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Abstract. A new theory of vibrational digging up of root crops from the soil has been 

developed. The Hamilton-Ostrogradski variational principle is used, on the basis of which we 

have received the differential equation of longitudinal oscillations of the root in the soil with an 

infinite number of degrees of freedom. Solution of the given equation provided the possibility 

to determine the main parameters of the tools that are used in modern beet harvesters. 
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INTRODUCTION 

 

The reason for large-scale use of vibrational digging tools in root harvesters of the 

modern technical level is their significantly lower draught level, actual ability to dig up 

beetroots from the soil without damage and losses. Oscillations of the digging tool 

create conditions, under which the soil that adheres to roots is intensely beaten down 

when they are dug up, which facilitates high level of qualitative indicators. That’s why 
development of new constructions of vibrational digging tools, as well as research of 

their operation for the purpose of determination of the optimal constructive and 

kinematic parameters is a current task of the branch of  mechanisation of sugar beet 

growing (Sarec et al., 2009; Lammers, 2011). 

Statement of the problem. Analytical research of the process of interaction 

between working elements of the vibration digging tool with the root, that allows to 

obtain kinematic, constructive and technological parameters, and gives the opportunity 

to determine their optimal value. 

 



MATERIAL AND METHODS 

 

Fundamental theoretical and experimental research of the vibrational digging up 

of the root crops of sugar beet was published in the paper (Babakov, 1968), in which 

the root is modelled as a body having elastic properties, and it is presented as a rod 

with variable cross section with one attached end. Transverse oscillations of the root 

analysed in the given paper are described using the differential equation, in particular 

derivatives of fourth order. The technological process of digging up of the root from 

the soil with vibrational application of forces is not actually analysed here; instead it is 

stated that using the additionally prepared equations of kinetostatics the conditions are 

found for its digging up from the soil under the action of the disturbing force applied in 

the cross vertical plane. It is stated in the given paper that this particular direction of 

oscillations will be the best way to foster high quality digging up of the root crops from 

the soil. 

Paper (Vasilenko et al., 1970) presents the theory of the digging tool of a regular 

digging share type, and states the conditions for digging up of the root from the soil 

with translational motion of the digger, taking the condition of avoiding damage to the 

root into account. The given paper demonstrates how the expression is obtained for 

determination of the allowed velocity of translational motion of the digging tool with 

its pre-set constructive parameters. In the given case the process of digging up of the 

root from the soil is performed under the action of forces that emerge on the working 

surfaces of the digging shares as a result of the transitional motion of the digging tool 

along the rows of the roots. 

The developed theory of own and forced oscillations of the body of the root 

(Pogorely et al., 1983) is necessary for assessment of the action of the given 

oscillations on the process of destruction of connections of the root with the soil.  

However, the given methods are not sufficient for performance of full analysis of 

the actual process of digging-up of the root from the soil. 

Goal of the research. To develop a calculation and mathematical model and to 

analytically analyse the root – tool system in order to study the process of oscillations 

of the root during its vibrational digging-up from the soil. 

 

RESULTS OF THE RESEARCH 

 

The case where oscillatory motions of the vibration digging-up tool are applied to 

the beetroot in longitudinal vertical area will now be analytically analysed. It will be 

assumed that the root that is located in the soil is a complex solid elastic system with 

an infinite number of degrees of freedom, also modelled as the rod with variable cross 

section with the attached low end. 

At the same time, since the Lagrange equation of the second kind in generalised 

coordinates serves as theoretical basis for most research of oscillations of holonomic 

systems with a finite number of degrees of freedom, for the purpose of performance of 

oscillations of holonomic systems with an infinite number of degrees of freedom the so 

called Hamilton-Ostrogradski principle of stationary action is used (Babakov, 1968). 

In the theory of longitudinal, torsional and transverse oscillations of straight rods 

the Hamilton-Ostrogradski functionals are applied, which in the most generalised form 

look as follows: 
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where: ПTL -=  is the Lagrange function; T  is kinetic energy of the system; П  is 

the potential energy of the system. 

 

It will be assumed that the root that is located in the soil to be the rod with 

variable cross section along its length with one end attached (Fig. 1). The Hamilton-

Ostrogradski principle will now be applied for research of longitudinal oscillations of 

the root that occur under the action of the vertical disturbing force that changes 

according to the harmonic law of the following type (Bulgakov et al., 2005): 
 

tHQ
зб

wsin
.
=

, (2) 

 

where: H  is the amplitude of forced oscillations; w  is the frequency of forced 

oscillations. 

