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Abstract. Winter oilseed rape (Brassica napus L.) belongs among the most common and strategic 

crops in the Czech Republic. Growth and vitality status, yield potential and yield prediction of 

oilseed rape on plots of different sizes can be effectively examined using remote sensing. That is 

why the main aim of this study was to discuss a possibility of deriving spectral indices for an 

assessment which spectral index is more adequate to forecast oilseed winter rape development 

and consequent yield in the Czech Republic. Information about the winter oilseed rape growth 

and yield was collected in three years – 2004, 2008, 2012. A relationship between grown crops 

and selected vegetation indices was evaluated. The Landsat 7 satellite images were selected as a 

source for deriving spectral indices. The relationship between each spectral index and yield was 

analysed in 2012 only. Five images on different dates during the whole life of winter oilseed rape 

were found during this year. The images from the years 2004 and 2008 were cloudier. The spectral 

indices showing the best relationship with yield from 2012 were then analysed in the images from 

2004 and 2008. The results showed that Enhanced Moisture Stress Index is the most acceptable 

index from the selected indices used in this study. From an agronomical point of view no available 

index was found to be suitable for the winter rape growth evaluation due to dependence on 

precipitation conditions. For monitoring of the yield components in winter oilseed rape in 

conditions of the Czech Republic, it seems necessary to develop a new vegetation index which 

will reliably describe the winter oilseed rape growth stages during the whole vegetation season. 
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INTRODUCTION 

 

Rapeseed is among the three most important oilseed crops in the world (FAO, 

2007). Its oil is used as a raw material to produce industrial and hydraulic oil, cleaners, 

soap, biodegradable plastics and for animal nutrition (Ghaffari et al., 2014). Besides, it 

is one of the cultivated medicinal food plants in Middle Asia, North Africa and Western 

Europe (Saeidnia & Reza, 2012). Rapeseed is also advantageous nutrition and 

fertilization plant in different soil tillage systems (Růžek et al., 2006). These advantages 

are the reasons why global cultivation has gradually been increasing over the last 10 

years (Schoenenberger & D’Andrea, 2012). Since the 80’s rapeseed is the most 
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frequently grown oilseed crop in Europe, above all in the Czech Republic. In this country 

the area under rapeseed has increased to more than 400 thousand hectares (Krček et al., 

2014) and rapeseed has become one of the strategic plants at economic and agricultural 

levels. 

Satellite images are usually used for Earth observation, and many remote sensing 

applications are devoted to the agricultural sector, mainly in: (1) biomass and yield 

estimation, (2) vegetation vigour and drought stress monitoring, (3) assessment of crop 

phenological development, (4) crop acreage estimation and cropland mapping, and (5) 

mapping of disturbances and land use/land cover (LULC) changes (Atzberger, 2013). 

Technological advances in remote sensing have enabled the development of new 

applications in agriculture such as precision agriculture (Zarco-Tejada et al., 2014), 

irrigation management, time series (Tornos et al., 2015) and crop behaviour (Dominguez 

et al., 2015). 

Only a few studies have been reported on the use of remote sensing methods for 

assessing winter oilseed rape biophysical parameters (e.g. Pan et al., 2013; Li et al., 

2014). The area under winter oilseed rape in the countries of East-Central Europe such 

as Poland has increased in recent years. This is connected with the intensification of 

biofuel production. This should lead to the development of methods for the control of 

the condition of crops and forecasting yields (Piekarczyk et al., 2011). For example 

Piekarczyk et al. (2011) used hyperspectral radiometer measurements (a hand-held 

radiometer and multispectral images) for estimation of oilseed-rape yield. They found 

out that the strongest relationships (R2 = 0.87) between the yield and spectral data 

recorded by both sensors occurred at early flowering stages. 

Technological advances in the spectral data from World War Two to the mid-1960s 

encouraged scientists to use these data and to explore their applications (Cohen & 

Goward, 2004). The first spectral indices obtained from these data were developed as 

the ratio between reflection signals at 740 nm (near-infrared band, NIR) and 650 nm (red 

band, RED) (see Table 1) and they were used for different vegetation studies and called 

spectral vegetation index (SVI), simple ratio (SR), ratio vegetation index, formerly 

known as the environmental vegetation index (EVI) (Birth & McVey, 1968). SVIs are 

based on the relationship between the leaf structure and electromagnetic radiation 

reflectance by chlorophyll. A few years later, Landsat 1 was launched with a spectral 

resolution similar to that used in spectroscopy studies for the visible and NIR bands. SVI 

was the first spectral index used, however, for studying plant growth it is better to use 

the normalized difference vegetation index (NDVI), because pigments in plant leaves 

strongly absorb wavelengths of red light and the leaves themselves strongly reflect 

wavelengths of near-infrared light (Rouse et al., 1974). However, the NDVI exhibited 

no good correlation with the chlorophyll content. The best correlation was found in the 

ratio of the reflection signals at 800 nm (NIR) and 550 nm (green band, GREEN). The 

resulting spectral index was similar to NDVI, but replaced the red band by the green 

band. This index was called green normalized difference vegetation index (GNDVI) 

(Buschmann & Nagel, 1993). The optimized soil adjusted vegetation index (OSAVI) 

was developed as a modification of NDVI to correct for the influence of soil brightness 

when the vegetative cover is sparse. The OSAVI is structurally similar to the NDVI but 

with the addition of a ‘soil brightness correction factor’ (Rondeaux et al., 1996). Various 

spectral indices were used for nitrogen determination in maize, such as normalized green 

ratio (Norm G), normalized red ratio (Norm R), normalized infrared ratio (Norm NIR), 
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and the green optimized soil adjusted vegetation index (GOSAVI) (Sripada et al., 2006). 

