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Abstract. Soil organic carbon plays an important role in a long-term agroecosystem productivity, 

in the global C cycle, maintaining a soil nutrient pool and improving its availability. The objective 

of this study is the assess the impacts of long–term cropping practices on SOC dynamics in 

Slovakia and Serbia. Soil C sequestration is a complex process that is influenced by many factors, 

such as agricultural practice, climatic and soil conditions. For the both location the initial SOC 

decline was followed with the C stabilization and possible increase where proper practices were 

used. More intensive crop management systems that maintained residue cover provided the 

greatest benefit towards increasing the quantity of mineralizable nutrients within the active 

fraction of soil organic carbon (SOC), as well as increasing C sequestration as SOC. Long–term 

field experiments have contributed significantly to our current knowledge of soil quality and have 

been used to study the influence of crop management, fertilizer application and tillage practices 

on SOC content. 
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INTRODUCTION 

 

Agricultural cultivation causes an immediate and rapid loss of soil organic carbon 

(SOC). The loss of SOC with tillage based on plowing could lasts for decades, reducing 

carbon (C) pools on agricultural soils up to 50% of their original levels on average 

(Mann, 1986). Examples of reduced soil organic matter have been observed worldwide 

regardless of climate, soil type, or original vegetation (Janzen, 2004). Generally, the rate 

of loss slows as SOC levels reach a new equilibrium that depends on tillage practices 

(West & Post, 2002) and the amount level of C inputs returned to the soil as crop residue 
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or animal manures (Kirchmann et al., 2004). The quantity of existing soil C is controlled 

by a complex interaction of processes determined by C inputs and its decomposition 

rates. Returning crop residues to the field is highly recommended, in order to decrease 

chemical inputs, and promote soil C sequestration (Turmel et al., 2014). Tillage 

accelerate SOC oxidation to CO2 by improving soil aeration, increasing contact between 

soil and crop residues and exposing aggregate-protected organic matter to microbial 

decomposition (Birkás et al., 2008). On the other hand, improved agricultural practices 
have great potential to increase C sequestered in soil (Follett, 2001; Lal, 2006; Dimassi, 

2014), and some studies suggest that agricultural activities can elevate SOC content 

relative to natural systems (Buyanovsky & Wagner, 1998). Likewise, SOC stock is 

recommended indicators for evaluation of soil quality in EÚ (Michéli et al., 2008). 
Management practice that includes organic amendments can increase SOC, but the type 

of organic amendment, method of incorporation, and duration of application required for 

an elevation of SOC differ in relation to climate and cropping practices (Hoffmann et 

al., 2002; Woźniak et al., 2014; Rusu & Moraru, 2015; Šařec & Žemličková, 2016). 
Sequestration of C from plant biomass into organic matter is a key sequestration pathway 

in agriculture (Macák et al., 2010). Deficiency of macronutrients can be easily 
compensated with fertilizer application, however building the pool of SOC is a long–
term and rather slow process. Similarly to that, physical soil properties, predominantly 

soil structure and compaction, mutually deteriorate together with SOC and commonly 

interact in lower production capacity of soil. Relative enrichment of the surface soil with 

organic matter results in an increase in microbial activity and a concomitant increase in 

the size and stability of soil aggregates (Carter & Stewart, 1996; Tamm et al., 2016). It 

is could be anticipated that the cropping technology cannot be fully transformed toward 

SOC conserving cultivation. However, some adjustments can notably influence SOC in 

soil, such as shallow plowing after wheat harvest, organic fertilizers, and soil loosening 

instead of plowing (Lal et al., 1998). For the region of the Central Europe, the critical 

level of SOC for a significant yield reduction has not been clearly established. Key and 

Angers (1999) argued that irrespective of soil type the with SOC content less than 1% it 

may not be possible to obtain potential yield. But generally it may be assumed that the 

critical limit of SOC in the temperate region is 2% (Loveland & Webb, 2003). 

The objective of this study is the assess the impacts of long-term fertilization 

practices on SOC dynamics in Slovakia and Serbia. 

 

MATERIALS AND METHODS 

 

Experimental site in Slovakia 
Field trial were conducted over 12 year at the experimental station of the Slovak 

University of Agricultural in Nitra in South–Western Slovakia in Dolná Malanta as a 
key side of monitoring web system for Luvisols. We refer results from two periods of 

trial 1996–2003 as a first period of research (Macák et al., 2010) and 2005–2007 

(Candráková et al., 2011), as the second period of trial. The experimental site is located 
in a warm and moderate arid climatic region. The long-term average annual temperature 

of the site is 9.9 °C and 16.6 °C during the vegetation period (Table 1). 

 



1973 

Table 1. Average monthly air temperatures and precipitation (1951–2000) at the experimental 

station of the Slovak University of Agricultural (Špánik et al., 2004) and Novi Sad (RHSS, 2017) 

Months 
Experimental station in Nitra Experimental station Novi Sad 

Temperature (°C) Rainfall (mm) Temperature (°C) Rainfall (mm) 

January -1.4 29.1 0.5 38.5 

February 0.5 30.1 2.0 30.8 

March 4.8 31.6 6.6 34.7 

April 10.4 41.6 12.0 48.5 

May 15.2 56.0 17,4 58.5 

June 18.3 66.2 20,5 91.7 

July 20.0 59.3 22,2 77.4 

August 19.7 54.2 21.9 66.4 

September 15.5 43.1 16.6 60,5 

October 10.2 41.0 11.7 61.1 

November 4.6 52.2 6.5 61.0 

December 0.5 43.2 1.2 52.5 

Average 9.9 - 11.6 - 

Total  547.6  681.6 

 

The average precipitation is 548 mm, including 323 mm during the vegetation 

period. Altitude of the site is 175 m. The experimental design was a split-plot with four 

replicates. The tillage was the main plot factor; the fertilization was the subplot factor. 

