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Abstract. Chestnut has both economically and nutritional values, and its production in the World 

is about 2 Mt. Turkey is one of the important chestnut producers with a production amount of 

about 60,000 t. Worm damage is one of the reasons which may reduce economical value of 

chestnut. Aim of this study was to reveal possibilities of distinguishing of worm-damaged 

chestnuts from healthy ones using impact acoustics and sound analysis methods.  

A Turkish local variety called ‘Osmanoglu’ was chosen for the study. A sound acquisition station 
was comprised, and acoustic emissions of worm-damaged and healthy nuts were acquired at a 

sampling quality of 192 kHz and 16 bit. Each sample was labelled according to worminess 

situation by shattering the nut after acoustic measurements. A band-pass filter between cutoff 

frequencies of 70 Hz and 100 kHz was designed and applied to sound samples to alleviate 

negative effects of unwanted noise. Various signal features such as variance, standard deviation, 

kurtosis, zero crossing rate, and spectral centroid were calculated. A relevant feature subset was 

determined using feature selection technics. An identification model was trained using Support 

Vector Machine and cross-validation rules. Performance of the classification system was 

measured on a test set. In this study, reporting the preliminary results of an ongoing and 

comprehensive research project1, promising results were obtained for identification of worm-

damaged chestnuts with proposed system. 
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INTRODUCTION 

 

Chestnut has both economical and nutritional values with about 2 Mt production in 

the World. Turkey is the second largest chestnut producer with a production about 

60,000 t after China (FAO, 2011). Chestnut contains 5% protein, 40–50% carbohydrate, 

40–50% moisture, and 1.5–2% clay. Additionally, 100 gr of nut contains 50 gr of 

vitamin C, some vitamin A, and 100 gr of nut provides 200 cal. Chestnut is also a 

nutritious source of energy (Gün et al., 2006). 

                                                 
1This study is supported by TUBİTAK, Administration Unit of Scientific Projects (Project No. 114O783). 
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Determining the quality parameters of chestnut properly is very important for 

producers and processers. Especially in post-harvest processes, supplying properly 

classified chestnuts to the consumers increases the reliability of producers and 

manufacturers allowing buyers to consume their products with confidence. One of the 

factors highly affecting the chestnut quality is existence of worm (Cydia splendana or 

Curculio elephas). These worms cause damage in chestnuts by directly feeding in them 

resulting a damage between 15% and 40%. During the growing period of a chestnut 

harmful larvae may dig into the peel of the nut in the hedgehog and start damaging it. In 

the meantime, both the hedgehog and the nut keep growing when the larvae is still active 

in the nut. While the growing process is still in progress the inlet hole of the larvae may 

be closed without leaving any trace. Generally, worms leave the fruit by piercing the 

nuts after harvest in storage rooms or sale stands. Damaged galleries in the nut occurred 

due to larvae activities may cover some parts or entire of the nut over time. 

Conventionally, separation of wormy chestnuts is carried out by expert employees. 

Chestnuts with worm-damages and closed-holes are difficult to recognize without 

cutting or deforming the nut. Additionally, human factor may cause errors in detecting 

wormy products manually. Therefore, it is extremely important to determine economic 

values of chestnuts effectively in evaluating raw products. Furthermore, it is 

advantageous to be able to classify the crops correctly and fast for the economy of the 

producers. 

Considering the reasons explained above, auto-classification systems are needed to 

identify worm-damaged chestnuts by reducing labour and time. Impact acoustics (IA) 

method has been used for classification of some agricultural products by some 

researchers. IA methodology relies on both digitizing the sound obtained when a 

chestnut is dropped on an impact surface from a distance and also analysing it using the 

signal processing techniques. With this method, it is possible to conduct an identification 

work without peeling, deforming or damaging agricultural commodities. In an early 

study by Pearson (2001), an IA system was developed to distinguish uncracked 

pistachios from open ones. The sound signals which were created when nuts hit to an 

impact surface were analysed in both time and frequency domains. It was reported that 

closed-shell pistachios could be classified with an accuracy rate of 97%. In another 

study, an algorithm was developed for the same purpose using methods of speech 

recognition (Çetin et al., 2004). Distinguishing features consisting of Mel-Cepstrum 

coefficients were extracted and principal component analysis (PCA) was performed. It 

was reported that closed-shell nuts were successfully identified with accuracy rates over 