The close relationship between leaf nitrogen content and leaf chlorophyll content was 

analysed by means of chlorophyll vegetation index (CVI) (Hunt et al., 2011). 

 
Table 1. Spectral range overview of Landsat 7 image 

Landsat 7 Bands Spectral Range Wavelength (µm) 

Band 1 Blue 0.45–0.51 

Band 2 Green 0.53–0.59 

Band 3 Red 0.64–0.67 

Band 4 Near Infrared (NIR) 0.85–0.88 

Band 5 Short-wave Infrared 1 (SWIR 1) 1.57–1.65 

Band 7 Short-wave Infrared 2 (SWIR 2) 2.11–2.29 

 

Soil and water content are other factors of great importance for plant growth and 

health. That is why short wavelength infrared bands (SWIR) were used in moisture stress 

index (MSI) and in enhanced moisture stress index (EMSI) (Rock et al., 1985; Dupigny-

Giroux and Lewis, 1999). Water content in the leaves has been studied using the 

normalized difference water index (NDWI) (Gao, 1996). A modification of NDWI is to 

replace SWIR1 by SWIR2; this index was called enhanced normalized difference water 

index (ENDWI) (Chen et al., 2005). During a five-year (2001–2005) history of moderate 

resolution imaging spectroradiometer (MODIS), the NDVI and the NDWI were used to 

study drought and allowed to develop a new spectral index ‒ normalized drought 

difference index (NDDI) and enhanced NDDI (ENDDI). The ENDDI ratio is calculated 

by dividing the difference of the NDVI and ENDWI between the sums of these spectral 

indexes (Gu et al., 2007). 

It is clear from the above review of literature that remote sensing can be used for 

the assessment of plant biophysical parameters and a relatively high number of 

vegetation indexes was introduced. Satellite remote sensing is presented as an auxiliary 

tool in agriculture. However, it is necessary to analyse the various methodologies in 

order to obtain optimum performance of this tool and the relationship between satellite 

remote sensing and yield forecasting. Only a few studies examined biophysical 

properties of rape in the past despite the fact that rape is an increasingly popular crop 

under European conditions. Thus, the aim of this study is to fill this gap of knowledge 

and to assess which spectral index is the best for winter oilseed rape yield forecasting in 

the Czech Republic. 

 

MATERIALS AND METHODS 

 

Study area 

The study area is an experimental field of 11.5 ha in size with Haplic Luvisol 

located in Prague-Ruzyně (50°05'N, 14°17'30''E), Czech Republic. A larger part of the 

field has a southern aspect and the elevation ranges from 338.5 to 357.5 m above average 

sea level (a.s.l). The average slope of the field is approximately 6%. The soil of this 

experimental plot can be classified as Haplic Luvisols partially covering fine calcareous 

sandstones with higher content of coarse silt and lower content of clay particles and clay. 

The value of cation exchange capacity in the top layer containing clay is 20–35%. The 

soil profile is neutral and the sorption capacity is from saturated to fully saturated. 
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Content of available minerals is from good to very good. In the slope positions and in 

loess loam profiles of Luvisols with remnants of alluvial horizon can be found. Some 

parts where the topsoil directly overlays the parent material of loess loam are strongly 

eroded. The average precipitation is 526 mm per year and the average temperature is 

7.9 °C. Conventional arable soil tillage technology based on ploughing and fixed crop 

rotation was used in this field. Since 2001 the crop rotation has been as follows: sugar 

beet (2001), spring barley (2002), winter wheat (2003), winter oilseed rape (2004), 

winter wheat (2005), oat (2006), winter barley (2007), winter oilseed rape (2008), winter 

wheat (2009), oat (2010), winter wheat (2011), winter oilseed rape (2012), winter wheat 

(2013), oat (2014), winter barley (2015) and winter oilseed rape (2016) (Kumhálová & 

Moudrý, 2014). This crop rotation system is a common practice in the Central Bohemian 

Region (Czech Republic). Our experiment included the data from the years 2004, 2008 

and 2012 only. 
 

Field data 

Yield was measured by a combine harvester equipped with an LH 500 yield monitor 

(LH Agro, Denmark) with a DGPS receiver with EGNOS correction. The horizontal and 

vertical accuracy of this system was ± 0.1 to 0.3 m and ± 0.2 to 0.6 m, respectively. 

Measured yield data were processed by an on-board computer on the combine harvester 

and saved together with the location data every 3 s. The grain moisture content was 

measured continuously and the yield was recalculated to 14% moisture content. The 

yield values were corrected using a common statistical procedure; all values that 

exceeded the range defined as mean ± 3 standard deviations were removed. Because of 

the large amount of data for every year studied (more than 8,000), the Method of 

Moments (MoM) was used to compute the experimental variograms. Experimental 

variograms of yield were computed and modelled by weighted least-squares 

approximation in GS+ software (Gamma Design Software, St. Painwell, MI, USA).  

