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Abstract. Remote estimation of hops plants in hop gardens is imperative in field of precision
agriculture, because of precise imaging of hop garden structure. Monitoring of hop plant volume
and area can help to predict the condition and yield of hops. In this study, two unmanned aerial
vehicles (UAV) - eBee X senseFly UAV equipped with Red Green Blue (RGB) S.O.D.A. camera
and Vertical Take-Off Landing (VTOL) UAV FireFly6 Pro by BirdsEyeView Aerobotics
equipped with MicaSense RedEdge MX camera were used to acquire images of hop garden at
phenology stage maturity of cones (24 th July) before harvest. Seven commonly used RGB
vegetation indices (VI) were derived from these RGB and multispectral (MS) images after
photogrammetric pre-processing and orthophoto mosaic extraction using Pix4Dmapper software.
Vegetation Indices as the Green Percentage Index (G%), Excess of Green Index (ExGreen),
Green Leaf Index (GLI), Visible Atmospherically Resistant Index (VARI), Red Green Blue
Vegetation Index (RGBVI), Normalised Green Red Difference Index (NGRDI) and Triangular
Greenness Index (TGI) were derived from both data sets. Binary model from each of VI was
derived and threshold value for green vegetation was set. The results showed significant
differences in hop plant area based on the specifications of cameras, especially wavelengths
centres, and design and flight parameters of both UAV types. The comparison of various indices
showed, that ExG and TGI indices has the highest congruity of estimated vegetation indices in
hop garden canopy area for both used cameras. Further processing by Fuzzy Overlay tool proved
high accuracy in green canopy area estimation for ExG and TGI vegetation indices.
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INTRODUCTION

Hops with its growing area belongs to the marginal crops; on the other hand, its
cultivation is very effective. In addition, hops have an important position in the world
brewing industry, especially the Czech one. For this reason, Czech hops is an important

The crop growth monitoring is one of the most important tasks in agronomy. The
results could help to analyse the crop growth process and the growth conditions (Yang
et al., 2015). Remote sensing has become a very popular technique in crop information
acquiring due to its ability to collect images in various spectra. There are three commonly
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used remote sensing methods: satellite, ground based and aerial (e.g. UAV = unmanned
aerial vehicles). Satellite methods can help to estimate the crop yield, chlorophyll and
nitrogen content (Vincini et al., 2016), leaf area index (Xie et al., 2018), etc., but it is

2014). The ground-based platform
enables to collect data with high accuracy, but it is limited to high workload, which can

development in UAV industry and its ability to hold various cameras and sensors have
increased the utilization of UAV in field data collecting (Wan et al., 2018). The UAVs
are able to hold various cameras and collect accurate data with strong correlation to the
ground based collected data (Santos et al., 2020). The camera-based observation is also
important for the determination of canopy area, plant volume and the yield of hops.
Regardless of the subject of the analysis, the most important aspect is how to identify
the green object. There are more options to identify greenness in a crop image. The usual
method to identify the greenness is to use the spectral indices (Guijarro et al., 2011).
There are many indices used in the agriculture, most of them have been developed for
specific purposes. A quick glance at the results usually shows regions with low and high
index values. The output of the index is assigned to a colour from a colour scale and
generate a false colour image of the monitored area (McKinnon & Hoff, 2017).

