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Abstract. In this study, the geographically weighted principal components analysis as an 

alternative method for agro-ecological characterization of the region was provided. The spatial 

and temporal distribution pattern of soybean yield was analyzed by using spatial statistics 

technology, which provided a good reference for agricultural development planning. The soybean 

yield was selected for the present study because it is a comprehensive indicator reflecting the 

production potential of the regional agroecosystems. The organized data set, which included the 

average per year yields of soybean in 10 regions (206 administrative districts) of Ukraine, was 

used for analysis. The regular temporal trend, specific for each district, was previously extracted 

from the time series data. The principal components analysis of the detrended data allowed to 

identify four principal components, which altogether can explain 58% of the soybean yield 

variation. The geographically weighted principal components analysis allowed to reveal that four 

spatially determined processes were influencing the yield of soybeans and had the oscillatory 

dynamics of different periodicity. It was hypothesized that the oscillating phenomena were of 

ecological nature. Geographically weighted principal component analysis revealed spatial units 

with similar oscillatory component of soybean yield variation. Our study confirmed the 

hypothesis that within the studied territory there are zones with the specific patterns of the 

temporal dynamics of soybean yield, which are uniform within each area but qualitatively 

different between zones. The territorial clusters within which the temporal dynamics of soybean 

yield is identical can be considered as agro-ecological zones for soybean cultivation. 
 

Key words: cluster analysis, geographically weighted principal components analysis (GWPCA), 

soybean, spatial variability, productivity, yield. 
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INTRODUCTION 

 

Sustainable agricultural development requires a systematic effort towards the 

planning of land use activities in the most appropriate way. Agro-ecological zoning is 

one of the cornerstones for agricultural planning because survival and failure of 

particular land use or farming system in a given region heavily relies on careful 

assessment of agro-climatic resources (Patel, 2003). A framework of agro-ecological 

zoning describing concepts, methods and procedures was conceptualized for the first 

time by FAO (1976). Agro-ecological zoning refers to the division of an area of land 

into land resource mapping units, having a unique combination of landform, soil and 

climatic characteristics and/or land cover. (FAO, 1996; Patel, 2003). Therefore, each 

zone has a similar combination, constraints and potential for the use of land, which 

serves as the focus of recommendations designed to improve the existing land use, either 

through increased production or by limiting land degradation (Suriadikusumah & 

Herdiansyah, 2014). The main objectives of agro-ecological zoning are data inventory 

of environmental resources, identification of homologous environments, determination 

of agricultural potential of a region, planning for regional development and identification 

of research priorities. Conventional methods employed are overlaying of maps and 

various statistical techniques (Aggarwal, 1991). 

Principle components analysis (PCA) is a statistical method widely used in 

exploratory data analysis (Pearson, 1901). This non-parametric method reduces the 

dimension of a dataset, which simplifies structures hidden in the dataset (Liu et al., 

2012). Principal components analysis has been applied by various researchers’ area to 

explore and characterize the relationships between regionalized variables and related 

environmental factors, and to quantify the spatial variability pattern of these variables 

(Kumar et al., 2012). In an ecological setting, common applications of PCA are 

employed to environmental data sets e.g., the soils biogeochemistry data, species 

abundance data etc. (Legendre & Gallagher, 2001; Kaspari & Yanoviak, 2009). 

Geographically weighted principal components analysis (GWPCA) is a localized 

version of PCA that is an exploratory tool for investigating spatial heterogeneity in the 

structure of multivariate data (Harris, 2011). Hence, a GWPCA investigates how outputs 

from a PCA vary spatially (Comber et al., 2016). Spatial changes in data dimensionality 

and multivariate structure can be explored via maps of the GWPCA outputs. GWPCA 

can also be used to detect multivariate spatial anomalies (Harris et al., 2015; Comber et 

al., 2016). In the published literature, GWPCA has been applied for analyzing 

multivariate population characteristics (Lloyd, 2010), social structure (Harris et al., 

2011), soil characteristics (Kumar et al., 2012) and freshwater chemistry data (Harris et 

al., 2015, Li et al., 2015). However, GWPCA has not been applied to assess spatial 

variability of crop yields in agricultural landscapes, moreover, it has never been used for 

agro-ecological zoning of an area. 