A detailed description of this method can be found in Kumhálová et al. (2011a). Ordinary 

punctual kriging was done on a 6.5 m grid using the relevant data and exponential 

variogram model parameters for yield data visualisation (see Table 2). The data were 

processed in ArcGIS 10.3.1 software (ESRI, Redlands, CA, USA). 

Total monthly precipitation and temperature data were provided by the agro-

meteorological station at the Crop Research Institute in Prague-Ruzyne. Precipitation 

and temperatures for the observed years are also shown in Table 3. 

 
Table 2. Summary statistics, variogram model parameters and the methods of interpolation used 

for yield in the experimental field 

 Yield 04 Yield 08 Yield 12 

Count 10,861.0 8,440.0 9,389 

Mean 3.708 2.734 2.809 

Median 3.739 2.527 2.942 

Mode 3.073 0.677 2.626 

Sample variance 0.878 7.283 6.623 

Standard deviation 0.937 1.477 1.199 

Minimum 0.304 0.059 0.100 

Maximum 7.104 7.342 6.623 

Skewness -0.612 0.126 -0.252 
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Table 2 (continued) 
Method of estimation Method of moments (MoM) 

Variogram model Exponential 

Distance parameter (r) 28.9 22.7 69.7 

Approximate range = 3 r 86.7 68.1 209.1 

Nugget variance 0.340 1.040 0.589 

Sill variance 0.817 1.750 1.449 

Method of interpolation Kriging Kriging Kriging 

 

Table 3. Precipitation and temperatures in different growth stages by BBCH scale recorded on 

the experimental field in the year 2004, 2008, 2012 for winter oilseed rape 

 Precipitation (mm) Temperature (°C) 

 Winter oilseed rape 

 2004 2008 2012 2004 2008 2012 

BBCH 0-19 52.8 72.0 61.3 16.5 13.5 16.8 

BBCH 20-29 103.4 105.3 167.8 5.4 5.3 4.3 

BBCH 30-59 157.2 112.6 54.1 14.6 11.8 9.5 

After BBCH 60 46.6 99.6 258.9 19.1 18.9 17.8 

Sum 307.2 317.5 480.8 - - - 

Mean 102.4 105.8 160.3 13.0 11.9 10.5 

 

Remote sensing data processing 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images were obtained from the 

US Geological Survey (USGS) (http://earthexplorer.usgs.gov/). All cloud-free images 

(see Table 4) available over the study area from the years 2004, 2008 and 2012 between 

March and June have been selected (path 191, row 25 and path 192, row 25). ENVI 5.3 

(Excelis, Inc., McLean, USA) remote sensing software was used for processing all 

images. 

 
Table 4. Available Landsat images for the selected years 

Crop Date Sensor Satellite 

Winter 

Oilseed  

Rape 

28-Apr-2004, 30-May-2004, 8-Jun-2004, 2-May-2008,  

9-May-2008, 10-Jun-2008, 17-Mar-2012, 26-Mar-2012,  

27-Apr-2012, 4-May-2012, 19-May-2012, 

ETM+ Landsat 7 

 

The images that could not be used because of cloud cover or because of striping 

with data gaps were also found. This is a problem of Landsat 7 images. It is caused by 

the scan line corrector anomaly in Landsat 7, which is inconvenient when using remote 

sensing in some study areas. In fact it was the reason why there were only a few images 

from Landsat 7 for this area. However, the images available in UGSS allowed analysing 

the relationship between the spectral index and the yield. Temporal distribution of the 

images along the observed three years included all the growth stages of winter oilseed 

rape for each year. 

Selected spectral indices (see Table 5) were calculated by means of images 

converted into reflectance bands using the atmospheric correction model Line-of-sight 

Atmospheric Analysis of Hypercubes (FLAASH) (Li et al., 2014; Dominguez et al., 

2015). 
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Table 5. Spectral indices evaluated in this study 

Spectral Index Algorithm References 

Ratio Vegetation Index (RVI) (NIR / RED) Birth & McVey (1968) 

Normalized Difference Vegetation Index 

(NDVI) 

(NIR – RED) / (NIR + RED) Rouse et al. (1974) 

Green Normalized Difference 

Vegetation Index (GNDVI) 

(NIRr – GREEN) / (NIR + GREEN) Buschmann & Nagel 

(1993); Gitelson et al. 

