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Abstract. The segmented capacitance sensor (SCS) is developed for the purpose of material 

throughput measurement. SCS can be used in precise agriculture (e.g. yield maps creation) or for 

controlling of mass flow in stationary lines. This sensor is a compromise between simple 

capacitance throughput sensor which has been developed at the Department of Agricultural 

Machines Faculty of Engineering of Czech University of Life Sciences Prague and electrical 

capacitance tomography sensor. The SCS consists of the bottom plate (bottom electrode) and 

several upper electrodes which are placed parallel above the bottom plate. The upper electrodes 

are sometimes called segments of an upper plate. The bottom plate is undivided and it is assumed 

that it will be stored under measured material. During the measurement process the electric 

capacitance between one upper electrode and the bottom plate is measured every time. The sensor 

should be able to determine the distribution of material between upper electrodes and the bottom 

plate. This paper presents the algorithm of inverse problem solution. The algorithm was tested in 

two phases. The testing during the first phase was done via mathematical model which was 

presented in previous papers. Results show that the presented algorithm can be used for the 

inverse problem solution. For the purpose of the second testing phase a simple SCS was made. 

Electrical capacitances were measured by precise LCR meter. In the second testing phase, the 

inverse problem algorithm was tested using the actually measured data.

Key words: finite element method, inverse problem, electrical capacitance tomography, 

electrical field.

INTRODUCTION 

Material throughput measurement sensors are a very useful tool, both in the field 

of precision agriculture and other areas. This is noted by authors such as Kumhála et al. 

(2013) or Jadhav et al. (2014). Stafford et al. (1996), Savoie et al. (2002) and also 

Kumhála et al. (2009; 2010; 2013) have developed and tested different capacitance 

sensors for the material throughput measurement of plant material. The authors 

presented the advantages as: non-contact measurement, simple mounting on the 

machine, simplicity of the sensor, and low cost. The mentioned papers also confirmed 

the perspective of capacitance throughput sensors. 

Kumhála et al. (2009) described the filling theory of the capacitance throughput 

sensor. It is very important that the capacitance of a sensor depends on the distribution 
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of material between its plates. Nevertheless, the simple capacitance throughput sensors 

cannot provide information about material distribution. This fact can produce significant 

errors. The problem can be resolved with an electrical capacitance tomography (ECT). 

ECT is based on multiple capacitance measurement of the sensing area. Usually ECT 

sensors are composed of 8–14 electrodes. This means that 28–120 independent 

capacitance measurements are obtained. The problem is that capacitance changes are 

very small and they have to be measured in a large range. For example Yang (2010) 

presents values of capacitance change between 0.1 fF to 0.1 pF. This author also suggests 

that measurement accuracy should be about 0.01 fF and better. It is evident that ECT 

sensors are very complicated devices and for some applications (e.g. throughput 

measurement) a simpler device can be used. An interesting possibility can be the 

segmented capacitance sensor (SCS). The idea of SCS has already been described in 

several papers e.g. Kumhála et al. (2012), Lev et al. (2013a; 2015). The SCS consists of 

the bottom plate (bottom electrode) and several upper electrodes that are placed parallel 

above the bottom plate. The upper electrodes are sometimes called segments of an upper 

plate. The number of measuring upper electrodes corresponds with the number of 

obtained signals. This is a fundamental difference from ECT sensors, which usually 

produce many more output signals. It is thus necessary to use a different approach 

towards the solution of the inverse problem.

Yang & Peng (2003) have compared the known methods of solving the inverse 

problem for ECT. This process the mentioned authors call ‘image reconstruction’. The 

authors highlight a method based on the Landweber iteration that displays qualitatively 

the best results. This method was tested also on SCS by Lev et al. (2012). However, it 

has been shown that the SCS provides too few output signals for the use of this algorithm. 

It has also emerged that it is possible to determine relatively well the horizontal position 

of the sample in the imaging region, but the determination of the vertical position is very 

difficult. This is probably due to the spatial arrangement of SCS. 