In this study, we consider the possibility of applying the geographically weighted 

principal components analysis as an alternative method for agro-ecological 

characterization of a region. The soybean yield was selected as the basis for agro-

ecological zoning, because it is the comprehensive indicator, reflecting the production 

potential of agroecosystems (Kukal & Irmak, 2018). Crop yield is influenced by both 

management and environmental factors, but definite quantitative relationships are not 

easy to obtain because of complicated interactions between these factors (Ruiz-Vega, 
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1984). However, if the influence of agro-technological and management factors has the 

general origin and are described by the regression model, the influence of environmental 

factors leads to yield fluctuations (residuals) that do not fit into the total trend (Zhukov 

et al., 2018). These residuals also have a complex nature. There is a random noise 

associated with objective errors in the source data. However, in the regression residuals, 

we can expect a component that is associated with a regular variation that has an 

ecological nature (Kunah et al., 2018). Thus, the study of the residuals of the yield 

regression model allows us to separate the ecological determinants of soybean yield 

variation. Besides, through GWPCA it is possible to map areas with similar temporary 

fluctuations in yield, which may be regarded as agro-ecological zones for soybean 

cultivation. 

The objective of this research was to study the spatial variation of the temporal 

patterns of the soybean yield. We have discussed two alternative hypotheses. The first 

one is the spatial variation of the soybean yield is per the uniform trend and there is no 

interruption of the continuous yield dynamics within the studied territory. The second 

one is that within studied territory there are zones with specific patterns of the temporal 

dynamics, which are uniform within each area but qualitatively different between zones. 

 

MATERIALS AND METHODS 

 

Time series of the soybean yields for each administrative district was divided into 

two components: total trend and trend residual. Total trend was determined by the 

dependence of the yield on time. As an analytical form of the trend, we selected the 

fourth-degree polynomial. The residuals of the corresponding regression models that 

describe the trends consist of the random component (noise) and, probably, the regular 

one that cannot be explained by the selected trend model. These two components are 

distinguished by their properties: the random component is an independent one for 

different points of space, and the regular component must be correlated to all or some 

points in space (administrative districts). We used the principal components analysis 

(PCA) for the residuals to isolate the regular component of trend models. The presence 

of the principal components, whose eigenvalues are more than 1, indicates that there 

exists a correlation in crop yields variation. Data on the yield of soybean were obtained 

from the State statistics service of Ukraine (http://www.ukrstat.gov.ua/) and its regional 

offices. Specifically, the organized data set included the average per year yields of the 

soybean for 10 regions of Ukraine (Vinnytsia, Volyn, Zhytomyr, Kyiv, L'viv, Rivne, 

Ternopil, Khmelnytsky, Cherkasy, Chernihiv), which include 206 administrative 

districts (Fig. 1). Information covers a period from 1991 to 2017. 

Principal components analysis (PCA) is widely used for dimensionality reduction 

of the multivariate data set (Liu et al., 2012). Principal component analysis was 

performed using library stats (R Core Team, 2017). The suitability of yield data for the 

principal components analysis was evaluated by the Kaiser-Meyer-Olkin (KMO) test 

(Kaiser, 1974) with the help of the function KMOS from the library REdaS (Maier, 

2015) in the environment for statistical computing R (R Core Team, 2017). Horn's 

(1965) technique for evaluating the components in a principal components analysis was 

implemented through paran function from the library ‘paran’ (Dinno, 2012). 

