogeneous 
Albeluvisol (eutric) sandy loam. 
Spring wheat was sown at a density of 
500 germinable seeds per m2 in rows 
spaced 12.5 cm apart. Plots were 1.2 m 
wide and 8.4 m long. Trials were 
conducted between 23 April and 2 May 
each year, depending on weather 
conditions. Pesticides, including 
herbicides, foliar fungicides, and 
insecticides (if needed), were applied. 

Meteorological conditions varied 
each year: precipitation from May to 
August was 334 mm in 2021, 332 mm 
in 2022, and 238 mm in 2023, 
compared to the 30-year long-term 
average (LTA) of 274 mm. 2021 had 
lower temperatures in April, May,  
and August, but higher temperatures in 
June and July (4.2 °C and 4.6 °C  
above LTA). In 2022, temperatures 
were cooler in April and May, with 
June exceeding the LTA by 2.0 °C,  
and precipitation in June was 68% of  

 
Table 1. Spring wheat varieties and breeding
lines used in the study 

Genotype name Provider* 
Country 
of origin 

Runar NMBU Norway 
Zombi Graminor Norway 
Caress NMBU Sweden 
Betong Graminor Norway 
Hiie METK Estonia 
Voore METK Estonia 
876 METK Estonia 
990-2 METK Estonia 
Robijs AREI Latvia 
013-032 AREI Latvia 
013-01 AREI Latvia 
013-074 AREI Latvia 
DS-17-16-DH LAMMC Lithuania 
DS-638-5-DH LAMMC Lithuania 
DS-655-7-DH LAMMC Lithuania 
DS-720-3-DH LAMMC Lithuania 
*NMBU – Norwegian University of Life Sciences; 
METK – Centre of Estonian Rural Research and 
Knowledge; AREI – Agricultural resources and 
Economics; LAMMC – Research Centre for 
Agriculture and Forestry. 
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Nitrogen use efficiency (NUE) was computed as the grain yield per unit of the N 
supply, which comprises both uptake efficiency (NUpE) and utilization efficiency 
(NUtE) (Moll et al., 1982) (1): 

𝑁𝑈𝐸 ൌ 𝑁𝑈𝑝𝐸 ൈ 𝑁𝑈𝑡𝐸 ൌ
𝑁𝑡
𝑁𝑠

ൈ
𝐺𝐷𝑀
𝑁𝑡

 (1) 

where, GDM is grain dry mass per unit area, Nt is total above-ground plant biomass N, 
including grain N concentration (NG) and straw biomass N concentration (NB) at 
maturity per unit area, and Ns is N supply including the available N in the soil and applied 
N from fertilizer per unit area. GDM, Nt, and Ns are all expressed in the same units. NG 
and NB were determined by the Kjeldahl-N analysis and was expressed on a dry weight 
basis. The available nitrogen (N) in the soil was considered to be the total mineral N 
concentration in the upper 0.2 m of the soil profile, as determined before sowing and 
calculated taking into account the soil bulk density. The total N concentration in the soil 
samples were determined by the Modified Kjeldahl method (ISO 11261:2002). 

 
Spectral data acquisition and processing 
Proximal (phenomobile) and UAV-based spectral measurements were performed 

three times during each trial year, corresponding to specific stages of plant vegetative 
and generative development based on the Zadoks growth scale – tillering (growth stage 
25/GS25), flowering (GS65), and milk development stage (GS75) (Table 2). The 
developmental stages varied slightly between genotypes due to differences in 
phenological development. 

 
Table 2. Dates of spectral measurements during dominant growth stages 

Phenotyping platforms Growth stage 2021 2022 2023 
Phenomobile Tillering (GS25) 05/31 05/26 05/25 

Flowering (GS65) 06/28 07/01 06/27 
Milk development (GS75) 07/15 07/19 07/13 

Unmanned aerial vehicle Tillering (GS25) 05/29 05/25 05/23 
Flowering (GS65) 06/29 06/30 06/26 
Milk development (GS75) 07/13 07/18 07/11 

 
Although the proximal (phenomobile) and UAV measurements were not always 

performed on the same calendar day due to slight differences in phenological 
development among genotypes, all measurements were conducted under similar 
environmental conditions (clear skies, low wind) and corresponded to the same dominant 
growth stage. This approach minimized short-term environmental variability and 
ensured reliable comparison of vegetation indices across platforms. 