(1996) 

Normalized Green (NG) GREEN / (NIR + RED + GREEN) Sripada et al. (2006) 

Normalized Red (NR) RED / (NIR + RED + GREEN) Sripada et al. (2006) 

Normalized NearInfrared (NIR) NIR / (NIR + RED + GREEN) Sripada et al. (2006) 

Chlorophyll Vegetation Index (CVI) NIR × RED / GREEN)2 Vincini et al. (2008) 

Optimized Soil Adjusted Vegetation 

Index (OSAVI) 

[(NIR – RED) / (NIR + RED +L)] ×  

(1 + L) 

Rondeaux et al. (1996) 

Moisture Stress Index (MSI) SWIR1 / NIR Rock et al. (1985) 

Enhanced Moisture Stress Index (EMSI)  SWIR2 / NIR Rock et al. (1985) 

Green Soil Adjusted Vegetation Index 

(GSAVI) 

[(NIR – GREEN) / (NIR + GREEN + 

L)] × (1 + L) 

Stripada et al. (2006) 

Normalized Difference Water Index 

(NDWI) 

(NIR – SWIR1) / (NIR + SWIR1) Gao (1996) 

Enhanced Normalized Difference Water 

Index (ENDWI) 

(NIR – SWIR2) / (NIR + SWIR2) Chen et al. (2005) 

Normalized Drought Difference Index 

(NDDI) 

(NDVI – NDWI) / (NDVI + NDWI) Gu et al. (2007) 

Enhanced Normalized Drought 

Difference Index (ENDDI) 

(NDVI – ENDWI) / (NDVI + ENDWI) Gu et al. (2007) 

 

FLAASH correction consists of two parts. The first is conversion of digital numbers 

(DNs) to radiance values. This is calculated by the following formula: 

Lƛ = (Gainƛ × DN7) + biasƛ (1) 

where Lƛ is the calculated radiance [in W/(m2 × sr ×μm)], DN7 is the Landsat 7 ETM+ 

DN data or the equivalent calculated in step, and the gain and bias are band-specific 

numbers. The latest gain and bias numbers for the Landsat 7 ETM+ sensor are given in 

Chander et al. (2009). 

The second part is to convert radiance data to reflectance data. Top of Atmosphere 

(TOA) Reflectance was calculated using the following expression: 

R ƛ =  (2) 

where Rƛ is the reflectance (unitless ratio), Lƛ is the radiance calculated in the preceding 

step according to formula 1, d is the Earth-Sun distance (in astronomical units), Esunƛ is 

the band-specific radiance emitted by the Sun, and ӨSE is the solar elevation angle. 

The FLAASH module from ENVI software was used to correct Landsat data with 

the metadata file for each Landsat image (scene centre location, sensor altitude, pixel 

size, flight date and time), atmospheric model (Mid-Latitude Summer), aerosol model 

(rural), initial visibility (30 km) and aerosol retrieval [2-Band (Kaufman)]. 

The relationship between each spectral index and yield was analysed in 2012 only 

because in that year 5 images taken on different dates during the whole winter oilseed 

rape life were found. The spectral indices showing the best relationship with yield were 
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then analysed in the images from 2004 and 2008. The statistical analysis of data was 

done by Statistica 8.0 software (StatSoft Inc., Tulsa, OK, USA). 

 

RESULTS AND DISCUSSION 
 

The correlation coefficients (R) between different spectral indices and yield in 

different years are shown in Table 6. The correlation coefficients were calculated for a 

5% significance level. Winter oilseed rape yield in all the three growing seasons is 

represented in Fig. 2. All basic differences between yield data can be seen in Table 2. 

Fig. 3 shows the dependence between the EMSI spectral index and yield on three dates 

of crop monitoring in 2008 and Fig. 4 documents the same dependence on five dates of 

crop monitoring in 2012. 

 
Table 6. Correlation coefficients (R) between different spectral indexes and yield in the years 
2004 in terms:(1) 28–Apr, (2) 30–May, (3) 8–Jun; 2008: (1) 2–May, (2) 9–May,(3) 10–Jun; 2012: 

(1)17–March, (2) 26–March, (3) 27–Apr, (4) 4–May, (5) 19–May (5% significance level) 

 NDVI GNDVI CVI OSAVI MSI EMSI NDWI ENDWI NDDI ENDDI 

2004 

(1) 0.07 0.007 0.005 0.0004 0.000 0.0001 0.0007 0.0006 0.007 0.009 

(2) 0.0005 0.07 0.08 0.056 0.042 0.19 0.034 0.047 0.003 0.0004 

(3) 0.013 0.09 0.09 0.07 0.077 0.08 0.085 0.05 0.002 0.047 

2008 

(1) 0.009 0.004 0.033 0.01 0.005 0.02 0.0025 0.022 0.026 0.033 

(2) 0.05 0.027 0.012 0.07 0.216 0.04 0.216 0.044 0.17 0.1 

(3) 0.147 0.112 0.012 0.147 0.277 0.61 0.0314 0.192 0.2 0.013 

2012 

(1) 0.32 0.18 0.11 0.31 0.22 0.46 0.22 0.24 0.23 0.06 

(2) 0.25 0.30 0.17 0.22 0.33 0.52 0.28 0.32 0.20 0.06 

(3) 0.24 0.20 0.08 0.20 0.28 0.56 0.27 0.22 0.21 0.15 

(4) 0.002 0.006 0.01 0.002 0.006 0.036 0.01 0.0001 0.004 0.06 

(5) 0.01 0.07 0.05 0.10 0.18 0.65 0.25 0.15 0.38 0.02 

 