Lussem et al. (2018) conducted a research, where they compared results from
different spectral indices based on RGB camera (Sony Alpha 6000) imagery with Yara
N-Sensor for dry matter yield prediction in the grassland. They selected for their study
such spectral indices as Visible Atmospherically Resistant Index (VARI), Normalised
Green Red Difference Index (NGRDI) and Normalised Difference Vegetation Index
(NDVI). The results showed a good correlation e.g. the value of determination for
NGRDI was obtained 0.62 and for VARI 0.63. Other relevant indices were SR (Simple
Ratio Index) (0.63) and NDVI (0.65). The NDVI index is most used index worldwide
since its introduction in 1974 (Rouse et al., 1974), therefore, there are many researches
based on this index, just like another study comparing UAVs RGB based vegetation
indices (VARI & TGI) with NDVI (McKinnon & Hoff, 2017). In general, VARI index
is mostly dependent on leaf-area while Triangular Greenness Index (TGI) is mostly
dependent on chlorophyll and nitrogen. For this reason, these indices may represent
some aspects of the NDVI index; on the other hand, the researchers mentioned almost
the same count of failures as successes for VARI & TGI indices in comparison to the
NDVI index. The processing of the data for vegetation indices calculation has the limits
in the threshold selection for detecting the green object and bare soil. These problems
help to elim
picture segmentation. The result of this procedure is binary image, which can improve
the final results derived from vegetation indices (Otsu, 1979)
this method for binary image extraction in vineyards.

However, the use of remote sensing is very challenging in hop gardens or vineyards
due to the row structure and plant canopies. Within the vineyard plot or hop garden is
bare soil or vegetation cover, which may results in presence of inappropriate information
such as: inter-row vegetation cover, shadows produced by the plants etc.; when

historical documents the Czech hop-growing terminology could be sometimes similar to
that used in wine-making. Nevertheless, there are many differences in comparison with
vineyard. It is the challenge to use similar methods to vineyard-monitoring for deriving
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in his study reproduction (propagation) coefficient of the stand (KRP) which depends on
the amount of above-ground biomass and the ration of cones to this biomass. This
calculation can be good indicator of hops yield. Spectral indices can serve as simply way
how to calculate above-ground biomass. The vegetation indices are usually computed
over the entire remote-sensed area. In this case, the unrelated information is present and
the separation of sensed plants and inappropriate information is required.
(2018) conduct research on this theme, using UAS (Unmanned Aerial System) equipped
by RGB camera with resolution of 12 MPx. There were compared thirteen vegetation
indices (VI) and computed crop surface model to estimate which index is the best for
vineyard vegetation detection. The best vegetation indices were then: ExG, GBVI,
RGBVI, GLI & G%.

The main objective of this study is to calculate RGB indices over the selected hop
garden and to find out which index is the best for canopy area calculation with regard to
the specific structure of hop garden.

MATERIALS AND METHODS

Study area

comprised 3 hop varieties - Agnus (1.5 ha), Premiant (2.4 ha)
(see Fig. 1). The conventional hop garden technology with irrigation was used for crop
cultivation. The mission was arranged in 24 June 2019 when the hop plants are fully
growen with cones developing, and plant hight of 7 m (see Fig. 2).

Figure 1. Location of experimental hop garden divided to three parts according to hop variety.

UAV equipment and flight configuration
Aerial survey were conducted using eBee X and FireFly6 Pro (FF6P) drones. The

eBee is the fixed-wing drone (senseFly SA, Cheseaux-Lausanne, Switzerland), equipped
with a built-in RTK-PPK functionality, and S.O.D.A. camera (Sensor Optimised for
Drone Applications; senseFly SA, Cheseaux-Lausanne, Switzerland) with 20 Mpx RGB
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sensor and 28 mm focal lens. The FF6P is fixed-wing UAV (BirdsEyeView Aerobotics),
equipped with multispectral MicaSense RedEdge-MX camera (MicaSense, Inc. Seattle,

Figure 2. Current status of Premiant hop variety in 24 July 2019.

WA, USA) containing five spectral bands and 1.2 Mpx per EO (Earth Observation)
band sensor resolution. Spectral properties of cameras used in this study is given
in Table 1.