A low-cost sensing plant phenotyping platform (phenomobile) was used for spring 
wheat canopy proximal phenotyping, equipped with a consumer-grade RGB camera, the 
Canon EOS 1300D, and a focal length of 18 mm (Fig. 2, a). 

Images were saved in high-resolution (4,288×2,848 pixel) JPEG format. One 
picture per plot (from the middle part of the plot) was captured. A white balance card 
(WBC), placed at same height as the canopy, was positioned in the corner of each image 
taken by the camera by using a cardholder on phenomobile. The height between the 
ground and the camera was fixed at 2 meters, consistent across all growth stages and 
years. After the white balance corrections, the WBC was cropped out of the images. 
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Figure 2. Proximal image acquisition using a low-cost phenomobile for spring wheat canopy 
phenotyping. (a) Phenomobile platform used for proximal sensing at the flowering stage (GS65); 
(b) Representative canopy images with a white balance card captured at tillering (GS25), 
flowering (GS65), and milk development (GS75) growth stages under the N75 fertilization level; 
(c) Representative canopy images with a white balance card captured at GS25, GS65, and GS75 
under the N150 fertilization level. 

 
The CerealScanner plugin (University of Barcelona), utilizing ImageJ software, 

was used to analyze images and generate RGB vegetation indices from the proximal 
phenotyping platform (Kefauver, 2018; Kefauver et al., 2020). It incorporates the hue, 
saturation, and intensity (HSI) model to quantify plant properties. Indices such as Green 
Area (GA) and Greener Green Area (GGA) were calculated by classifying pixels as 
green, with GA including yellow to bluish-green tones, and GGA focusing on a narrower 
range excluding yellowish-green. The Crop Senescence Index (CSI) combines these 
indices to assess senescence (Kefauver et al., 2020). Two additional vegetation index 
adaptations, NGRDIveg and TGIveg, were derived from the original NGRDI and TGI  
formulas, respectively (Table 3). These indices were calculated by applying a vegetation 
mask (NGRDI > 0) to include only vegetation pixels, thereby minimizing soil 
background effects and improving the accuracy of canopy reflectance estimates 
(Hamdane et al., 2023). 

 

(a) 

(b) 

(c) 
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Table 3. Vegetation indices (VIs) derived from RGB images captured by the phenomobile 

Abbr. Vegetation indices Formula Reference 
HUE The main component of the hue, 

saturation, and intensity (HSI) 
color model that represents the 
actual color of an object 

The color value, measured  
as an angle between 0° and 
360° on the visible spectrum 

Kefauver et al., 2020 

GA Green Area Index 60 < HUE < 180 Jauregui-Besó et al., 2025 
GGA Greener Green Area Index 80 < HUE < 180 Jauregui-Besó et al., 2025 
CSI Crop Senescence Index 100(GA-GGA)/GA Hamdane et al., 2023 
NGRDI Normalized Green-Red  

Difference Index 
(G-R)/(G+R) Jauregui-Besó et al., 2025 

TGI Triangular Greenness Index -0.5(190(R-G)-120(G-B)) Jauregui-Besó et al., 2025 
R – red, G – green, B – blue. Red, Green, and Blue are the digital number values in the respective channels 
extracted from the orthophotos. 

 
A commercial UAV model, 

the DJI Phantom 4 Multispectral 
quadcopter (DJI, Inc.,Shenzhen, 
Guangdong, China), was used to 
capture images from an altitude of 
20 m and with a ground sample 
distance (GSD) of 1 cm (Fig. 3, a). 
The images were taken with a 
minimum of 75% overlap in both 
the front and side directions, using 
a 90-degree (NADIR) camera 
position. Each flight mission 
generated approximately 5,000 
TIFF images, with five images 
captured for each shot. The result 
was a series of average reflectance 
values for field trial plots across 
five spectral bands: red, green, 
blue, red edge, and near-infrared. 
Aerial images were processed 
using PIX4Dmapper by Pix4D 
(Switzerland), with orthophotos 
georeferenced to an RMSE of  
3–5 cm. Ground control points 
(GCPs) were established and 
maintained throughout the 
vegetation season to ensure 
precision (Fig. 3, b). For each 
flight, a multispectral photo  
of the MAPIR calibration panel 
was captured to standardize results 
across locations and missions. 
Spectral reflectance values were 

 
 

 
 
Figure 3. UAV-based remote sensing platform and
orthophoto of the spring wheat field trial. (a) UAV-
based multispectral platform before flight mission. (b)
UAV-derived orthophoto of the field trial at the
tillering stage (GS25), showing ground control points 
and the split-split-plot design with 16 spring wheat
genotypes arranged in two replicates and two nitrogen
fertilization levels (N75 on both sides and N150 in the
middle), totalling 64 plots. 