99%. Amoodeh et al. (2006) investigated the possibility of measuring moisture content 

of wheat kernels based on IA. Calibration of moisture determination system was made 

by revealing the relation between digital sound signal and wheat moisture content. In the 

studies by Kalkan & Yardımcı (2006) and Kalkan et al. (2008) facilities of differentiating 
open-shell nuts from closed-shell nuts using IA techniques were reported. IA method 

was also used for identification of pistachio varieties (Omid et al. 2009). Characteristic 

features of sound signals were calculated using fast Fourier transform. PCA was used 

for reduction of feature space and a classification model was proposed using neural 

networks. The researchers reported an identification accuracy of 97.5% for their 

experiments. Another IA-based research was performed to identify walnut varieties 

(Khalesi et al., 2012). PCA was applied to frequency domain features and neural network 
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was used for the classification model. Walnut varieties could be classified with an 

accuracy rate of 99%. 

Although some studies have been conducted involving the application of IA 

methods on agricultural materials, there has been a big gap in impact acoustic studies 

conducted on chestnuts in the literature. Automated classification systems which are able 

to identify worm-damaged chestnuts may provide many benefits to the producers by 

reducing labour and time. In this study, it was aimed to develop a prototype, an 

experimental classification system to identify worm-damaged chestnuts using IA 

method, digital sound signal processing and support vector machine. Impact acoustic 

method has been investigated by some researchers for the classification of agricultural 

crops as relatively new and immature method. In that respect, determining the impact 

acoustic characteristics of chestnut will also contribute to the literature as an original 

work. 

 

MATERIALS AND METHODS 

 
Chestnut samples 

In this study, a local variety of chestnut (Castanea Sativa Mill.), namely 

‘Osmanoglu’ was selected for developing and testing the identification system. A total 
of 904 chestnut samples were used. Of those chestnut samples, 460 were worm-damaged 

and 444 were of healthy samples. Some chestnut samples, which were used in this study, 

are shown in Fig. 1. In sound acquisition experiments, each chestnut sample was sliced 

and examined carefully after obtaining the sound signal. After examining internal flesh 

quality of each chestnut its sound signal was categorized into one of the two classes, as 

healthy or worm-damaged. 
 

     
   

    
 

Figure 1. Some chestnut samples used in this study (a), healthy chestnuts (b, c, and d), worm-

damaged chestnuts (e, f, and g). 

 

b) c) 

d) e) f) g) 

a) 
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Impact conditions 

IA methodology is basically performed based on digitizing of the sound obtained 

when a chestnut impacts on a surface after releasing from a distance using a microphone 

and analysing this sound signal using digital signal processing methods. In this study, a 

sound acquisition station, shown in Fig. 2, was comprised to capture impact signals of 

chestnut samples. In IA methodology, it is vitally important to convert the majority of 

the kinetic energy emerged from the impact itself into sound energy and to prevent any 

possible vibration of the platform. To determine an optimum impact plate size, 

preliminary tests were performed with steel plates with the dimensions of 80 x 80 x 15, 

150 x 150 x15 mm, and 200 x 200 x15 mm. It was found that impact plates of 

150 x 150 x15 mm and 200 x 200 x 15 mm caused unwanted vibrations and tinging at 

the impact moment. On the other hand, the impact plate of 80 x 80 x 15 mm was found 

suitable and used for impact sound acquisitions of the chestnuts studied. 
 

 
 

Figure 2. General view of impact signal acquisition station. 1 – sound card, 2 – sliding platform, 

3 – triggering system, 4 – impact plate, 5 – shotgun microphone, 6 – computer,  

7 – Uninterruptible power supply. 