 

As we can see from the scheme (Fig. 1), the root having a cone-like body (the top 

angle of which equals g2 , and the top part of which is located above the level of the 

surface of the soil), is modelled as the rod with variable cross section with the attached 

low end (point O). In the centre of gravity, designated as point C , the force G  is 

applied – the weight force of the root. h  is its total length. Through the axis of 

symmetry of the root the vertical axis x  is drawn, the beginning of which matches the 

point O. Connection of the root with the soil is determined by the general reaction of 

the soil 
xR , which is located along the axis x . 

 

 

Figure 1. Scheme of the forces having an action on the root at the time of gripping by the 

vibration digging tool. 



The disturbing force 
.збQ  stated above is simultaneously applied to the root from 

two digging-up plough shares from its two sides, and that’s why it is presented in the 
scheme by two components 

1.збQ  and 
2.збQ . The given forces are applied on the 

distance 1x  from the origin of coordinates (point O), and they are the source of 

oscillations of the root in longitudinal vertical area, that destroy connection of the root 

with the soil and form conditions for digging up of the latter from the soil. The 

functional S  of Hamilton-Ostrogradski for the analysed vibrational process will now 

be made. For this purpose the necessary symbols will be applied: 

)(xF  is the area of cross section of the root at some point located at the distance 

x  from the low end m
2
; E  is the Young's modulus for material of the root N m

-2
; 

( )txy ,  is the longitudinal dislocation of some cross section of the root at the time point 

t , m; ),( txQ  is the intensity of longitudinal external load directed along the axis of 

the root N m
-1

; ( )xm  is the mass per length of the root kg m
-1

. 

Then kinetic energy of the oscillatory motion of the root will be: 
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Potential energy of the elastic deformation is designated as follows: 
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Potential stretching energy of the longitudinal load ( )txQ ,  will look as follows: 
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The Lagrange function L  will be made. 

Since  
 

21 ППTL +-= , (6) 
 

then, taking the expressions (3), (4) and (5) into consideration, we get: 
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By inserting the expression (7) into the expression (1), we will have: 
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Further, expressions of all values that are included in the functional (8) will be 

found. Since the root has the shape of a cone, we find that its area of cross section F(x) 

at the point that is located at an arbitrary distance x from the point O, will be: 
 

( ) gp 22 tanxxF = . (9) 

 

It is obvious that the mass per length of the root can be determined using the 

following expression: 
 

( ) ( )xFx ×= rm ,  
 

or, given the (9), 
 

( ) gprm 22 tanхx ×= , (10) 

 

where r is the density of the root in kg m
-3

. 

 

Since the value Q(x,t), included in the functional (8), is the intensity of distributed 

load, that is measured in N m
-1

, then in each specific case the disturbing force must 

correspond to dimension of the intensity of the load. By using the so called impulse 

function of the first order σ1(x) (Babakov, 1968) it is possible to determine the intensity 

of the distributed load, and to include into the composition of the load divided along 

the length the concentrated forces and moments of forces. 

Respectively, if ( )tQ
зб.

 is the concentrated disturbing force applied to point 1x  

and measured in Newtons, then the function: 
 

( ) ( ) ( )11.. , xxtQtxQ
збзб

-×= s  (11) 
 

has the dimension in N m
-1

 and expresses intensity of the concentrated load in the 

point 1x . 

The function ( )11 xx -s  equals zero for all x , except for 1xx = , where it is 

transformed into infinity. 

Let the disturbing force acting according to the law 
 

( ) tHtQ
зб

wsin. = , (12) 
 

be applied to the root at the distance 1x  from the starting point (point O in Fig. 1). 

Then, according to (11) we can write: 
 

( ) ( )11. sin, xxtHtxQ
зб

-×= sw . (13) 
 



Since the root is connected with the soil, which is an elastic environment, 

application of the disturbing force of type (12) to the root leads to emergence of the 

force of resistance of the soil to movement of the root due to its oscillations. This force 

also has an action on the process of own oscillations of the root in the soil, especially at 

the beginning of the oscillations process, until connections of the root with the soil are 

destroyed. 

It is obvious that the force of resistance of the soil (for the entire body of the root) 

is the distributed load along the area of contact of the root with the soil, and that’s why 
we must determine its intensity as the force of resistance of the soil to movement of a 

length unit of the root. 