(b) 

(a) 
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extracted from the orthophoto mosaics, cropped to field boundaries, and analysed using. 
QGIS zonal statistics. A vector layer was created using a georeferenced orthophoto 
image to delineate trial plots 

A total of nine visible band vegetation indices, captured from UAV images, were 
calculated based on a literature review of related previous studies (Table 4). 

 
Table 4. Vegetation indices (VIs) derived from red green blue (RGB) images by unmanned aerial 
vehicle 

Abbr. Vegetation indices Formula Reference 
NGRDI 
GRRI 

Normalized Green-Red Difference Index 
Green-Red Ratio Index 

(G-R)/(G+R) 
G/R 

Rasmussen et al., 2016 
Du & Noguchi, 2017 

NGBDI Normalized Green-Blue Difference Index (G-B)/(G+B) Rossi et al., 2025 
ExG  Excess Green Index 2G-R-B Li et al., 2022 
VDVI Visible-Band Difference Vegetation Index (2G-R-

B)/(2G+R+B) 
Wang et al., 2013 

BGI Blue Green Pigment Index B/G Prey & Schmidhalter, 2019 
BRI Blue-Red Pigment Index B/R Prey & Schmidhalter, 2019 
GMR Green Minus Red Index G-R Wang et al., 2013 
VARI Visible Atmospherically Resistance Index (G-R)/(G+R-B) Rossi et al., 2025 
R – red, G – green, B – blue. Red, Green, and Blue are the digital number values in the respective channels 
extracted from the orthophotos. 

 
Statistical analysis 
Although genetic variation in nitrogen use efficiency (NUE) was observed among 

the 16 spring barley genotypes, the selection of vegetation indices (VIs) and growth 
stages was based on the combined dataset across all genotypes to identify indices robust 
for general NUE prediction. 

The simple linear regression was used to develop predictive models for NUE based 
on individual VIs (2): 

𝑦 ൌ 𝑎 ൅ 𝑏𝑥 (2) 

where, y is the predicted trait (e.g., NUE), x is the predictor (VI), b is the slope, and a is 
the intercept. 

Model performance was evaluated using Pearson correlation coefficient (r), the 
coefficient of determination (R²), and root mean square error (RMSE). 

Pearson correlation coefficient (r) quantified the strength and direction of linear 
relationships between variables (3): 

𝑟 ൌ
∑ሺ𝑥௜ െ 𝑥  ̄ሻ ሺ𝑦௜ െ 𝑦  ̄ሻ

ට∑ሺ𝑥௜ െ 𝑥  ̄ሻଶ ∑൫ሺ𝑦௜ െ 𝑦  ̄ሻ൯
ଶ
 

(3) 

where 𝑥௜ and 𝑦௜ represent the observed values of variables x and y for observation i, 
while x  ̄  and ȳ denote the mean values of the respective variables, the resulting Pearson 
correlation coefficient r ranges from −1 to 1, with values close to 1 indicating a strong 
positive linear relationship, values near −1 indicating a strong negative relationship, and 
values around 0 suggesting no linear association. 
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The model accuracy was assessed using the coefficient of determination (R2), root 
mean square error (RMSE). The coefficient R2 gauges the alignment between the 
estimated and measured values. R² represents the proportion of variance in the dependent 
variable explained by the model and ranges from 0 to 1, a value closer to 1 signifies a 
better model fit. 

The coefficient of determination (R²) was calculated as (4): 

𝑅ଶ ൌ 1 െ
∑ሺ𝑦௜ െ ŷ௜ሻଶ

∑൫𝑦௜ െ 𝑦  ̄௜൯
ଶ (4) 

Root mean square error (RMSE) measured the average prediction error to quantify 
model accuracy (5): 

RMSE ൌ ඨ
∑ሺ𝑦௜ െ ŷ௜ሻଶ

𝑛
 (5) 

where 𝑦௜ denotes the observed value for observation ŷᵢ represents the model-predicted 
value for the same observation, and n is the total number of observations. RMSE 
quantifies the average difference between predicted and observed values. Lower values 
of RMSE indicate better model fit. Its units are the same as the dependent variable (e.g., 
kg ha-1 for NUE). 