Table 1. Spectral properties of cameras used in this study

Band (nm center) S.O.D.A. eBee X MicaSense Red Edge-MX FF6P
BLUE 450 nm (center, 100 nm bandwitdth) 475 nm (center, 20 nm bandwitdth)
RED 520 nm (center, 250 nm bandwitdth) 560 nm (center, 20 nm bandwitdth)
GREEN 660 nm(center, 130 nm bandwitdth) 668 nm (center, 10 nm bandwitdth)
RED EDGE - 717 nm (center, 10 nm bandwitdth)
NEAR-IR - 840 nm (center, 40 nm bandwitdth)

This study flight took place in 24 June 2019 between 11:30 a.m. and 1:00 p.m CET
for both UAV technology. The eBee X flight was performed at 119 m above take-off
height, with speed 15 m s-1 in average, and with resulting 2.77 cm spatial resolution of
images. The images overlap was 80% longitudinal and 65% lateral. SW eMotion by
SenseFly (see https://www.sensefly.com/software/emotion/) was used for setting the
flight mission parameters. The FF6P flight was performed at 90 m above take-off height,
with speed 16 m s-1 in average, and with resulting 7.43 cm spatial resolution of images.
The images overlap was 80% longitudinal and 65% lateral.

UAV images processing
Acquired data were processed using Pix4Dmapper (Pix4D SA, Cheseaux -

Lausanne, Switzerland), where image calibration, point cloud densification and
orthophotomosaics (in WGS 84 UTM Zone 33 coordinate system) were calculated from
each of datasets. Orthophotomosaics were then processed in ENVI, ArcGIS SW (ESRI,
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Redlands, CA, USA) and QGIS SW (Free Software Foundation, Inc., Boston, MA,
USA). Selected RGB indices (see Table 2) were calculated for each of varieties and data
sets. Green Percentage Index (G%), Excess of Green Index (ExGreen), Green Leaf Index
(GLI), Visible Atmospherically Resistant Index (VARI), Red Green Blue Vegetation
Index (RGBVI), Normalised Green Red Difference Index (NGRDI) and Triangular
Greenness Index (TGI) were chosen to estimate the area of hop plants.

Table 2. RGB vegetation indices used in this study for UAV systems comparison

RGB Spectral Index Algorithm References

Green Percentage Index (Richardson et al., 2007)

Excess Green (Woebbecke et al., 1995)

Excess Green- Excess Red  (Meyer & Neto, 2008)

Green Leaf Index
(Gobron et al., 2000;
Hunt et al., 2013)

Red Green Blue Vegetation
Index

(Bendig et al., 2015)

Visible Atmospherically
Resistant Index

(Gitelson et al., 2002)

Normalised Green Red
Difference Index

(Falkowski et al., 2005;
Gitelson et al., 2002;
Kawashima & Nakatani
1998; Tucker, 1979)

Triangular Greenness Index (Hunt et al., 2013)

Where g = G/(R+G+B); b = B/(R+G+B); r = R/(R+G+B); and green (G), red (R) and blue (B) are the
reflectance values of each band.

Binary models (0;1) were then derived from resulting indices with the help of

method is based on automatic threshold selection for picture segmentation. In our study
the value 0 equals to bare soil and value 1 represent vegetation. Resulted binary rasters
were then converted to vector model (polygon shapefiles) for calculating area
possibilities for each of varieties and UAV data sets. Excess Green (ExG) and TGI index
were used for next image analysis because these indices showed the most accuracy
estimation of vegetation cover in hop garden area in comparison with RGB
orthophotomosaics. Using Map algebra tool in ArcGIS SW the ExG and TGI indices for
each data sets (eBee and FF6P) were deducted from each other with the aim to find out
the accuracy of vegetation area calculation. The tool Fuzzy Overlay (Spatial Analyst
tool - Overlay; ArcGIS SW) were then used for two model deriving ExG and TGI, which
combines the raster of both binary model based on selected index (Fuzzy Overlay of
ExG from eBee and ExG from FF6P; and Fuzzy Overlay TGI from eBee and TGI from
FF6P). Fuzzy Overlay tool allows the analysis of the possibility of a phenomenon
belonging to multiple sets in a multicriteria overlay analysis. Fuzzy Overlay not only
determines what sets the phenomenon is possibly a member of, but also analyses the
relationships between memberships among multiple sets.
which was set for our purposes, will return the maximum value of the sets the cell
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location belongs to. This technique is useful when you want to identify the highest
membership values for any of the input criteria (ArcGIS 10.4, ESRI, 2019). These
resulting models derived on the base of Fuzzy Overlay algorithm were compared with
each other to determine the accuracy of these models.