Geographically weighted principal components analysis (GWPCA) may be used to 

account for spatial heterogeneity in the structure of the multivariate data (Harris et al., 
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2011). An essential component of the GWPCA modelling is the spatial weighting 

function that quantifies the spatial relationship or spatial dependency between the 

observed variables (Fotheringham et al., 2002). A bandwidth for spatial analysis was 

found optimally using cross-validation with the Gaussian kernel function. Monte Carlo 

test was performed to examine whether yield data matrix eigenvalues were spatially 

varying (Iqbal et al., 2005). The GWPCA method is implemented using the GWmodel 

R package (Gollini et al., 2013). To visualize GWPCA outputs, the spatial distribution 

of the first four principal components percentage of the total variance was mapped. The 

locale influence of the variables on principal components 1–4 was visualized by mapping 

the 'winning variable' with the highest absolute loading. The spatial database was created 

in ArcGIS 10.0. The spatial autocorrelation, I-Moran’s statistics (Moran, 1950), was 

calculated using Geoda095i (Anselin et al., 2005). 
 

 
 

 
 

 
 

Figure 1. Map of 10 administrative regions in Ukraine, Ecoregions and soil map (Hengl et al., 

2017). 

Legend: Soil classification according World Reference Base for Soil Resources: ABgl – Albeluvisols 

Gleyic; ABst – Albeluvisols Stagnic; ABum – Albeluvisols Umbric; CHch – Chernozems Chernic; CHlv – 

Chernozems Luvic; CMdy – Cambisols Dystric; CMeu – Cambisols Eutric; CMgl – Cambisols Gleyic; 

FLdy – Fluvisols Dystric; FLeu – Fluvisols Eutric; FLgl – Gleyic Fluvisols; FLhi – Fluvisols Histic; GLhi – 

Gleysols Histic; GLhu – Gleysols Humic; GLso – Gleysols Sodic; HSfi – Histosols Fibric; HSsa – Histosols 

Sapric; HSsz – Histosols Salic; LPrz – Leptosols Rendzic; LVha – Haplic Luvisols; PHab – Phaeozems 

Albic; PHgl – Phaeozems Gleyic; PHha – Phaeozems Haplic; PHlv – Phaeozems Luvic; PHso – Phaeozems 

Sodic; PZet – Podzols Entic; PZha – Podzols Haplic; PZle – Leptic Podzols; PZrs – Podzols Rustic. 
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RESULTS AND DISCUSSION 

 

The global principal components analysis 

The dissimilar magnitude between regression residuals for administrative areas 

may lead to biased results from PCA as the variables with the highest sample variances 

tend to be emphasized in the first few principal components. Hence, all the selected 

variables need to be standardized by subtracting its mean from that variable and dividing 

it by its standard deviation. Such data standardization makes each transformed variable 

have equal importance in the subsequent analysis (Li et al., 2015). 

As described before, the total number of 206 units was observed for 27 variables 

(years). The Kaiser-Meyer-Olkin (KMO) index was run for the overall data set to detect 

sampling  adequacy.  As the KMO value is 0.63,  according to the Kaiser empirical rule 

(Kaiser, 1974), the study data should be 

considered relevant for the principal 

components analysis. 

The PCA of the residuals of the 

regression model allowed to establish 

that the number of statistically probable 

principal components is 4 according to 

the Horn procedure (Horn, 1965). The 

four components with eigenvalues larger 

than 1 explain up to 58% of variation in 

the regional soybean yield (Table 1). 

 

Table 1. Summary of global PCA 
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1 8.30 9.04 0.73 33.47 3.00 

2 2.45 3.08 0.62 11.39 1.75 

3 1.33 1.86 0.54 6.90 1.36 

4 1.21 1.67 0.46 6.20 1.29 

Symbols: *– by Horn's parallel analysis. 

 

 

 

 
 

 

 

 
 

Figure 2. The principal components loadings to the variables. 
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determined principal components as oscillation processes with different frequencies. 