The best regression models for NUE prediction were defined as those exhibiting 
the highest R² and lowest RMSE values. 

For each growth stage, RMSE values were used to rank the VIs for their predictive 
ability of NUE (Eq. 6). Ranking of vegetation indices (VI) (6): 

𝑅𝑎𝑛𝑘௡௢௥௠ ൌ
𝑅𝑎𝑛𝑘 െ 𝑅𝑎𝑛𝑘௠௜௡

𝑅𝑎𝑛𝑘௠௔௫ െ 𝑅𝑎𝑛𝑘௠௜௡
 (6) 

The best-performing VI received the lowest rank. To account for differences across 
growth stages, ranks were normalized for each stage and summed to produce a total rank 
sum for each VI (7): 

𝑇𝑜𝑡𝑎𝑙 𝑅𝑎𝑛𝑘 𝑆𝑢𝑚 ൌ ෍ 𝑅𝑎𝑛𝑘௡௢௥௠
௦௧௔௚௘௦

 (7) 

Higher total rank sums indicate better overall predictive performance across stages. 
All analyses were conducted using the Real Statistics add-in for MS Excel and R 

statistical software version 4.2.3 (R Core Team, 2021), utilizing the packages: lmridge, 
tidyverse, corrr, ggplot2, and ggpubr. 
 

RESULTS AND DISCUSSION 
 
Implementing affordable high-throughput phenotyping tools to monitor wheat 

traits throughout growth stages provides valuable insights for breeders investigating 
genotype-phenotype correlations. This study offers an opportunity to validate VIs under 
contracting management and environmental conditions. This paper identifies an optimal 
set of RGB VIs for nitrogen use efficiency in spring wheat, evaluating their performance 
under low and high N fertilization conditions. Because sensor data can be influenced by 
lighting, platform inconsistencies, and canopy structural changes at different growth 
stages, identifying robust indices is essential. 
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Nitrogen use efficiency under contrasting nitrogen rates and environments 
Nitrogen use efficiency (NUE) showed pronounced variation between nitrogen 

fertilization levels, years, and genotypes (Fig. 4). Across all six environments (three 
years × two N levels), NUE was consistently higher at the reduced fertilization rate (N75) 
compared to the higher input (N150). In 2021, mean NUE reached 30.6 kg grain kg N⁻¹ 
under N75, while it decreased to 20.1 kg grain kg N⁻¹ under N150. In 2022, the highest 
values were recorded, with 50.2 and 28.9 kg grain kg N⁻¹ at N75 and N150, respectively. 
In 2023, NUE was again higher under N75 (32.2) than N150 (19.5). The differences 
between nitrogen treatments were statistically significant (P < 0.05) within each year. 
Boxplots further revealed considerable phenotypic variation among the 16 genotypes, 
indicating genetic diversity in the capacity to utilize nitrogen efficiently. 
 

 
 
Figure 4. Boxplot showing the phenotypic distribution of Nitrogen use efficiency (NUE) for 16 
spring wheat genotypes grown in six environments. The black horizontal line in each boxplot is 
the median, the lower and upper box edges are the first and third quartiles, respectively, and the 
whiskers are the data minimum and maximum. The black circle in each plot is the mean for that 
class. Outliers are shown as open circles; 2021, 2022 and 2023–year of trials; N75–N rate with 
75 kg N ha−1; N150–N rate with 150 kg N ha−1; a, b–significant differences (P < 0.05) between 
the mean values of two N rates within each year are shown by different superscript letters. 

 
The strong year-to-year variation was closely related to meteorological conditions. 