 

Sliding platform 

In the sound acquisition experiments, a sliding platform was used to obtain similar 

impact conditions for all the samples. As shown in Fig. 2, the sliding platform was made 

of sheet metal with a smooth surface. In preliminary tests, it was experienced that sliding 

platform was vibrating when chestnuts was sliding through it. Therefore, inner floor 

surface of the sliding platform was covered with a smooth surfaced plastic band to 

prevent the vibration sound to interfere with the impact itself. 
 

Microphone 

A shot-gun microphone (ME-67 and K6 power module, Sennheiser Electronics 

Corporation, Old Lyme, Conn.), commonly used for broadcasting purposes, was used in 

this study for acquiring chestnut impact sound. This types of microphones are able to 

gather sound waves from a desired direction and can highly alleviate environmental 

noise. The microphone was placed in a location where its receiving point is 100 mm far 

from the impact plate. 
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Triggering system 

A triggering system (Fig. 2) was also designed to avoid interference of unwanted 

noise with the sound signals of chestnuts. With this system, sound acquisition was 

triggered right after a chestnut left the sliding platform. The triggering system basically 

consisted of light dependent resistors, laser emitters, and a microprocessor (ARDUINO, 

UNO R3) which was responsible for sending a command to the computer to start signal 

recording. 

Another parameter for sound acquisition system was the angle between the sliding 

platform and the impact surface. It was expected that nuts hit the impact surface only 

once avoiding multiple impact peaks. On the other hand, it was observed that bigger 

angle values caused delays in the triggering system and unwanted hits to the microphone. 

Different angle values were tried to determine an optimum angle degree and the angle 

degree of 45° was determined and used in the experiments as the optimum one. 
 

Sound device 

Most of the computer systems include a sound device with the sampling frequency 

of 44 kHz. To obtain more information from an impact sound signal, a sound device 

(UR-44, Steinberg GmbH, Germany) having 192 kHz sampling frequency was used in 

this study. A computer (Intel® Core™ i7-4700MQ CPU @ 2,40 GHz, 8 GB RAM) was 

used for signal processing and developing identification algorithms. During sound 

acquisition experiments, WiFi and Bluetooth devices of the computer were disabled to 

prevent unpredictable interferences. 
 

Programming environment 

In this study, the algorithms of signal processing were programmed in Python 2.7 

programming language using the Scipy and Numpy scientific computing libraries 

(Oliphant, 2007). Classification algorithms and cross-validation approaches were 

implemented using Scikit-learn machine learning library (Pedregosa et al., 2011). The 

microprocessor was programmed in C programing language. 
 

Signal processing 

In sound acquisition, it is important to include impact signal in an appropriate time 

frame without skipping any important part of the signal vector. To make sure that the 

entire impact signal is included, sound recording was started 0.15 s before the impact 

moment and stopped 0.4 s after the impact moment. Thus, actual impact signal was 

covered by a comparatively long vector at first. On the other hand, a shorter signal frame 

consisting 512 peaks (about 2.7 ms for 192 kHz) was enough to represent the actual 

impact signal as shown in Fig. 3. Based on this approach, each recorded signal was post-

processed to obtain an uniform signal length using a simple slicing algorithm. The first 

big extrema value of the peak values from the beginning was considered for slicing the 

signal vector. 

Considering the signal shown in Fig. 3, a low frequency noise in the silence part 

before the impact moment is very distinguishable. It is unavoidable that this noise also 

interferes with the framed actual impact signal. It was necessary to eliminate this noise 

using a high-pass filter (Buerano et al., 2012). In this study, impact signals were also 

zoomed in and inspected carefully. So, it was observed that there was also a high 

frequency noise in signals due to jagged signal vector. Thus, a band-pass filter with cut-
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off frequencies of 70 Hz and 100 kHz was applied to each signal sample for alleviating 

negative effects of the noises involved in the sound signals. Fig. 4 shows an example 

chestnut acoustic signal before and after filtering. 
 

 
 

Figure 3. Typical acoustic signal of chestnut. 

 

 

  
Time index 

 

Figure 4. Signal vectors of chestnut sound signal before (a) and after (b) filtering. 