Total precipitation was average and mean temperature was higher in comparison 

with the other years during the 2004 winter oilseed rape growing season (Kumhálová et 
al., 2013). In that year, winter oilseed rape yield significantly differed from the other 

observed years (see Fig. 1). The yield was much more uniform overall field area and the 

mean of the yield was calculated to be 3.708 t ha-1, which was about by 1 t ha-1 more 

than in the other two years (see Table 2). Relatively high yield and its uniformity were 

very probably caused by favourable water availability in the BBCH 30-59 development 

stages of winter oilseed rape. Sufficient available water caused the steady growth of 

plants on drier areas of the field. Less rainfall (see Table 3) was observed after the 

beginning of flowering. Nevertheless, this decrease of water availability hardly had any 

influence on the yield. The highest decrease in yield was observed at the headlands. It 

was probably caused by technogenic soil compaction at the headlands and other factors 

(pest attacks) (Meligethes aeneus, Scierotinia scierotiorum). It is quite clear from 

Table 6 that the correlation coefficients are generally very low. This fact may indicate 

that it is not possible to establish a relationship between selected indices in table 5 and 

rape yield. This is probably caused by specific development and leaf structure of 
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rapeseed plants in comparison with grain plants. Another reason could be changes in the 

vegetation reflectance during the different rape phases, because rape changes rapidly the 

growth phases during the spring (Domínguez et al., 2015). That is why the spectral index 
values varied considerably. It is also clear from Table 6 that EMSI is the best index 

among the selected ones. EMSI is a spectral index that evaluates moisture stress and 

compares the relationships between band 4 (in Landsat 7 images), which contains 

information about the structure of the plant, and band 7, which contains data about water 

in the cells of the plant. EMSI showed low variability in band 4 and high variability in 

band 7 (Pan et al., 2013). Higher values of this index indicate greater water stress and 

lower water content. This fact could be seen in 2008 and 2012 in the later phase, but this 

dependence was very weak in 2004. Only three dates were evaluated in the 2004 season. 

The date 28.4.2004 was influenced by a change in the colour of vegetation during the 

BBCH 60 growth stage (beginning of flowering). Correlation coefficients (see Table 6) 

were very low for the other two dates in 2004. Both dates could be affected by the 

shooting stage, when due to the weather conditions water drops (dew in the morning 

during hot weather) were present on the leaves and reflectance values significantly 

changed. A significant relationship was found between the values of vegetation indices 

and yield in the 2004 season. Low correlation coefficients determined on 8. 6. 2004 could 

be caused by the weather conditions in the growth period after BBCH 60. This period 

was affected by dry and warm weather (see Table 3). 

Average total precipitation and lower temperatures were observed in the 2008 

growing season in comparison with the other observed years (Kumhálová et al., 2013). 
That year was good for plant mass production in the autumn season. Rape plants grew 

too large for winter. This consequently caused high infestation by fungal diseases 

(Kumhálová et al., 2011b), which significantly affected the yield on areas with standing 
water in the studied field. The field terrain probably had a negative effect on yield due 

to a positive effect on the plant disease development (Kumhálová et al., 2013). The 

average yield was 2.734 t ha-1. Fig. 1 shows the influence of terrain topography and the 

influence of losses caused by fungal diseases on yield. 
 

  
 

 
 

Figure 1. Winter oilseed rape yield. 
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Fungal diseases produce a coating on the leaves and physiological changes in the 

structure of plants. The influence of fungal diseases was much smaller in later growth 

stages (after BBCH 60). In the 2008 season there were two dates (May 2, May 9) of the 

flowering phenophase (BBCH 60-65 stage). A change in the colour of vegetation from 

green to yellow made it impossible to evaluate a relationship between yield and values 

of vegetation indices. The rape stand in terms of the growth phase was not quite uniform. 

Drier sites began to flower earlier than wetter ones. This corresponds to the variation in 

dependences between the yield and EMSI index (see Fig. 2). The value of correlation 

coefficient between the yield and EMSI index in the phase after BBCH 70 (June 10, 

2008) increased to 0.61, which is acceptable for the evaluation of yield. This value is in 

agreement with other studies evaluating i.e. oat and wheat yield when the values of MSI 

index reached -0.68 or -0.60 for oat and -0.65 or -0.82 for winter wheat (Kumhálová  
et al., 2014). The rape stand at this time is light green with fully developed pods. 

Correlations between yield and other indices were generally very low on June 10, 2008. 
 

 
 

Figure 2. Relationship between EMSI on different dates and yield in 2008. 

 

The year 2012 was the coldest and richest in precipitation. This weather pattern 

probably caused that the rape crop prospered well in the autumn season (especially in 

BBCH 10-19 stages). Nevertheless, the worst uptake of nitrogen fertilization at drier 

places of the field was probably caused by relatively low precipitation during flowering 

(BBCH 60-69). Kumhálová et al. (2013) described the influence of topography, which 
can be seen in the southwestern part of the field (see Fig. 1). The influence of soil 

compaction at the headlands can be seen. 
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Fig. 3 shows the dependence between the EMSI index and yield on several dates of 

taking images (in 2012). A good agreement was found between the values of EMSI and 

yield in the majority of the spring growth stages from the beginning of stem elongation 

(BBCH 30) to ripening. The correlation coefficients in 2012 between EMSI and rape 

yield gradually increased during the plant development from 0.46 (March 17) to 0.65 

(May 19). It corresponds with the amount of precipitation in the BBCH 30-59 growth 

stages (54.1 mm) in 2012. As it was described in Kumhálová et al. (2011a), topography 
and weather conditions affected the yield in this field. On the contrary, the correlation 

coefficient dropped sharply on May 4, 2012. It was due to the beginning of the flowering 

stage (BBCH 60), when the colour of plants is changed in the individual storeys, which 

influences also reflectivity. Therefore in the flowering stage it is not possible to evaluate 

the rape stand by this index. The highest value of correlation can be seen in the evaluation 

of the images from May 19, 2012. At that time rape was at the BBCH 70 stage. The 

upper parts of plants were after the end of flowering. The development of pods occurred 

at this stage. 