In 2021, although precipitation (334 mm) was above the 30-year long-term average 
(274 mm), elevated temperatures in June and July (+4.2 °C and +4.6 °C above LTA, 
respectively) likely accelerated crop development, limiting the time for N uptake and 
reducing NUE under higher fertilization. In 2022, rainfall was near average (332 mm) 
and temperatures during grain filling were favorable, which likely contributed to the 
highest NUE values observed across the study. In contrast, 2023 was characterized by 
exceptionally dry conditions in May and June (11% and 6% of LTA precipitation), which 
restricted nutrient uptake and caused visible nitrogen deficiency symptoms, resulting in 
markedly lower NUE despite adequate rainfall in July. These results confirm the strong  
environmental dependence of NUE and are consistent with earlier findings that nitrogen 
efficiency in cereals is highly sensitive to seasonal weather patterns and soil moisture 
availability (Frels et al., 2018; De Santis et al., 2025). 
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The decline in NUE under higher nitrogen rates (N150) across all years highlights 
the diminishing returns of excessive N fertilization. Results of Litke et al (2018) obtained 
also in Latvian conditions indicated that the nitrogen fertilizer rate affected significantly 
(P < 0.001) NUE, and higher NUE was in the variants with the lowest nitrogen rates. It 
demonstrating that increased N input beyond crop demand can lower N efficiency in 
cereals, primarily due to limited uptake and higher losses. From an agronomic 
perspective, these findings underscore the importance of identifying wheat genotypes 
capable of maintaining high NUE under reduced nitrogen supply. 

 
Identifying optimal visible light spectral VIs and growth stages for  

predicting NUE 
The observed phenotypic variation in nitrogen use efficiency (NUE), with 

consistently higher values under N75 and strong year-to-year dependence on 
meteorological conditions, provides a solid basis for evaluating the capacity of VIs to 
capture these agronomic differences. Such an approach aligns with previous work 
showing that optical/photometric diagnostics can effectively reflect crop nitrogen status 
under varied fertilization in spring barley and rapeseed (Shchuklina et al., 2022).  
Also, the study on evaluation of useability of vegetation indices has employed UAV plus 
RGB multispectral imaging and proximal sensors to monitor crop leaf properties and 
canopy structure in different phenological stages (Jelínek et al., 2020). The research on 
wheat demonstrated that various image features derived from UAV RGB images, 
including RGB-based vegetation indices (VIs) and color parameters, can effectively 
estimate the nitrogen status (Fu et al., 2020). Timing is crucial for obtaining accurate 
phenotyping results (Prey et al., 2020). Together, these studies help frame our analysis 
of how proximal and UAV-based spectral tools can estimate NUE reliably across 
environments. 

We are particularly focused on vegetation indices (VIs) strongly linked to nitrogen 
use efficiency (NUE) that remain consistent across different environments. The three 
highest-ranking VIs for the NUE trait, based on the summed rank across growth stages 
in 2021, 2022, and 2023 are presented in Table 5. 

The top ranked VIs varied depending on growth stage and environmental factors 
(N fertilizer rate and year of investigation). In 2021 RMSE was lowest for VI prediction 
of NUE at flowering (GS65) and at the milk development stage (GS73), under high N 
(N150) conditions. In 2022 RMSE was lowest for VI prediction of NUE trait under  
both low and high N treatments. In turn in 2023 RMSE was lowest for VI prediction of 
NUE trait at GS65 and GS75, but only under N75 fertilization rate. The highest ranked 
VI for NUE trait was different for each environment. Common VIs often was identified 
among the three most predictive indices base on ranking results in the varied 
environments. 

The Normalized Green-Red Difference Index (NGRDI) was the vegetative  
index consistently identified as the most predictive over the three-year study  
period. In 2021, at GS75, NGRDI accounted for 23% of the NUE variation,  
while it explained 29% in 2022 and 55% in 2023. The NGRDI index, proposed  
by Hunt et al., 2005 to assess dry biomass and nutrient status, is similar to the  
NDVI but uses the green and red bands instead of the red and near-infrared (NIR) bands. 
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Table 5. Root mean square error (RMSE), and rank (R) for VI and NUE regression in three years 
of investigation 