 

Feature extraction and reduction 

After obtaining impact signal samples, signal features were calculated over those 

signals using LibXtract audio feature extraction library (Bullock, 2007). A feature vector 

including 36 scalar features was extracted as given in Table 1. It is beyond the scope of 

this paper to give all the mathematical background related with the features computed. 

So, the equations of those features were not included in the text due to space limitations 

and more details can be found in (Bullock, 2007). 

In pattern classification problems, it is important to use only the features that have 

a discriminating power over the input samples. An optimum feature model can be 

defined as a subset of relevant features. Recursive feature elimination (RFE) process, 

which is based on feature ranking, by Guyon & Elisseeff (2003) was followed in this 

a) b) 
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work to determine the relevant features for chestnut classification. For performing RFE, 

a complete feature set is taken into consideration at first, and features are included as 

smaller sets of features recursively. A support vector machine is used as a central 

classifier. The SVM is trained on the initial set of features and weights are assigned to 

each one of them. The features are ranked based on their predictive significance at each 

iteration and the least significant variable is removed from the feature set. The 

elimination procedure is recursively reiterated on the reduced set until the desired 

number of features to select is reached (Pedregosa et al., 2011; Ataş et al., 2012). Desired 

number of features is a given parameter of the RFE and different feature numbers are 

also tried to reach the highest classification performance. Finally, this process yields a 

subset of the features used to identify worm-damaged chestnut samples. 

 

Table 1. Features extracted from chestnut acoustic signals 

Features   

Mean Irregularity-k Tonality 

Variance Irregularity-j Noisiness 

Standard deviation Tristimulus-1  Root mean square of amplitude 

Average deviation Tristimulus-2 Spectral inharmonicity 

Skewness Tristimulus-3 Spectral crest 

Kurtosis Smoothness Odd to even ratio  

Spectral mean  Spectral spread Spectral slope  

Spectral variance  Zero crossing rate Lowest value 

Spectral standard deviation  Rolloff Highest value 

Spectral skewness Loudness Sum of values 

Spectral kurtosis  Flatness Pitch of harmonic product spectrum 

Spectral centroid LOG spectral flatness Fundamental frequency 

 

Constituting an identification model using SVM 

After calculating features and obtaining a relevant feature set, a classification model 

was needed to identify chestnut signals. A SVM model was utilized to achieve this. The 

SVM is a maximal margin classifier. Contrary to most of the machine learning 

approaches SVMs do not model probability distribution of the training vectors, instead 

they try to separate different classes by directly searching for adequate boundaries 

between them (Keuchel et al., 2003). To be able to succeed this SVM fits hyper-planes 

in the feature space between the classes. In this work, SVM was constructed using the 

training set containing positive and negative classes for classifying chestnut samples. To 

propose an effective classifier for identification of worm-damaged chestnuts, the 

parameters of SVM shown in Table 2 were tuned in this study. 

 
Table 2. Tuned parameters of the SVM used in this study 

Parameter Possible inputs 

Regularization parameter 1; 10; 100;1,000 

Kernel function type Linear, Polynomial, Radial basis 

Kernel coefficient (for polynomial and radial basis) 0.001; 0.0001 

Degree of the polynomial kernel function  

(for only polynomial kernel) 

1; 2; 3 
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RESULTS AND DISCUSSION 

 

In this work, optimum sound acquisition conditions were established as explained 

in the previous section. Sound acquisition experiments were performed under the same 

conditions for all the chestnut samples. After pre-processing the chestnut impact signals 

and composing relevant feature sets, cross-validated experiments were conducted with 

chestnut acoustic data. In creating classification models, it was desired to find an 

optimum model having a high generalization ability to avoid overfitting. Cross-

validation routines were usually applied when performing training and testing machine 

learning models. In the experiments, K-fold cross validation procedure was incorporated 

with grid-search to determine an overfitting-safe identification system. Thus, the signal 

data was first split into two equal subsets; a development (75% of data) and a dedicated 

validation (25% of data). Training of SVM was performed on the development set with 

5-fold cross validation. The development set was then again split into 5 equal sized 

subsets randomly. Of the 5 subsets, a single subset was assigned as the test data for 

testing the model, and the remaining 4 subsets were used as training data. The cross-

validation process was then repeated 5 times using each of the 5 subsets once as the test 

data. By using grid-search with the cross-validation, this process was repeated for each 

combination of the tuned parameters for SVM to minimize the error and to maximize 

the score parameter of classification accuracy. After this training process, the model 

having the highest score was evaluated on the dedicated validation set which included 

totally unseen chestnut signal samples by the trained model. 