Algorithms used by ECT assume a completely random distribution of the material 

in the imaging area. However, in many applications it can be assumed that the examined 

material forms only the layer, which could be replaced by a polygonal line specifying 

the boundary between the material and the air. This paper tests the method of inverse 

problem solution based on this approach.

MATERIALS AND METHODS 

For the purpose of the experiment there was assembled a testing SCS. The sensor 

had 8 measuring upper electrodes that were evenly spaced in the upper part of the frame. 

The distance between upper electrodes and the bottom plate was 100 mm, the sensing 

area was 360 mm in width and 400 mm in depth. Each measuring electrode was 40 mm 

wide and 400 mm long. Gaps between the upper electrodes were 5 mm. Dimensions of 

the bottom electrode were 360 mm in width and 400 mm in length. The frame of the 

sensor was made from phenolic paper sheet plate (Hp 2061). The thickness of the side 

walls was 20 mm and the thickness of the other parts was 10 mm. All electrodes 

(measuring upper electrodes and bottom plate) were made from material called cuprexit 

that was 1 mm thick. This material is used for printed circuit board (the laminate covered 

with a thin layer of copper). 
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For the measurement of electrical capacitance there was used precision LCR meter 

GW Instek LCR 8110G. Electrical capacitance was measured in each measuring 

procedure between an upper electrode and the bottom plate. Measuring upper electrodes 

that were not actually used for the measurements were connected to the earth wire. The 

frequency of the measuring circuit was set to 100 kHz. 

Inverse problem algorithm 

Plugging the measuring device creates in the scanned region of SCS a relative 

electric field. Providing the wavelength is significantly higher than the sensor 

dimensions the field can be described in 3D by the Laplace equation:

? @ �A=A#?B	 � �. (1) 

where: A=�–�vacuum permittivity (A=�=�8.85.10-12 Fm-1); A# �– relative permittivity (-); 

� – electric potential (V). 

The electric capacitance between the measuring electrode and a bottom plate is 

calculated by use of equation:

! � � 
CDA=A#?B E �F
�

G
(2) 

where: C – electric capacitance between the measuring electrode and a bottom plate (F); 

U – voltage between measuring electrode and a bottom plate (V); 	 – area of the bottom 

plate (m2); d	 – normal vector to the infinitesimal segment of the bottom plate. 

The mathematical 2D model developed on the bases of Eq. (1) has been in the past 

already verified several times (Lev et al., 2013a; 2013b; 2015). For the SCS inverse 

problem solution this mathematical model must be first created. In this paper, the finite 

element method was used employing the Agros2D 3.2 program. In this paper, the 

ordered n-tuple of real numbers a1, a2,…, an we will call (in sense of linear algebra) an 

n-component real vector a (vector a for short), a = (a1, a2,…, an). Further calculations 

follow the rules for algebraic vectors in vector space Vn. The input of the inverse problem 

algorithm is the vector of normalized capacitance changes. For each component it holds: 

H�� �� � �H��I�H=�	��HJKL��I�H=�	 (3) 

where: cni – the i-th component of the vector of normalized capacitance changes; 

ci – electric capacitance between the i-th measuring upper electrode and a bottom plate; 

c0i – electric capacitance between the i-th measuring upper electrode and a bottom plate 

when the sensor is empty; cmaxi – electric capacitance between the i-th measuring upper 

electrode and a bottom plate when the sensor is filled to its maximum (reference) 

capacity (i.e. the height of filling the SCS is 80 mm). 

The algorithm aim is in finding a polygonal line, defined by points P0 to P9, such 

that it follows the actual material profile as close as possible. The end points P0 and P9

are during the evaluation process fixed at the edges of the sensing area. Points P1 through 

P8 are then located below centres of individual measuring upper electrodes. The problem 
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thus reduces to finding the values of points P1 through P8, i.e. the vector p. The value of 

each point is always an integer number defined as a ratio of the point distance from the 

bottom plate and the dimension of one square element of the mesh. The side of the square 

is 5 mm in length. The mesh scale is based on the compromise between the speed and 

the accuracy of calculations. 