VI 
Growing stage 

SR GS25 GS65 GS75 
RMSE R2 R RMSE R2 R RMSE R2 R 

2021 
N75 
HUE 0.24 0.04ns 3 0.24 0.05ns 7 0.24 0.02ns 6 16 
GA 0.24 0.03ns 4 0.23 0.11ns 3 0.24 0.02ns 2 9 
GGA 0.24 0.01ns 7 0.22 0.20** 1 0.24 0.01ns 10 18 
N150 
NGRDI2 0.21 0.09ns 6 0.19 0.22** 3 0.19 0.23** 3 12 
GRRI 0.21 0.10 * 4 0.19 0.21** 4 0.19 0.22** 6 14 
VARI 0.21 0.09 5 0.19 0.20** 5 0.19 0.22** 5 15 
2022           
N75 
HUE 0.20 0.09ns 6 0.20 0.06ns 3 0.18 0.28** 4 13 
GA 0.19 0.14* 1 0.21 0.02ns 10 0.17 0.31*** 1 12 
NGRDI1 0.20 0.10ns 4 0.21 0.02ns 11 0.18 0.29** 3 18 
N150           
NGBDI 0.27 0.05ns 5 0.28 0.02ns 7 0.26 0.17* 3 15 
ExG 0.27 0.05ns 4 0.28 0.05ns 2 0.25 0.23** 1 7 
BGI 0.27 0.05ns 6 0.28 0.02ns 8 0.26 0.17* 2 16 
2023 
N75 
VDVI 0.25 0.06ns 7 0.22 0.30* 5 0.19 0.46** 5 17 
GA 0.25 0.04ns 12 0.21 0.31* 4 0.16 0.60*** 2 18 
NGRDI1 0.26 0.01ns 14 0.20 0.37* 1 0.17 0.55** 4 19 
N150  
HUE 0.25 0.05ns 3 0.24 0.10ns 3 0.25 0.03ns 12 18 
GGA 0.25 0.02ns 6 0.24 0.11ns 2 0.25 0.05ns 10 18 
NGRDI1 0.25 0.04ns 4 0.25 0.08ns 4 0.25 0.06ns 9 17 
3 years – 2021, 2022 and 2023; 2 N levels – N75: 75 kg N ha⁻¹, N150: 150 kg N ha⁻¹; across four crop growth 
stages (GS): GS25 – tillering growth stage; GS65 – flowering growth stage; GS75 – milk development growth 
stage; R2 - determination coefficients, SR – Summed Rank; HUE – the main component of the hue, saturation, 
and intensity (HSI) color model that represents the actual color of an object; GA – Green Area Index;  
GGA – Greener Green Area Index; NGRDI – Normalized Green-Red Difference Index; GRRI – Green–Red 
Ratio Index; VARI – Visible Atmospherically Resistant Index; NGBDI – Normalized Green-Blue Difference 
Index; ExG – Excess Green Index; BGI – Blue Green Pigment Index; VDVI – Visible-Band Difference 
Vegetation Index; 1Phenomobile; 2 UAV, ***P<0.001; **P<0.01; *P<0.05; ns – non-significant. 

 
This approach enables the use of lightweight digital cameras due to spectral differences 
between vegetation and soil, though it has certain limitations. A study on wheat found 
that UAV-based remotely sensed multispectral traits were more effective in predicting 
variations in NUE among genotypes (Yang et al., 2020). Although NGRDI, recorded 
using UAV as a reliable replacement for destructive measurements, showed high r 
values, they concluded that multispectral indices containing the near-infrared band, such 
as NDVI, GNDVI, NDRE, and RECI, were more sensitive for NUE prediction.  
Similarly, a study by Kefauver et al., 2017 indicated that different multispectral indices  
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are often more complementary in a multivariate model than the quantification provided 
by high-resolution RGB, which covers only broad electromagnetic regions within the 
visible spectrum. In the study by Prey & Schmidhalter, 2019, a quantitative index 
ranking was used to assess growth stage-independent indices. They found that near-
infrared (NIR) and red-edge indices were particularly effective for estimating grain and 
total nitrogen uptake, outperforming traditional visible light indices. 

The study also noted that the ear emergence and anthesis phases were less effective 
for detecting grain N uptake due to variations in plant development. Similar to our 
findings, it was concluded that the milk development stage is optimal for spectral 
measurements, offering the best relationships for estimating N use traits, while stem 
elongation also showed promise for earlier estimations (Prey et al., 2020). Biomass dry 
matter is closely linked to NUE, as higher biomass per unit of nitrogen indicates higher 
NUE, making biomass a key indicator for assessing nitrogen efficiency. A remote 
sensing study with NGRDI found that dry biomass in crops like soybeans and corn was 
linearly correlated with this visible light index up to a certain biomass threshold, beyond 
which NGRDI saturated, indicating it could no longer capture additional biomass 
variation. Additionally, in a corn fertilization experiment, NGRDI did not reflect 
nitrogen status differences despite visible low nitrogen areas in late-season images  
(Hunt et al., 2005). 