Parameters of the SVM were tuned during the experiments using development 

dataset. To determine the performance of the identification experiments, performance 

metrics of ‘precision’ and ‘recall’, as defined in Eq. 1, were computed over confusion 

matrix resulted from the experiments on the dedicated validation dataset. 
 

 (1) 

 

where tp, fp, and fn represent ‘true positives’, ‘false positives’, and ‘false negatives’, 
respectively. 

The recall value was accepted as an indicator in concluding which model 

parameters were more successful in this study. To determine the optimum number of the 

features, identification experiments with RFE were conducted using desired feature 

numbers from 5 to 36 (all features) with the increment value of 5. Table 3 shows 

performance scores of the experiments. 

 
Table 3. Identification performances of SVM on the dedicated validation data 

Performance scores 

N. of features 5 10 15 20 25 30 36 

Precision 0.75 0.76 0.76 0.77 0.77 0.77 0.77 

Recall 0.71 0.70 0.69 0.68 0.69 0.68 0.68 

 

Having the best identification result using only five features in the experiments was 

quite promising. These 5 features were ‘variance’, ‘average deviation’, ‘irregularity-k’, 
‘root mean square of amplitude’ and ‘highest value’. On the other hand, it was found 

that scores were close to each other for different number of the features. This was a good 
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finding because a real world application requires less processing time with lower number 

of the features. Grid-search results showed that the best SVM model parameters were 

found with linear kernel and a regularization parameter of 10. The cross-validated 

accuracy score for the development set during k-fold experiments was 0.88 (± 0.008). 
A confusion matrix is given in Table 4 to reveal the relations between different 

classes and to show how errors are distributed between the negative and the positive 

classes. In Table 4, identification results are also shown for a total of 226 test samples at 

class level. According to these results, 86 healthy and 74 worm-damaged chestnuts were 

successfully classified by the proposed system. Within 138 samples of healthy chestnuts, 

86 samples were identified correctly while 52 samples were incorrectly identified as 

worm-damaged. Of 88 worm-damaged samples, 74 samples were successfully identified 

by the system while 14 worm-damaged samples were misidentified as healthy. 

Therefore, class-level accuracies for healthy and worm damaged samples were found to 

be 62.32% and 84.01%, respectively. 

 
Table 4. The confusion matrix of worm-damaged chestnut identification on the dedicated 

validation data for the best SVM model 

  Predicted by the identification system 

  Healthy chestnuts Worm-damaged 

chestnuts 

Recall in class 

level (%) 

Ground-truth Healthy chestnuts 86 52 62.32 

 Worm-damaged 

chestnuts 

14 74 84.01 

 

In this study, worm-damaged chestnuts could be identified with an accuracy rate of 

71% with lower number of the features (only 5 features). This study was the first effort 

to identify worm-damaged chestnuts using a IA based approach. Alongside of this 

modest identification score, it should be noted here that chestnuts do not have a hard 

shell compared to other nuts studied in the literature such as pistachios and hazelnuts. It 

was concluded that relatively softer shell of chestnut was a challenge for an IA based 

identification system. Still, the results obtained in this study showed that identification 

of worm-damaged could be achieved using IA based methods. However, more work is 

needed to achieve higher identification accuracies. 

 

CONCLUSION 

 

Identification of chestnuts with worm damage was achieved with a promising 

classification success (71%) using impact acoustics, sound signal processing techniques 

and feature extraction and classification algorithms. Considering the difficulty in the 

nature of recognizing a worm defect in a chestnut covered by a perfectly healthy looking 

shell, these results should encourage further studies on the subject to understand chestnut 

impact and sound interactions and also to improve sound acquisition systems and finally 

the classification rates further.  
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