Thus, the principal component 1 explains 33.47% of the total variability of the soybean 

yield. It is characterized by a predominant oscillation process within 5 years. Moreover, 

this principal component demonstrates a clear trend towards damping of the oscillation 

process during the study period. 

The variation of principal component 1 is spatially determined (I-Moran 

0.29, P = 0.001). The zones with higher values of principal component 1 form clusters 

in some northern areas of the studied region, as well as in the western ones. The zone 

with the lower values of principal component 1 forms a cluster in the southeastern 

direction from the center of the region (Fig. 3). 

Principal component 2 explains 11.39% of the total dispersion and as to its 

fluctuations, most typical is an oscillating process with a lag of ten years. This 

component demonstrates spatially regular patterns of variation (I-Moran 0.48, 

P = 0.001). Clusters with higher values of principal component 2 are located in the south-

western and north-eastern regions, and with the lower ones – in the north-west and south-

east (Fig. 3). 

 

 

 

 
 

Figure 3. Spatial variation of principal components 1–4. 
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Principal component 3 explains 6.90% of the soybean yield variability and its 

characteristic oscillations are repeated every 9-10 years. The high spatial level of the 

principal component 3 variation is confirmed by I-Moran statistics (0.28, P = 0.001). 

Clusters with high values of principal component 3 are typical of the southwest and east, 

and with low values – of the southeast. 

Principal component 4 explains 6.20% of the dispersion of the soybean yield. For 

its fluctuations in time, the most characteristic period is also a span of 8-9 years (Fig. 2). 

The spatial patterns of this component are statistically significant (I-Moran 0.29, 

P = 0.001). The clusters with the higher values of principal component 4 are 

characteristic for the center and east of the region, and with lower values – for the west 

(Fig. 3). 

Thus, the global principal components analysis revealed the presence of dynamic 

processes of soybean yield, which have the oscillatory nature with varying frequencies. 

We associate oscillatory processes of varying frequency with causes of different nature. 

The principal components analysis of the regression model residues of the time 

trend enables us to prove that within a set of ecological factors four principal components 

affect the soybean yields to the greatest extent. Specification and detailed research of the 

origin of these principal components are objective of our subsequent studies. However, 

at this point we can prove the presence of four spatially determined processes that 

influence the yield of soybeans and have the oscillatory dynamics of different 

periodicity. 
 

Geographically weighted principal components analysis 
The Monte Carlo test was conducted to examine whether the data matrix 

eigenvalues are spatially varying (P = 0.01). Thus, there is a high degree of spatial non-

stationarity present in the data of regional soybean yield. 

The previous global PCA results indicate that the first four components can 

collectively explain 58% of the variance in data structure. Accordingly, it is reasonable 

to retain the four components for further GWPCA analysis. However, since the paper is 

limited in scope, only the first two components GWPC 1 and GWPC 2 from GWPCA 

will be comparatively interpreted in detail. 

The results of the procedure GWPCA can be visualized and interpreted by focusing 

on how the dimensions of the data vary spatially and how the original variables affect 

the principal components (Li et al., 2015). Percentage of spatial variation of the total 

variation demonstrates a clearly expressed variability, thus forming spatially 

homogeneous clusters from north to south of the research region (Fig. 4). Compared with 

the global analysis of the principal component, GWPCA demonstrates its effectiveness 

and efficiency in the analysis of spatial patterns of regional placement of soybean yields, 

using the mapping of spatial variability of the principal components. 

It was suggested that the variables with the highest loading values and their impact 

intensity values can be mapped locally (Lloyd, 2010). Then we can visualize how each 

of the four variables locally affects the given component, displaying the ‘winning 

variable’ with the highest absolute loading. Fig. 5 shows the spatial distribution of 

variables with the highest absolute loading of GWPC 1–4, respectively. 
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Figure 4. Spatial variability of the percentage of total variance (PTV) of the first four principal 

components. 