Let c be the coefficient of the elastic deformation of the soil applied to the area of 

the contact measured in N m
-2

. It will now be assumed that the soil surrounding the 

root, under the action of the disturbing force Hsinωt, performs forced oscillations 

according to the same harmonic law with the amplitude that is determined by elastic 

properties of the soil. Then the intensity P(x, t) in N m
-1

 of resistance of the soil to 

movement of the root in point x will be: 
 

( ) ,sintan2, txctxP wgp ××=  (14) 
 

Respectively, we will have the following relation for longitudinal external load: 
 

( ) ( ) ( )txPtxQtxQ
зб

,,, . -= .  
 

Given the expressions (9), (10), (13) and (14), the Hamilton-Ostrogradski 

functional (8) will look as follows: 
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In order to find natural forms and frequencies of longitudinal oscillations of the 

root in the soil, the Ritz method can be applied (Babakov, 1968). According to the 

given method we will need to find harmonic longitudinal oscillations of the root as 

follows: 
 

( ) ( ) ( )aj += tpxtxy sin, , (16) 
 

where )(xj  is the natural form of primary oscillations, i.e. the function that 

determines continuous population of amplitude longitudinal deviations of cross section 

of the root from their equilibrium positions, and p  is the natural frequency of primary 

oscillations. 

Since natural forms and natural frequencies are related to free oscillations of the 

system, in the functional (15) we must highlight the part that specifically describes free 

oscillations of the system. Obviously the functional will look as follows: 
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The expression (16) will now be inserted into the functional (17), and we will get: 
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The expression (18) will be integrated over t  within the limits of one period 

,
2

p
T

p
=  and we will have:  
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The basis of the Ritz method is reduction of the variational problem to the 

problem of search of extremum of function of any independent variables. 

According to the Ritz method the value of the functional (19) is analysed on 

population of linear combinations of functions, i.e. expressions looking as follows: 
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where: αi are the parameters, variations of which enable us to obtain the required class 

of allowed functions; )(xiy  are the basis functions that are specifically chosen and are 

known functions, that correspond to geometrical boundary conditions of the problem. 

Respectively, we insert the expression (20) into the expression (19), and get: 
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After respective transformations the functional (21) will look as follows: 
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The following symbols will now be entered: 
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                               ( )nki ,...,2,1, = . 
 

By inserting (23) into (22), we will get a functional as a function from parameters 

:,,, 21 naaa K  
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The extremum analysis of the functional (24) will now performed. For this 

purpose we will differentiate the expression (24) with respect to parameters αi, 

),,2,1( ni K=  and equate the obtained particular derivatives to zero. As a result of 

that we will get a set of linear homogeneous equations with respect to the unknowns 

,,,, 21 naaa K  from which, in turn, we can find the Ritz frequencies equation for 

longitudinal oscillations of the root attached in the soil: 
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It is known, that with 4>n  the given equation cannot be solved in radicals, 

that’s why it is necessary to apply numerical methods using a PC. 
However, in reality, as a rule, only the lower frequencies are determined, most 

often the first and the second ones, which have the most significant action on the 

technological process that is being analysed. 

Therefore, the first and the second frequencies of natural oscillations of the root 

will now be determined. 

For the purpose of determination of the first and the second frequencies the 

equation (25) will look as follows: 
 



0

22

2

2221

2

21

12

2

1211

2

11 =
--

--

TpUTpU

TpUTpU
 (26) 

 

As a result of the solution of the given equation we will obtain expressions for 

finding the value of the first (primary) frequency:  
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and the second frequency: 
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Now the calculation will be performed of the values of the first and the second 

frequencies for the beetroot having the following parameters (Pogorely et al., 1983) 

250=h  mm; 6104.18 ×=E  N m
-2

; 300,1=r  kg m
-3

. As a result of the calculations we 

get: 
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Next, the analysis of the forced oscillations of the root will be discussed. The 

exclusively forced oscillations will happen according to the following law: 
 

( ) ( ) txtxy wj sin, = , (29) 
 

where j(x) is the form of the forced oscillations. 

 

In order to determine the form of the forced oscillations of the root the expression 

(29) will now be entered into the functional (15), and we will get the following 

functional: 
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By integrating the expression (30) over t  within the limits of one period 

,
2

w
p

=T  we will get: 
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According to the Ritz method let’s analysis will now performed of the value of 
the functional (31) with respect to population of linear combinations of the following 

type: 

( ) ( )xx yaj =  (32) 
 

where: a  is the parameter, variations of which let us obtain the class of the allowed 

functions; ( )xy  is the basis function. 