RESULTS AND DISCUSSION

Table 3 shows leaf area for each hop variety. The leaf area is derived from both
UAV systems: eBee X and FF6P. The results show differences between both sensing
which could be caused for various reasons. The eBee X had higher spatial resolution

atic threshold detection the
differences between both sensing occurred. The differences between the sensing vary for
each indices differently. Similar studies realized in vineyards proved, that UAVs with
various cameras spatial resolution could provide accurate data. To provide accurate data,
the sensor-related radiometric and spectral calibration are important (Brook et al., 2020).
As was confirmed by least difference is
between the ExG and NDVI indices. The ExG as well as TGI indices were used for
further processing and in the Table 3 the values are highlighted. The TGI (McKinnon &
Hoff, 2017) and ExG indices are mostly dependant on the chlorophyll and nitrogen
content, this mean that these indices should be very similar, but even there are
differences. These differences are characterized by higher values of TGI index in all
variants. These differences, between these two indices, could have occurred due to
colour shade change by shadows of the hop canopy, which occurs at any circumstances,
due to the technology of hop growing in hop gardens. Another possibility of these
differences could be the different colour of leaves (mostly yellow) in the lower layer of
hop canopy which is mainly dependant on the hop growth stage and its variety. As
proved in the study of Fuentes-Peailillo et al. (2018) the TGI index has best results in
canopy cover determination also by different sparse crops in comparison with NDVI.
On the other hand the results show that the accuracy of the canopy cover determination
depends on the spatial resolution of image. Hunt et al. (2013) proved that the utilization
of TGI index has best results in later phenology stages, when it is only affected by leaf
chlorophyll content, therefore TGI is the best to detect crop nitrogen requirements. In
our study this statement was confirmed, when ExG and TGI were used for further
analysis.

Table 3. Leaf area (m2) derived from eBee X and FF6P UAV systems for individual hop varieties

eBee X FF6P
Index/
Variety

Agnus Premiant Agnus Premiant

ExGExr 3,374.8 5,223.5 7,711.3 8,227.2 13,478.5 12,081.2
ExG 5,251.6 8,802.0 8,089.2 3,702.6 4,851.4 6,117.6
GLI 709.6 1231.8 478.9 10,579.7 17,166.9 13,947.1
GPI - - - 7,769.1 13,036.3 11,999.7
NGRDI 1,919.2 1,886.7 438.5 8,130.0 13,333.7 11,992.2
RGBVI - - - 9,166.5 15,351.4 13,172.2
TGI 5,520.0 9,240.4 8,260.4 4,452.3 6,278.1 6,998.8
VARI 1,959.3 1,920.3 464.6 8,279.1 13,490.1 12,050.3
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The comparison of ExG and TGI from eBee X and FF6P in Table 4 shows, that
the green vegetation was mostly identified in both layers. The majority of the vegetation
was identified by both UAVs, but
the eBee has more unique
identification of green vegetation
than it is in FF6P layer. This is
caused by the difference of both
cameras their different spectral
properties and by various spatial
resolution too. Additional small
differences should be caused by
the different length and/or position
of the shadows of hop canopy
caused by impossibility to fly over
monitored area at the same time with
both UAVs due to law restriction
and safety of persons and property.

Table 4. Changes of area of hop garden (m2) derived
from models eBee and FF6P UAVs systems
deducted from each other for individual hop
varieties. The value 0 = no changes; -1 = green

= green

Index/
Variety

Changes Agnus Premiant

ExGeBee-
ExG FF6P

-1 283.9 466.0 196.7
0 12,792.3 19,835.6 14,122.6
1 17,77.9 4,355.8 2,040.2

TGIeBee-
TGI FF6P

-1 381.9 799.8 499.8
0 13,065.5 19,328.9 14,184.8
1 1,406.7 3,706.9 1,674.9

From the previous results (Table 3 & 4) is obvious that it is possible to use standard
RGB cameras with high resolution to estimate these indices and leaf area at least in hop
gardens and probably in vineyards. This agrees with Lussem et al. (2018) who confirmed
the usage of RGB camera in grasslands, but in this case were used different indices

utilization. They stated that low-cost RGB camera proved to have enough accuracy for
vineyard monitoring. Barbosa et al. (2019) concluded in their study that all of the
evaluated vegetation indices, derived for grass monitoring, were affected by lighting
condition of the scanned location. We solved similar problems with hop crops.