Green Area Index (GA) was another one VIs identified as the most predictive over 
the three-year study period. GA at GS75 explained 2%, 31%, and 60% of the NUE 
variation over the three years of the study, respectively (Table 4). Casadesu et al., 2007 
found a high correlation between RGB VIs (e.g., GA, GGA) and NDVI. In rainfed 
conditions, each visible light VI provided estimations similar to or slightly better than 
NDVI. However, in high-productivity conditions during anthesis, neither the RGB VIs 
nor NDVI accurately estimated productivity, likely due to VI saturation in areas with 
full soil cover and high plant density. 

The Visible Atmospherically Resistant Index (VARI) is commonly used for 
vegetation data collection with RGB cameras. In our study, we did not select VARI as 
index a consistently correlated with NUE, as it provided significant regression only in 
2021, at both the flowering and milk development stages (Table 4). However, other 
studies have shown strong correlations with VARI at the tillering stage (Ge et al., 2021) 
and the initial grain-filling stage (Liu et al., 2022). 

In general, in our study the vegetation indices obtained from the proximal platform 
provided a comparatively better NUE prediction model. It should be noted that in 2021 
and 2022, at the high fertilization rate, only the vegetation indices obtained from UAVs 
were at the top of the RMSE ranking. Prey & Schmidhalter, 2019 highlighted that while 
spectral proximal sensing can optimize nitrogen management in wheat cultivation, 
improvements in index selection and understanding of plant traits are needed. This is 
because nitrogen partitioning to the grain is not always detectable by sensors, limiting 
the effectiveness of spectral sensing methods. 

 
Correlation between NUE trait and selected VIs across varied environments 
Correlation analysis was conducted to evaluate the relationships between NUE and 

the four most predictive VIs under contrasting N rates and over three years 
environmental conditions: ExG and VDVI obtained from the UAV sensing platform, 
and GA and NGRDI from the phenomobile (Table 6). 



40 

Table 6. Correlation between NUE and selected VI across nitrogen rates and years 

Year N rate GS ExG VDVI GA NGRDI Ph 
2021 N75 GS25 0.028 -0.072 -0.178 -0.032 

GS65 -0.270 -0.007 0.328 0.276 
GS75 0.055 0.111 0.148 0.123 

N150 GS25 -0.364* -0.316 -0.325 -0.268 
GS65 -0.130 0.303 0.517** 0.480** 
GS75 0.349 0.418* 0.472** 0.463** 

2022 N75 GS25 0.295 0.277 0.376* 0.320 
GS65 0.070 -0.159 0.155 -0.132 
GS75 0.191 0.198 0.557*** 0.539** 

N150 GS25 -0.230 -0.186 -0.132 -0.032 
GS65 -0.220 -0.039 0.035 -0.035 
GS75 -0.479** 0.035 0.322 0.355* 

2023 N75 GS25 -0.438* -0.413* -0.364* -0.384* 
GS65 -0.225 0.604*** 0.609*** 0.612*** 
GS75 0.288 0.662*** 0.638*** 0.717*** 

N150 GS25 -0.281 -0.246 -0.193 -0.118 
GS65 0.091 0.546* 0.560* 0.610* 
GS75 0.367 0.681** 0.776*** 0.741*** 

3 years – 2021, 2022 and 2023; 2 N levels – N75: 75 kg N ha⁻¹, N150: 150 kg N ha⁻¹; across four crop 
growth stages (GS): GS25 – tillering growth stage; GS65 – flowering growth stage; GS75 – milk 
development growth stage; ExG – Excess Green Index; VDVI – Visible-Band Difference Vegetation Index; 
GA – Green Area Index; NGRDI Ph – Normalized Green-Red Difference Index calculated from 
Phenomobile images; ***P<0.001; **P<0.01; *P<0.05; ns – non-significant. 

 
In all years of the study, VIs such as VDVI, GA, and NGRDI were most strongly 

correlated with NUE at Zadoks growth stage 75 (GS75). However, unlike in 2021 and 
2022, in the 2023 environment, these same VIs were also correlated with NUE at the 
flowering stage (GS65) under both N rates. In another study of wheat N use traits under 
four nitrogen treatments across two experimental sites, the Normalized Green-Red 
Difference Index (NGRDI) showed low correlations with N-content at flowering and 
maturity in high N treatments (180–240 kg N ha-1), but strong correlations (r = 0.81 to 
0.89) in low N treatments (0–120 kg N ha-1) (Yang et al., 2020). Vegetation indices in 
spring wheat strongly correlated with NUE at the jointing stage (GS30 on the Zadoks 
scale, when the first signs of stem elongation are visible) from visible light indices with 
also NGRDI showing the highest correlation coefficient (Liu et al., 2022). All selected 
VIs, except ExG, were mostly positively correlated with NUE at GS65 and GS75. 
Overall, the ExG index demonstrated variability in the correlation relationship across 
different environments. 