To avoid adjusting or newly creating the analysis mesh whenever manipulating 

with the polygonal line, the space in the sensing area, corresponding the maximum filling 

of the sensor, is subdivided into a rectangular mesh. The searched profile then does not 

eventually correspond to the polygonal line. Instead it is represented by squares for 

which it holds that at least 50% of their area is found below the polygonal line. An 

example of such a situation is shown in Fig. 1. The continuous grey line represents the 

actual outline of the material profile, the polygonal line is plotted in black and the 

resulting searched profile is displayed again in grey colour.

Figure 1. Cross-section of capacitance sensor. The actual distribution of the material, searched 

polygonal line and the estimated distribution of material are shown. 

The following flowchart describes the algorithm: 

1. Load vector of the normalized capacitance changes cn, create vector pj where 

index j represents the calculation step, choose the initial value of p0 for j = 0. 

2. Based on vector pj define the distribution of material in the scanned region and 

for each of 8 measuring upper electrodes calculate with the help of Eq. (2) the electric 

capacitance between the measuring upper electrode and the bottom plate. Employing 

Eq. (3) calculated the normalized vector cj (the values corresponding to an empty sensor 

and a sensor filled to its maximum capacity are also determined exploiting the 

mathematical model combined with Eq. (2)). 

3. Calculate the coefficient NDj defined as distance of vectors cn and cj�

MNO � PH� � HOP� (4) 

4. Calculate the vector k, k=(k1,k2,…,ki,…),where 

Q� � H�� � HO�
RH�� � HO�R (5) 
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New vector pj+1  

SOT� � UVSO 5 QW (6) 

where f is a nonlinear function which defines individual coordinates of the vector: 

���������X Y .������� ��� �Z �U�X	 � .
. [ X [ SJKL ��� ��Z �U�X	 � X

����������������X \ SJKL ��� �Z �U�X	 � SJKL
(7) 

where pmax is the maximum possible value of the vector coordinate. It corresponds to 

the height of the material outline in the scanned region having the sensor at its 

maximum capacity. 

5. Check whether the new vector pj+1 (obtained through correction) has not already 

been used during the analysis. If not, the program returns with this new vector pj+1 to 

point 2 (index j is incremented by 1). Otherwise, the program continues. 

6. Calculate the vector pj+1 again. First, determine the vector dn where for each 

coordinate dni it holds

]�� � H�� � HO�
HO� (8) 

The vector pj requires adjusting one component, which must correspond to the 

component in vector dn with the largest absolute value and at the same time the following 

conditions must be satisfied 

^]�� Y . _ SO� \ .` a ^]�� \ . _ SO� Y SJKL` (9) 

The vector pj+1 is thus obtained from vector pj  such that the coordinate complying 

with the above described conditions is incremented by 1 if dni > 0 or reduced by 1 if 

dni  < 0. 

7. Perform operations described in point 2 with a new vector pj+1�and increment 

index j by 1. 

8. Calculate the coefficient NDj using Eq. (4) 

9. Compare the current and the previous coefficient ND. If NDj < NDj-1�continue 

with the next step 10. Otherwise, the searching process is terminated and the desired 

vector is identified with vector pj-1., 

10. Based on vector cj determine a new vector pj+1 based on the procedure 

described in point 6. Then, return to point 7. 

The experiment description 

The inverse problem algorithm was tested on three different material profiles. As a 

material, timber prisms made from chipboard with a moisture content MCw.b. = 7.5% 

were used. A relative permittivity was set equal to 
r = 4 (James, 1975). First, the values 

corresponding to an empty sensor were measured. Then, eight tested prisms were placed 

longitudinally into the centre of the scanned region. These prisms created an object that 

was used as a reference filling of SCS. This object was 80 mm high, 360 mm wide and 

220 mm long. It was accepted that such a region is maximally filled and the associated 



490 

measurement was used for normalizing other measurements. This reticular SCS is 

displayed in Fig. 2. Note the SCS cannot taken into account a different level of the filling 

in longitudinal direction. The depth of filling has to be constant all the time. Prisms from 

the same material were subsequently used to create three tested profiles. These are, 

including dimensions, shown in Fig. 3. Each measurement of electric capacitances was 

repeated three times. 

Entirely identical scenario was simulated with the help of the Agros2D program. 