 

 

 

 

 
 

Figure 5. Spatial location of ‘winning’ variables for principal components 1–4. 
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The traditional representation of ‘winning’ variables for the principal components 

cannot fully reveal the nature of the spatially dependent relationship between the 

indicators estimated by the principal component analysis. The factor of loading 

predominance is one of the aspects that reflects the crop yields dynamics. Due to the 

oscillating nature of such dynamics, predominance is the random outlier of the indicator 

at a certain moment in comparison with the general recurring dynamics. Therefore, for 

each of the statistically significant principal components, we conducted the classification 

of administrative districts by cluster analysis based on distance, which is opposite to the 

Pearson correlation coefficient. This indicator of distance is sensitive to the form of 

comparable indicators, and not to their absolute values. This approach allows to identify  

groups of administrative districts with 

a similar time dynamic of soybean 

yields in the aspect of the 

corresponding principal component. It 

can be assumed that the aggregates of 

administrative districts with a similar 

yield’s dynamics are also 

geographically close and form 

homogeneous ecological regions. 

Cluster analysis of the 

administrative districts by factor 

loading values of GWPC 1 revealed 

three homogeneous clusters (Fig. 6). 

For each cluster, we calculated the 

average values of the factor loadings, 

which helped assess the specificity of 

the respective clusters (Fig. 7). The 

general trend of principal component 1 

is the damping of the amplitude of the 

oscillations during the research period 

and the predominance of higher 

frequency components of oscillatory 

dynamics corresponding to the 

heterogeneity of observations over time 

or heteroscedasticity. So, the Koenker-

Bassett test for clusters 1 and 3 

indicates the heteroscedasticity of  

the time dynamics of factor loadings 

(1.17, P = 0.28 and 1.35, P = 0.24, 

respectively). The heteroscedasticity is 

established for cluster 2 (5.09, P = 

0.024). Thus, the qualitative feature of 

the soybean yield dynamics in the 

corresponding clusters is the difference 

in levels of damping of the principal 

component 1 oscillations over time.

 

 
 

Figure 6. Cluster analysis of administrative 

districts by factor loadings values GWPC 1. 

 

 
 

Figure 7. The average values of factor loadings 

of GWPC 1 for clusters 1–3. Here abscissa is the 

primary variables (the residuals of the regression 

models of the trend of yield by years), axis 

ordinate - factor loadings. 
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The spatial distribution of administrative districts included in the respective clusters 

is spatially regular (Fig. 8). Cluster 3 covers the largest part of Ukraine and is located in 

the north, center and west of the studied territory. Clusters 1 and 2 are located in the 

south of the research area. 
 

 
 

Figure 8. Spatial location of the clusters obtained based on the GWPC 1 loadings. 

 

Cluster analysis of the values of 

factor loadings GWPC 2 revealed four 

homogeneous clusters (Fig. 9). 

For each cluster, we calculated 

the average values of factor loadings, 

which helped assess the specificity of 

the respective clusters (Fig. 10). For 

clusters 1 and 3 attenuation during the 

studied period is characteristic, while 

for clusters 2 and 4 a fading amplitude 

was observed in the middle of the 

research period. In the spatial aspect, 

cluster 4 occupies the west of the 

research area. Clusters 1, 2 and 3 are 

disruptive, so cluster 1 is mainly 

located in the center, cluster 2 – in the 

east, and cluster 3 – in the southwest of 

the research region (Fig. 11). 

Principal component 1 (PCA 1) 

 
 

Figure 9. Cluster analysis of administrative 

districts by factor loadings values GWPC 2. 
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processes (Sivakumar & Valentin, 1997). Cosequenly, agro-ecological zoning refers to 

the division of an area (of land) into smaller units, which have similar characteristics 

related to land suitability potential production and environmental impact (Patel, 2003). 

The crop yield is a functional indicator of complex relations between plants and their 

environment (Anderson et al., 2013). Therefore, applying the yield as a basic indicator 

for agro-ecological zoning is entirely justified. 
 

 
 

Figure 10. The average values of factor loadings of GWPC 2 for clusters 1–4. 