In all years of the study, at the early stage of development (GS25), the rank-based 
best VIs showed mostly negative correlation relationships with the NUE trait. The 
Pearson correlation analysis was performed between RGB-VIs from UAV images and 
plant N concentration also across rice growth stages. At the jointing stage, very strong 
correlations were observed with Green-Red Ratio Index (GRRI) (r = 0.89) and NGRDI 
(r = 0.89). At the flowering stage, GRRI showed the highest correlation with N content 
(r = 0.84) among all RGB-VIs (Ge et al., 2021). The study of Prey at al., 2020 noted  
 
 



41 

that index differentiation was most pronounced in the highest-yielding year, highlighting 
the impact of environmental conditions on spectral data and the importance of  
year-specific calibration. 

 
Comparison of Visible Spectrum VIs Performance: Proximal vs. UAV-Based 

Remote Sensing Platforms 
According to the results of regression analysis (Table 4), the VIs obtained with the 

proximal platform (phenomobile) were most frequently found at the top three of the 
ranking. To compare the results between the two phenotyping platforms, we used 
NGRDI, calculating the correlation between the VIs obtained from the unmanned  
aerial vehicle (NGRDI_UAV) and the phenomobile (NGRDI_Ph) by each year of 
investigation (Fig. 5). 

 

 
 

 
 

 
 

Figure 5. Relationship between Normalized Green-Red Difference Index obtained from the 
unmanned aerial vehicle (NGRDI_UAV) and the phenomobile (NGRDI_Ph) in 2021,  
2022 and 2023. 
 



42 

High regression coefficients (R² = 0.56–0.93) were obtained withing all years of 
the study, indicating the comparability of the sensor results from both platforms. Minor 
discrepancies in the data alignment between the two platforms may arise because 
measurements in certain years and plant development stages differed by one to two days 
(Table 1). A study on barley also compared UAV-based and field-based high-throughput 
plant phenotyping using the free, open-source image analysis software FIJI. This 
analysis utilized RGB images from conventional digital cameras in combination with a 
matching set of ground sensors. The highest correlations with final grain yield came 
from the GGA and GA indices from RGB images taken at the ground level followed 
closely by the same indices measured from the UAV aerial platform (Kefauver et al., 
2017). Two sensing systems including RGB and a multispectral camera were compared 
in the study of Quemada et al., 2019. The findings indicate that the use of optical sensors, 
both at ground level and from unmanned aerial vehicles (UAVs), can significantly 
enhance the understanding of crop nitrogen status and yield potential. They concluded 
that VIs obtained from ground measurements were highly correlated with those from the 
aerial platform. 

CONCLUSIONS 
 

Nitrogen use efficiency (NUE) in spring wheat was strongly influenced by nitrogen 
fertilization level, year-specific environmental conditions, and genotype. Lower 
fertilization consistently resulted in higher NUE, while considerable genetic variability 
indicated opportunities for breeding improvements. The clear interaction between 
management and environment provides a robust basis for testing the capacity of 
vegetation indices to capture differences in NUE across diverse conditions. 

Although the relationships between vegetation indices (VIs) and NUE were 
environmentally dependent, significant and robust correlations were identified. In 
general, proximal sensing platforms provided comparatively stronger prediction models 
for NUE. The Normalized Green-Red Difference Index (NGRDI) and Green Area Index 
(GA) consistently emerged as the most reliable predictors across three years, with the 
milk growth stage (GS75) proving to be the optimal timing for NUE estimation. 
Comparisons of NGRDI between proximal and UAV-based platforms confirmed the 
comparability of visible-spectrum canopy reflectance indices, though UAVs offer higher 
throughput in data acquisition. 

Taken together, the results demonstrate that combining agronomic evaluation under 
contrasting N fertilization rates and environments with canopy reflectance traits 
enhances the capacity to phenotype NUE. This highlights the potential of low-cost 
proximal and UAV sensing platforms to complement traditional destructive methods and 
support both breeding and precision nitrogen management. 
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