 

The expression (32) will now be inserted into the functional (31), and we will 

obtain: 
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The following symbols will now be inserted: 
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The expressions (34), (35), (36) will now be inserted into (33), and we will have: 
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So, in the population of functions, (32) the functional (33) is transformed into the 

function of the independent variable ,a  looking as (37). 

The necessary condition of the stationary functional (37) (i.e. existence of the 

extremum) is that its first variation equals zero: 
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from which we receive the following equation: 
 

022 2 =+- LUT aaw  (39) 
 

from which we find the required value of the parameter a . It will be: 
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The form of the forced longitudinal oscillations of the rod with the constant cross 

section with one end firmly attached, emerging under the action of the longitudinal 

harmonic force of frequency ,w  applied at the point 1xx = will now be assumed as the 

basis function )(ty . 

According to Babakov (1968) the form of the forced oscillations of the given rod 

looks as follows: 
 

( ) xaDx sin1=y       with   1xx £  (41) 

  

( ) ( )xhaDx -= cos2y       with   1xx > , (42) 
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m  is the mass per length of the rod; F  is the area of the longitudinal section of the 

rod; E  is the Young’s module for material of the rod; h  is the length of the rod; w  is 

the frequency of the forced oscillations of the rod. 

Having calculated the parameters of T, U and L according to the expressions (34), 

(35) and (36), we obtain the required value of the parameter a  according to the 

expression (40), in case of which the functional (33) will have a stationary value. 

Taking into consideration the expressions (32), (41) and (42), we get expression 

for the form of the forced oscillations of the root attached in the soil. They look as 

follows: 

( ) xaDx sin1×=aj ,   with  

,1xx £ ( ) ( )xhaDx -×= cos2aj ,   with 1xx > . 
(46) 

 



Having inserted the expressions (46) into (29), we get the final law of the forced 

oscillations of the root attached in the soil. If we take into consideration the action of 

the disturbing force ,sin tH w  the given law will look as follows: 
 

( ) taxDtxy wa sinsin, 1 ×= ,   with 1xx £ , 

( ) ( ) txhaDtxy wa sincos, 2 ×-= ,   with 1xx > . 
(47) 

 

Based on the results of the theoretical research of the forced oscillations of the 

beetroot attached in the soil we will perform specific calculations of the amplitude of 

the given oscillations. 

The length of the root h , its cone angle g , Young’s module E  for the body of 

the root, density r  of the root, coefficient of elastic deformation of the soil c  will be 

assumed to be equal, according to Pogorely et al. (1983): h = 250ˑ10-3
 m; γ = 14°; 

E = 18.4ˑ106 N m
-2; ρ = 1,300 kg m

-3
; c = 1ˑ10-5

 N m
-2

. 

The amplitude H  of the disturbing force will be chosen within the limits 

100...600 N. We will assume the frequency ω of the disturbing force, according to 

(Vasilenko et al., 1970), to equal w  = 20 Hz. 

The calculation is performed using the Mathcad program in order to determine the 

relations between the amplitude of the forced longitudinal oscillations of the body of 

the root and changes of the disturbing force within the range 100...600 N for different 

cross sections of the root.  

The result of the given calculation is the graph shown in Fig. 2. 
 

 
 

Figure 2. Relation between the amplitude of forced longitudinal oscillations of the body of the 

root and the value of the disturbing force. 

 

As it is seen from the given graph, increase of the value of the disturbing force 

leads to the increase of the amplitude of the longitudinal forced oscillations of the body 

of the root according to the linear law. 



It should also be noted, that with increase of the distance of the area of cross 

section of the root from the origin of coordinates O the amplitude is also increased. For 

example, with x = 0.07 m the amplitude is within the limits of 1.7…2.3 mm with 

x = 0.1 m – within the limits of 2.3…3.5 mm, with x = 0.12 m – within the limits of 

2.8…3.9 mm, with x = 0.15 m (the point of gripping) – within the limits 3.2…4.8 mm. 

Further, analysis will be presented of the calculation performed on a PC of the 

amplitude of longitudinal oscillations of the body of the root attached in the soil from 

the coefficient c  of the elastic deformation of the soil surrounding the root, and the 

distance of the cross section of the root from the conditional point of its attachment for 

the frequency of the disturbing force 10=v Hz and 20=v Hz. 

On the basis of the calculations we get the following graphs (Fig 3). 
 

  
a) b) 

 

Figure 3. Relation between the amplitude of the forced longitudinal oscillations of the root as 

an elastic body attached in the soil, and the coefficient c of the elastic deformation of the 

surrounding soil, and between the distance x  of the cross section of the root and the conditional 

point of attachment: a) ),1xx £  b) ),1xx ³  ( 1x – point of gripping, =v 20 Hz). 