Distribution of the electric field corresponding to individual measurements was 

determined using the finite element method. The electric capacitance followed from 

Eq. (2). Initial value of vector p0 was set to p0 = (8, 8, 8, 8, 8, 8, 8, 8). The inverse 

problem algorithm was also programmed in the environment of the Agros2D program. 

The programming language Python 2.7 and libraries NumPy 1.8.2 and Matplotlib 1.3.1 

were exploited. 

For the purposes of evaluating the results there was calculated the relative error of 

the calculated profile RE

b� � cd# � dc
cdc �

(10) 

where gr – vector of the contour of the calculated profile; g – vector of the contour of 

real profile. 

The number of coordinates of vectors gr and g equals the horizontal resolution of 

the sensing area. Each coordinate represents the height of the profile measured from the 

bottom plate. Another parameter that was used for the evaluation of the results was the 

relative error of profile area REA: 

REA � e# � e
e � (11) 

where ar – area of calculated profile (m2); a – real area of profile (m2). 

Figure 2. Reference filling of SCS with the testing material.
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a) 

b) 

c) 

Figure 3. Profiles used for testing the inverse problem algorithm: a) – profile I, b) – profile II,  

c) – profile III.

RESULTS AND DISCUSSION 

Results of the calculations are shown in Fig. 4. Figs 4 (a–c) represent the results 

based on real measurements. These results are therefore affected both by inaccuracies in 

the measurements and by the accuracy of the mathematical model that is used during the 

reconstruction. Figs 4 (d–f) represent the results calculated from simulations carried out 

in the program Agros2D. The effects mentioned in the text above could therefore not be 

applied here. So it can be assumed that the variations in Figs 4 (d–f) are due to the limits 

of the used algorithm. 

From Fig. 4 it is apparent that the tested algorithm has problem to resolve the 

vertical walls of the test profiles. This behaviour is caused by using polyline which as 

a matter of principle cannot fulfil these requirements. However, the use of SCS is 



492 

planned rather for particular materials and chipboard prisms were chosen mainly because 

of the simple and clear definition of test profiles. 

Figure 4. The calculated distribution of material in the SCS. Black curves show the actual 

distribution of test samples and the grey coloured area shows the calculated final layout. (a–c) 

represent the results based on real measurements, (d–f) represent the calculated results based on 

simulations carried out in the program Agros2D.

Table 1 contains calculated errors RE and REA for individual outcomes of the 

reconstruction algorithm. It can be said that in all three cases there was achieved a better 

result if the input data were obtained by simulation. This is an expected result. However, 

the differences posed against cases where the input data were actually measured, were 

not too large. It can therefore be concluded that the mathematical model used to describe 

the electric field in the sensing area of the SCS probably describes the actual behaviour 

of this electric field sufficiently. 

Table 1. Comparison of results of the inverse problem algorithm. RE and REA error values are 

calculated by Eq. (10) and (11)

Variant RE (-) REA (-)

Profile I – measured input data 0.131 0.029 

Profile I – calculated input data 0.119 0.008 

Profile II – measured input data 0.193 0.081 

Profile II – calculated input data 0.184 0.028 

Profile III – measured input data 0.154 0.075 

Profile III – calculated input data 0.135 0.005 

c)

b)

a) d)

e)

f) 
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RE error expresses the deviation between the actual and calculated shape of the 

profile. RE values in Table 1 range from 0.119 to 0.193. The lowest RE values were 

calculated for the profile I. It is probably due to the fact that it is a profile of the simplest 

shape. REA errors reflect the relative error of the profile area. This information may be 

useful if the SCS should be used for throughput measurement. According to Table 1 for 

cases where the input data were obtained by measurement, REA corresponds to the 

values 0.029 to 0.081, which is approximately 3–8%.

CONCLUSIONS 

In this paper there was performed the first testing of algorithm for inverse problem 

solution at SCS. The results indicate that even for the relatively small number of output 

signals, it is possible to obtain valuable information on material distribution in the 

sensing area of the sensor. Further research is now needed to focus on the significant 

improving of the algorithm so that it can operate in real time. 
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