 

Application of the principal components analysis of the yield dynamics is based on 

the assumptions that the origin of the relationships within the entire investigated area is 

homogeneous. Geographically weighted principal components analysis allows us to 

investigate local patterns of soybean yield dynamics (Patel, 2003). Local models have 

greater explanatory power than the total model, which is quite natural because the 

consideration of local specifics allows the more objective reflection of reality (Kumar et 
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difficulties for meaningful interpretation. The most common technique of mapping 
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Consequently, based on the approximate types of local cycles, clusters were 

established for each principal component, and instead of displaying ‘winning’ variables, 

we applied the mapping of the established clusters. However, this approach has some 

advantages. Firstly, the ecologically homogeneous zones obtained by our approach 

(Figs 8, 11) are more compact than the ones that are established using ‘winning 

variables’ (Fig. 5). This result was obtained because in the clusters formation, the 

dominant role is played by the factors of a regular nature, and the random factors are 

filtered out during the analysis procedure (Zhukov et al., 2018). In fact, ‘winning 

variables’ are the result of a predominantly random choice from some lists of important 

information variables. Therefore, both approaches give a similar picture in general, but 

the proposed algorithm is less sensitive to random factors. Secondly, the proposed 

algorithm provides an opportunity to give a meaningful interpretation of the obtained 

clusters by studying the dynamics characteristics of each cluster in time. In the ‘winning 

variables’ approach, the variable itself is a marker of the corresponding spatially 

homogeneous territory (Kunah et al., 2018). Nevertheless, such an instrument is 

acceptable when qualitatively diverse variables are used, each of them can be measured 
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in the next period, and thus applied to forecast the phenomenon under study. Among the 

time series variables, there are no ‘more important’ or ‘less important’ years. Besides, 

all of these variables are in retrospective and could not be re-measured. The patterns 

based on the cyclic frequency of processes are applied for forecasting. Such features can 

be set for the selected clusters. Results of the present work reveal that the GWPCA can 

be used for agro-ecological zoning. 
 

 
 

Figure 11. Spatial location of the clusters obtained based on the GWPC 2 loadings. 

 

Consequently, agro-ecological zoning was performed with regard to the uniformity 

of dynamics of an agricultural area production potential. This approach is fundamentally 

different from that of zoning based on the total yield of crops (Lazarenko, 1995). A 

classification based on yields is justified for systems that are in a state close to the steady-

state. According to the global climate changes and transformation of the environmental 

regimes, this approach is unacceptable. The agro-ecological zones proposed in the given 

research did not differ in the overall level of productivity of soybean during the study 

period. Features of these zones lie in the values of the principal components and reflect 

the nature of the relationship between different spatial units. Spatial distribution of the 

principal components indicates a continual pattern, but their overlapping allowed to 

determine spatially discrete units, which we identified as agroecological zones. Each 

zone is characterized by a certain character and dynamics of production capacity and has 

an invariant pattern of response to varying climatic, environmental, and agroeconomic 

factors. 

 

CONCLUSIONS 

 

Our study confirmed the hypothesis that within the studied territory there are zones 

with specific patterns of the temporal dynamics of soybean yield, which are uniform 

within each area but qualitatively different between zones. The principal components 

analysis of the regression models’ residues of the time trend enabled us to establish 4 

principal components, which together explain up to 58% of the variation in the regional 

soybean yield. Four spatially determined processes influence the yield of soybeans and 

have the oscillatory dynamics of different periodicity. The oscillating phenomena are of 

an ecological nature. Geographically weighted principal component analysis revealed 
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spatial units with similar oscillatory component of soybean yield variation. The 

territorial clusters within which the temporal dynamics of soybean yield is identical can 

be considered as agro-ecological zones for soybean cultivation. Further study of the 

nature of the principal components will be the objective of our subsequent studies, as 

well as the impact of the climate change on the crop yield variability. 
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