Thanks to the spatial analyst
tool Fuzzy Overlay, the leaf area is
presented in Table 5. The leaf area
is derived from the multicriterial
overlay analysis. This tool utilizes
layers ExG from eBee X and FF6P
and area from TGI from eBee X
and FF6P for the leaf area
determination with the highest
possible accuracy.

For selected hops varieties
there are also presented
comparisons of Fuzzy models. In
the Table 6 the changes of hop
garden area for models FuzzyExG
and FuzzyTGI are presented. The
table proves that both models
are very accurate, because the
differences between the layers are

Table 5. Leaf area (m2) calculated for ExG and TGI
model with the help of Fuzzy Overlay tool
(combination of layers ExG eBee and ExG FF6P;
TGI eBee and TGI FF6P)

Index/Variety Agnus Premiant
FuzzyExG 5,575.7 10,119.9 8,820.2
FuzzyTGI 5,953.6 13,681.8 7608.7

Table 6. Changes of area of hop garden (m2) derived
from Fuzzy models (FuzzExG minus FuzzyTGI)
for selected hop varieties. The value 0 = no changes;
-1 = layer,
1 =

Index/
Variety

Changes Agnus Premiant

FuzzyExG-
TGI

-1 385.3 781.6 424.2
0 14,160.1 22,863.6 15,968.3
1 93.9 150.8 33.3

less than 4% in comparison with the common (both layers) area. These changes are also
shown in Fig. 3. This figure demonstrate the differences between ExG and TGI fuzzy
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models. Differences can be caused by the actual status of individual plants. The results
of individual flights can be affected by movement of main stem (bine) and its lateral
branches (shoots) which are wrapped around wires. The stem reaches a height of 7 m
(upper limit of construction) and grows at an angle, which can caused different lighting

her reasons may be
different flight altitudes and other camera and drone specifications. However Caruso et
al. (2017) in their study reported that the RGB consumer camera mounted on UAV can
be sufficient tool for canopy modelling.

The results of Fuzzy Overlay are with agreement with Baidya et al. (2014). They
concluded that fuzzy overlay analysis is computationally more expensive but it gives
more accurate and consistent results.

Figure 3. Fuzzy models ExG (a) and TGI (b) and changes of area of hop garden (m2) derived
from Fuzzy models (FuzzExG minus FuzzyTGI) (c) for selected hop varieties. Premiant hop
variety Fuzzy models and its changes are shown in detail below - Fuzzy ExG detail (d), Fuzzy
TGI detail (e), and changes (Fuzzy ExG - TGI) detail (f).

CONCLUSIONS

The results showed that vegetation indices could be used for the hop plants area
monitoring. Hop belongs to the least researched crops, because hop monitoring has its
specifics, which must be taken into account.

The comparison of various indices showed, that ExG and TGI indices has the
highest congruity of estimated vegetation indices in hop garden area for both used

b)

e)

a) c)

d) f)
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cameras (S.O.D.A. and MicaSense). On the other hand, indices such as: ExGExr, GLI,
GPI, NGRDI, RGBVI and VARI did not show significant accordance.

Further processing by Fuzzy Overlay tool proved high accuracy in leaf area
estimation for ExG and TGI vegetation indices. Both of these indices had very similar
results in crop area detection, because the calculated mutual deviation in detection of
hop garden area is smaller than 4%.

Also was confirmed that for the estimation of crop area is possible to use RGB
camera and it is not necessary to use more expensive multispectral cameras.
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