 
 

Figure 3. Relationship between EMSI on different dates and yield in 2012. 
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Some correlations between yield and the NDVI and MSI indices reached relatively 

high levels, but this cannot be generalized. The MSI index, due to the type of rape root 

system, does not have such an influence as e.g. in shallow rooted cereals. The behaviour 

of the CVI index is analogical. It is sensitive to the content of chlorophyll in plants. The 

highest values of all indices in 2012 were a general phenomenon. 

In the literature, the studies about a relationship between spectral indices and crop 

yield are often mentioned. Many authors evaluated various crops grown on plots of 

different size and they used different sources of remote sensing data. In the last decades 

there has also been a rapid development of remote sensing systems, especially for 

targeted application. For agricultural purposes, it is possible to use remote sensing 

methods from hyperspectral to multispectral systems, from unmanned aerial vehicles or 

planes, spectroradiometers to satellite systems for monitoring the crop variability. For 

our study satellite remote sensing was chosen, Landsat 7 satellite data were used due to 

a good access to the database of Landsat images and a possibility of using several 

spectral bands, despite of their coarse spatial resolution. The spatial resolution of these 

images is 30 m. This resolution could limit the monitoring of spatial variability of crops. 

Nevertheless, Kumhálová et al. (2014) concluded that Landsat TM/ETM+ images can be 

used for deriving spectral indices which can sufficiently explain plant variability in a 

field of 11.5 ha in size. Similar results were obtained for example by Chao Rodríguez 
et al. (2014) in the evaluation of a small water body (11.5 ha). They found out that the 

Landsat historical archives may still provide a wealth of environmental information. Wu 

et al. (2015) also used an experimental plot of 36.9 ha in size in their study to estimate 

the high-resolution Leaf Area Index from synthetic Landsat data (Landsat-7 ETM+). 

Many studies have indicated that remotely sensed vegetation indices can be used 

for crop variability monitoring (e.g. Vincini et al., 2008; Hunt et al., 2013) like in our 

study with winter oilseed rape. Vegetation indices can also be used to monitor the green 

vegetation component. At the leaf scale, leaf pigment concentration, leaf water content 

and leaf structure cause variations in leaf reflectance, transmittance and absorption (van 

Leeuwen & Huete, 1996). Reflectance and transmittance properties have been observed 

to be different between dicotyledonous and monocotyledonous leaves, because of 

differences in the mesophyll structure (Sinclair et al., 1971) and differences between 

adaxial (leaf face) and abaxial (leaf back) leaf scattering properties (e.g. Woolley, 1971). 

Van Leeuwen & Huete (1996) described that reflectance differences between vegetation 

and litter can be attributed to histological and optical properties. Senescence of plant 

components occurs during or after plant maturity or can be caused by stress factors like 

lack of water and nutrients or extreme temperatures. Senescence and decomposition of 

leaves will finally cause the breakdown of all pigments. These events may occur 

especially in winter oilseed rape and this corresponds with our research. Most vegetation 

indices tend to be species specific and therefore they are not robust enough when applied 

across different species, with different canopy architectures and leaf structures (Viña et 

al., 2011). For our research we chose traditional vegetation indices that were usually 

applied in other studies to evaluate plant and yield variability. Our results are then in 

good agreement with the findings of Piekarczyk et al. (2006). They found out that a very 

poor relationship between spectral data and all agronomic parameters of oilseed rape at 

the beginning of the spring growing season was caused by the presence of leaf litter on 

the ground. The spectral properties of plant litter affect vegetation indices and can cause 

errors in their response to the green vegetation cover. Optical remote sensing seems to 
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be weak tool for oilseed rape evaluation. Huang et al. (2015) noted that a recently 

proposed alternative has used active microwave remote sensing, otherwise referred to as 

radar. Active microwave observations can be used to provide complementary 

information on vegetation properties, such as vegetation structures or level of vegetation 

growth. Radar vegetation index (RVI) can also be correlated well with the vegetation 

water content, Leaf Area Index and NDVI (Dinesh Kumar et al., 2013). 

 

CONCLUSIONS 

 

In this paper vegetation indices were evaluated in the stand of rape during three 

seasons. Very low levels of correlations were detected between vegetation indices and 

yield. The best results were obtained in the EMSI index even though the EMSI index 

fluctuated strongly in dependence on the growth phase and other conditions. In practice 

it appears problematic to use these indices for the rape stand evaluation. In further 

research it will be necessary to derive appropriate vegetation indices in optical part of 

spectrum or use RVI, along with their verification and presentation of model situations 

of a relationship to different stages of rape plant development. Indices in the SWIR 2 

band seem promising. Despite the possible adjustment of indices it will not be possible 

in the future to evaluate oilseed crops during flowering with optical remote sensing 

methods. Despite the shortcomings mentioned in this article remote sensing used for the 

assessment of rape stands is a promising technique. European Sentinel mission 

(especially Sentinel 1) seems to be very promising way from this point of view. 
 