 

As it is seen from the graphs stated above, in case of increase of the coefficient c  

of the elastic deformation of the surrounding soil, the amplitude of the forced 

oscillations of the root is reduced, and in case of increase of the distance x  of the cross 

section of the root from the point of conditional attachment with 1xx £  it is increased, 

and with 1xx ³  it almost doesn’t change. 

Fig. 4 shows the given relation for a number of specific cross sections of the root, 

in particular: for x = 0.07 m; 0.1 m; 0.12 m; 0.15 m (point of gripping). 

On the given graph we can quite clearly see the tendency of increase of the 

amplitude of the forced longitudinal oscillations  in case of increase of the distance of 

the cross section from the conditional point of attachment and the tendency of its 

reduction due to increase of the coefficient c of the elastic deformation of the 

surrounding soil. 



For example, with x = 0.07 m and change of the coefficient c within the limits 

c = 0…20ˑ105 N m-3, the amplitude is changed within the limits of 0.7…0.47 mm; 

with x = 0.1 m – within the limits of 0.99…0.67 mm; with x = 0.12 m – within the 

limits of 1.19…0.81 mm; with x = 0.15 m (point of gripping) – within the limits of 

1.49…1.01 mm. 
 

 
 

Figure 4. Relation between the amplitude of the forced longitudinal oscillations of the root as 

an elastic body and the distance x  of the cross section of the conditional point of attachment 

1xx £ , 20=n Hz. 

 

 
 

Figure 5. Relation between the amplitude of the forced longitudinal oscillations of the root as 

an elastic body and the distance x  of the cross section from the conditional point of attachment 

),( 1xx ³  20=v Hz. 

 



However, as the graph in Fig. 5 shows, for cross section of the root above the 

point of gripping ( 15.0³x m) the amplitude of forced oscillations of the body of the 

root with increasing distance of the cross section from the conditional point of 

attachment almost doesn’t change and remains the same as in case of x = 0.15 m. 

However, the tendency of decrease of the amplitude from increase of the coefficient c  

is the same as for the sections below the point of gripping (x ≤ 0.15). 

In case of the frequency of the disturbing force 10=n  Hz values of the 

amplitude are slightly lower. For example, with x = 0.07 m the value of the amplitude 

remains within the limits of 0.66…0.45 mm; with x = 0.1 – within the limits of 

0.94…0.65 mm; with x = 0.12 m – within the limits of 1.13…0.78 mm; with 

x = 0.15 m (point of gripping) – within the limits of 1.41…0.97 mm. 

Also, we have obtained the estimated relation between the amplitude of the forced 

longitudinal oscillations of the body of the root and the amplitude of the disturbing 

force for the frequency of the disturbing force 20=v Hz (Figs 6 and 7). 
 

 
 

Figure 6. Relation between the amplitude of the forced longitudinal oscillations of the body of 

the root and the amplitude of the disturbing force ( 1xx £ , 20=n Hz). 

 

As it is seen from the presented graphs, increase of the amplitude of the disturbing 

force leads to increase of the amplitude of longitudinal forced oscillations of the body 

of the root according to the linear law. 

It should also be noted, that below the point of gripping (x ≤ 0.15 m), with 

increase of the distance of the cross section of the root from the conditional point of 

attachment O the amplitude also increases (Fig. 6). For example, with x = 0.07 m the 

amplitude remains within the limits of 0.13...0.8 mm; with x = 0.1 m – within the limits 

of 0.19...1.14 mm; with x = 1.12 m – within the limits of 0.23...1.36 mm; with 

x = 0.15 m (point of gripping) – within the limits of 0.28...1.7 mm. However, above the 

point of gripping ( 15.0³x m), in case of increase of distance of the cross section 



from the conditional point of attachment O the amplitude almost doesn’t change, as it 

is shown on the graph in Fig. 7. 
 

 
 

Figure 7. Relation between the amplitude of the forced longitudinal oscillations of the body of 

the root and the amplitude of the disturbing force ( 1xx ³ , 20=n Hz). 

 

In case of the frequency of the disturbing force 10=v Hz the obtained values of 

amplitudes were a little bit lower, however for 10=v Hz they were the same. For 

example, with x = 0.07 m the amplitude remains within the limits of 0.12...0.76 mm; 

with x = 0.1 m – within the limits of 0.18...1.08 mm; with x = 0.12 m – within the 

limits of 0.21...1.3 mm; with x = 0.15 m (point of gripping) – within the limits of 

0.27...1.62 mm. 