ACKNOWLEDGEMENTS. The acknowledgements should include all people, institutions and 

funds that have helped to achieve the goals of the research but have not been mentioned as 

authors. Logo of the funding organization can be included if necessary. 

 

REFERENCES 

 
Atzberger, C. 2013. Advances in Remote Sensing of Agriculture: Context Description, Existing 

Operational Monitoring Systems and Major Information Needs. Remote Sensing 5, 949–
981. 

Birth, G.S. & McVey, G.R. 1968. Measuring colour of growing turf with a reflectance 

spectrophotometer. Agronomy Journal 60, 640–649. 

Buschmann, C. & Nagel, E. 1993. In vivo spectroscopy and internal optics of leaves as basis for 

remote sensing of vegetation. International Journal of Remote Sensing 14, 711–722. 

Chander, G., Markham, B.L. & Helder, D.L. 2009. Summary of current radiometric calibration 

coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of 

Environment 113, 893–903. 

Chao Rodríguez, Y., el Anjoumi, A., Domínguez Gómez, J.A., Rodríguez Pérez, D. & Rico, E. 

2014. Using Landsat image time series to study a small water body in Northern Spain. 

Environmental Monitoring and Assessment 186(6), 3511–22. 

Chen, D., Huang, J. & Jackson, T. 2005. Vegetation water content estimation for corn and 

soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. 

Remote Sensing of Environment 98, 225–236. 

Cohen, W. & Goward, S. 2004. Landsat’s role in ecological applications of remote sensing. 
BioScience 54(6), 535–545. 



67 

Dinesh Kumar, S., Srinivasa Rao, S. & Sharma, J.R. 2013. Radar Vegetation Index as an 

Alternative to NDVI for Monitoring of Soyabean and Cotton. Indian Cartographer 12, 91–
96. 

Dominguez, J.A., Kumhálová, J. & Novák, P. 2015. Winter oilseed rape and winter wheat growth 

prediction using remote sensing methods. Plant Soil Environment 61(9), 410–416. 

Dupigny-Giroux, L.A. & Lewis, J.E. 1999. A moisture index for surface characterization over a 

semiarid area. Photogrammetric Engineering and Remote Sensing 6, 937–945. 

FAO, 2007. http:// faostat. fao. org/. 

Gao, B. 1996. NDWI – a normalized difference water index for remote sensing of vegetation 

liquid water from space. Remote Sensing of Environment 58, 257–266. 

Ghaffari, G., Toorchi, M., Aharizad, S. & Shakiba, M. 2014. Relationship between physiological 

and seed yield related traits in winter rapeseed (Brassica napus L.) cultivars under water 

deficit stress. American Journal of Agriculture and Forestry 2(6), 262–266. 

Gitelson, A., Kaufman, Y. & Merzlyak, M. 1996. Use of green channel in remote sensing of 

global vegetation from EOS-MODIS. Remote Sensing of Environment 58, 289–298. 

Gu, Y., Brown, J. Verdin, J. & Wardlow, B. 2007. A five-year analysis of MODIS NDVI and 

NDWI for grassland drought assessment over the central Great Plains of the United States. 

Geophysical Research Letters 34-L06407, 1–6. 

Huang, Y., Walker, J.P., Gao, Y., Wu, X. & Monerris, A. 2015. Estimation of Vegetation Water 

Content From the Radar Vegetation Index at L-Band. IEEE transactions on geoscience and 

remote sensing 54(2), 981–989. 

Hunt Jr., R.E., Daughtry, C.S.T., Eitel, J.U.H. & Long, D.S. 2011. Remote Sensing Leaf 

Chlorophyll Content Using a Visible Band Index. Agronomy Journal 103, 1090–1099. 

Hunt Jr., E.R., Doraiswamy, P.C., McMurtrey, J.E., Daughtry, C.S.T., Perry, E.M. & 

Akhmedov, B. 2013. A visible band index for remote sensing leaf chlorophyll content at the 

canopy scale. International Journal of Applied Earth Observation and Geoinformation 21, 

103–112. 

Krček, V., Baranyk, P., Pulkrábek, J., Urban, J., Škeříková, M., Brant, V. & Zábranský, P. 2014. 

Influence of crop management on winter oilseed rape yield formation – evaluation of first 

year of experiment. Mendelnet, 57–63. 

Kumhálová, J., Kumhála, F., Kroulík, M. & Matějková, Š. 2011a. The impact of topography on 
soil properties and yield and the effects of weather conditions. Precision Agriculture 12, 

813–830. 

Kumhálová, J., Kumhála, F., Matějková, Š. & Kroulík, M. 2011b. The relationship between 

topography and yield in different weather conditions. In Precision Agriculture 2011, 

Prague: Czech Centre for Science and Society, 606–616. 