Respectively, the obtained values of the frequencies of natural longitudinal 

oscillations and amplitudes of the forced longitudinal oscillations of the body of the 

root foster the process of intense knocking of the soil that adhered to the roots off their 

surface, and in case of such values of the amplitudes tearing of the bodies of the roots 

is unlikely. 

 

CONCLUSIONS 

 

1. The new theory has been developed with regard to longitudinal oscillations of 

the root of sugar beet as a body attached in the soil, as an elastic body in an elastic 

environment, that emerges under the action of the vertical disturbing force that changes 

according to the harmonic law. The Hamilton-Ostrogradski variational principle of 

stationary action is used for longitudinal oscillations of the root taking into account the 

physical and mechanical properties of the root of sugar beet as an elastic body and the 

surrounding soil. 

Using the Ritz direct variational method the Ritz frequencies equation has been 

obtained, from which different frequencies of free longitudinal oscillations of the root 

as an elastic body are determined. This, for example, allowed to obtain the analytical 

expression for calculation of the first natural frequency depending on the physical and 



mechanical properties of the root and elasticity of the soil surrounding it, which plays 

the main role in destruction of the tights of the root with the soil. According to the 

calculations performed, when the coefficient c of the elastic deformation of the soil is 

changed, the first frequency of natural oscillations of the body of the root is 

monotonously increased within the limits of 76.4…93.4 Hz, which sufficiently 

precisely corresponds to the experimental data stated in (Pogorely et al., 1983; 

Pogorely & Tatyanko, 2004). At the same time the second frequency is changed within 

the limits of 528…532 Hz, i.e. it has little dependency on the coefficient c of the elastic 

deformation of the soil. 

2. The Hamilton-Ostrogradski functional for forced longitudinal oscillations of 

the root as an elastic body was constructed, on the basis of which the theory of forced 

oscillations of the beetroot in the soil was created. The results of theoretical research of 

the forced oscillations of beetroot attached in the soil were the basis for finding of the 

algorithm for calculation on a PC of the specified oscillations, in particular, finding of 

the law of the forced longitudinal oscillations and amplitude under the condition of 

prevention of damage (tearing) of the beetroot depending on the coefficient c of the 

elastic deformation of the soil and the amplitude of the disturbing force. 

3. It was analytically established that the amplitude of the forced oscillations of 

the body of the root decreases in case of increase of the coefficient c of elastic 

deformation of the soil, and increases in case of increase of distance of the cross 

section of the beetroot from the conditional point of its attachment in the soil. For 

example, with x = 0.07 m and the change of the coefficient c  within the limits of 

c = 0…20ˑ105
 N m

-3
, the amplitude is measured within the limits of 0.7…0.47 mm; 

with x = 0.1 m – within the limits of 0.99…0.67 mm; with x = 0.12 m – within the 

limits of 1.19…0.81 mm; with x = 0.15 m (point of gripping) – within the limits of 

1.49…1.01 mm. 

However, for the cross sections of the root above the point of gripping 

(x ≥ 0.15 m) the amplitude of the forced oscillations of the body of the root almost 

doesn’t change in case of increase of the distance of the cross section from the 

conditional point of attachment and remains the same as in case of x = 0.15 m. 

However, the tendency of decrease of the amplitude from increase of the coefficient c
is the same as for sections below the point of gripping (x ≤ 0.15 m). 

4. The paper also presents the calculations performed of the amplitude of forced 

longitudinal oscillations in case of change of the amplitude of the disturbing force 

within the limits of 100…600 N. As the calculations demonstrated, the increase of the 

amplitude of the disturbing force leads to the increase of the longitudinal forced 

oscillations of the body of the beetroot according to the linear law, and increase of the 

distance of the area of cross section of the root from the conditional point of its 

attachment in the soil also leads to increase of the amplitude. 

For example, with x = 0.07 m, the amplitude remains within the limits of 

0.13…0.8 mm, with x = 0.1 m – within the limits of 0.19…1.14 mm,  

with x = 0.12 m – within the limits of 0.23…1.36 mm, with x = 0.15 m (point of 

gripping) – within the limits of 0.28…1.7 mm. However, above the point of gripping in 

case of increase of the distance of the cross section from the conditional point of 

attachment the amplitude almost does not change. 
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