Kumhálová, J., Kumhála, F., Novák, P. & Matějková, Š. 2013. Airborne laser scanning data as a 
source of field topographical characteristics. Plant Soil Environment 59(9), 423–431. 

Kumhálová, J. & Moudrý, V. 2014. Topographical characteristics for precision agriculture in 

conditions of the Czech Republic. Applied Geography 50, 90–98. 

Kumhálová, J., Zemek, F., Novák, P., Brovkina, O. & Mayerová, M. 2014. Use of Landsat 

images for yield evaluation within a small plot. Plant Soil Environment 60(11), 501–506. 

Li, P., Jiang, L. & Feng, Z. 2014. Cross-Comparison of Vegetation Indices Derived from 

Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land 

Imager (OLI) Sensors. Remote Sensing 6, 310–329. 

Pan, Z., Huang, J. & Wang, F. 2013. Multi range spectral feature fitting for hyperspectral imagery 

in extracting oilseed rape planting area. International Journal of Applied Earth Observation 

and Geoinformation 25, 21–29. 

Piekarczyk, J., Sulewska, H. & Szymańska, G. 2011. Winter oilseed-rape yield estimates from 

hyperspectral radiometer measurements. Quastiones Geographicae 30(1), 77–84. 



68 

Piekarczyk, J., Wójtowicz, M. & Wójtowicz, A. 2006. Estimation of agronomic parameters of 

winter oilseed rape from field reflectance data. Acta Agrophysica 8(1), 205–218. 

Rock, B.N., Williams, D.L. & Vogelmann, J.E. 1985. Field and airborne spectral characterization 

of suspected acid deposition damage in red spruce (Picea rubens) from Vermont. In 

Proceedings: Symposia on Machine Processing of Remotely Sensed Data, Purdue 

University, West Lafayette, IN. 71–81. 

Rondeaux, G., Steven, M. & Baret, F. 1996. Optimization of soil-adjusted vegetation indices. 

Remote Sensing of Environment 55, 95–107. 

Rouse, J., Haas, R., Schell, J.A. & Deering, D. 1974. Monitoring vegetation systems in the Great 

Plains with ERTS. In Proceedings Third ERTS-1 Symposium, NASA Goddard, NASA SP-

351, 309–317. 

Růžek, P., Svoboda, P., Vavera, R. & Pišanová, J. 2006. Nutrition and fertilization of winter rape 

under different soil tillage systems. Sborník z konference ‘Prosperující olejniny’ 13, 51–54. 

Saeidnia, S. & Reza, A. 2012. Importance of Brassica napus as a medicinal food plant. Journal 

of Medicinal Plants Research 6(14), 2700–2703. 

Schoenenberger, N. & D’Andrea, L. 2012. Surveying the occurrence of subspontaneus 

glyphosate-tolerant genetically engineered Brassica napus L. (Brassicaceae) along Swiss 

railways. Environmental Sciences Europe 24, 1–8. 

Sinclair, T.R., Hoffer, R.M. & Schreiber, M.M. 1971. Reflectance and internal structure of leaves 

from several crops during a growing season. Agronomy Journal 63, 864–868. 

Sripada, R., Heiniger, R., White, J. & Meijer, A. 2006. Aerial colorinfrared photography for 

determining early in-season nitrogen requirements in corn. Agronomy Journal 98, 968–977. 

Tornos, L., Huesca, M., Dominguez, J.A., Moyano, M.C., Cicuendez, V., Recuero, L. & 

Palacios-Orueta, A. 2015. Assessment of MODIS spectral indices for determining rice 

paddy agricultural practices and hydroperiod. ISPRS Journal of Photogrammetry and 

Remote Sensing 101, 110–124. 

Tornos, L., Huesca, M., Dominguez, J.A., Moyano, M.C., Cicuendez, V., Recuero, L. & 

Palacios-Orueta, A. 2015. Assessment of MODIS spectral indices for determining rice 

paddy agricultural practices and hydroperiod. ISPRS Journal of Photogrammetry and 

Remote Sensing 101, 110–124. 

Van Leeuwen, W.J.D. & Huete, A.R. 1996. Effects of standing litter on the biophysical 

interpretation of plant canopies with spectral indices. Remote Sensing of Environment 55, 

123–138. 

Vincini, M., Frazzi, E. & D’Alessio, P. 2008. A broad-band leaf chlorophyll vegetation index at 

the canopy scale. Precision Agriculture 9, 303–319. 

Viña, A., Gitelson, A.A., Nguy-Robertson, A.L. & Peng, Y. 2011. Comparison of different 

vegetation indices for the remote assessment of green leaf area index of crops. Remote 

Sensing of Environment 115, 3468–3478. 

Woolley, J.T. 1971. Reflectance and transmittance of light by leaves. Plant Physiology 47, 656–
662. 

Wu, M., Wu, Ch., Huang, W., Niu, Z. & Wang, Ch. 2015. High-resolution Leaf Area Index 

estimation from synthetic Landsat data generated by a spatial and temporal data fusion 

model. Computers and Electronics in Agriculture 115, 1–11. 

Zarco-Tejada, P., Hubbard, N. & Loudjani, P. 2014. Precision agriculture: An opportunity for EU 

farmer-potential support with the cap (2014–2020). In: Study. European Union. Brussels. 

 