The subplots were 3 m wide by 10 m long with 0.5 m protective stripes on all sides with 

2 × 9 m harvest plots. The plots were subjected to primary soil tillage treatments as 

follows: mouldboard ploughing (CT) to a depth of 22 cm (conventional tillage), and 

shallow loosening (RT) to a depth of 10 cm (reduced cultivation). Three fertilization 

treatments as follows: 0–without organic and inorganic fertilization, PH–mineral 

fertilizers (phosphorus and potassium) calculated to the 3 t ha-1 seed yield,  

PR–incorporation of all above-ground plant material and dose of phosphorus and 

potassium calculated to the 3 t ha-1 seed yield. The amount of preceding above-ground 

plant material was measures from harvested area of 18 m2 at each PR treatment with four 

replication and values were calculated per one hectare. Nutrients were added on the base 

of balance method according to nutrient content in soil on yield level of 3 t ha-1 pea seeds 

under the normative nutrients with drawing per 1 ton of crop. The same method was used 

for all crops in crop rotation, nitrogen doses were calculated according to the content of 

Nan in soil samples at spring (Fecenko & Ložek, 2000). Common pea was growing after 
cereal preceding in spring barley (Hordeum vulgare L.) – common pea (Pisum 

sativum L.) – winter wheat (Triticum aestivum L.) – maize (Zea mays L.) crop rotation 

and from 2001 in winter wheat – common pea – maize – spring barley – red clever 

(Trifolium pratense L.) crop rotation. The soil samples for basal respiration and C 

sequestration were collected from the 20 cm topsoil layer by soil auger three times per 

year (in spring, summer and autumn). The soil samples were incubated at 28 °C and soil 
respiration was measured 17–18 days according Bernát and Seifert method. SOC content 
was determined by the Tyrin method. We considered the average values of soil basal 

respiration from three samples. For organic carbon stock (kg ha-1) calculation, the soil 

bulk density was determined three times per year in each treatment with four replication 

from the soil layer from a depth of 5–10 cm by soil core Eijkelkamp sampling kit. The 
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results were subjected to ANOVA analysis and Tukey HSD test by using software 

STATISTICA. 

 

Experimental site in Serbia 
A long–term experiment (LTE) titled ‘Plodoredi’ (Crop rotation) is situated at the 

Rimski Šančevi experimental field of the Institute of Field and Vegetable Crops in Novi 
Sad (N 45° 19`, E 19° 50`) on the southern border of the Chernozem zone of the 

Pannonian Basin. During the study period, the average annual temperature of 11.6 °C 
and 681 mm of precipitation was observed (Table 1). The experiment started in 1946/47, 

to conceptually correspond with the prevailing cropping technology in agricultural area, 

and to employ the achieved results in yield improvement. (Milošev et al., 2010). The 

unfertilized treatments were established 1946/47, and fertilized in 1969/70. The 

following treatments were analyzed: fertilized 3–year crop rotation: winter wheat, maize 

and soybean (MSWF); fertilized 2–year crop rotation winter wheat and maize (MWF); 

fertilized wheat monoculture (WWF); unfertilized 3–year rotation winter wheat, maize 

and soybean (MSW), and unfertilized 2–year rotation winter wheat and maize (MW). 

Crop rotation was arranged as single crop sequence in which all crops were grown each 

year according to the experimental design, and plots were divided into three subplots 

(90 × 30 m) representing the repetitions. Conventional tillage with mouldboard plough 

(30 cm), harrow disc, and cultivator (Compactor) were performed. Harvest residues were 

incorporated by ploughing. Winter wheat sowing was done in October, 20, while maize 

and soybean in April, 10. SOC content was determined by the Tyrin method. In our study 

the 0–60 cm layer of soil was analyzed as the significant changes were expected in that 

layer that was divided into 3 sub-layers (0–20 cm, 20–40 cm and 40–60 cm). The 

samples were collected after crop harvest in a disturbed state and were kept in the 

laboratory air-dried until the analysis. The average soil sample consisted of 5 drillings. 

Bulk density sampling for each treatment was carried out after harvest by the core 

method using cylinders of 100 cm3 volume by Kopecky. Each year, samples were taken 

from three soil layers (0–60 cm) in three replicates per experimental plot. Data reported 

for SOC stock and yield were analyzed by the analysis of variance, ANOVA was used 

to separate treatment means when there was a significant difference at the P < 0.05 level. 

Replication across treatments and effects of year was considered a random effect and 

cropping systems were considered a fixed effect. In order to analyze temporal 

interdependencies of soil organic matter regression analysis was conducted. The 

independent variable (x) was time and SOM content (%) was dependent variable (y).The 

data were statistically processed by using the program STATISTICA series 12.6. 

 

RESULTS AND DISCUSSION 

 

From the starting point in 1996 the tillage treatments via different level of soil 

disturbance influenced the potential flux of CO2 expressed as soil basal respiration of the 

soil and input output balance of soil C stock. 

The average values for eight years significantly indicated higher soil basal 

respiration in reduced tillage treatments represented by shallow loosening (Fig. 1). Soil 

basal respiration is defined as rate of respiration in soil, which originates from the 

mineralization of organic matter (Creamer et al., 2014). In our experiment, reduced 
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tillage create better precondition for basal respiration, which indicated higher potential 

of biological activity mainly due to the higher content of organic substrate of topsoil. 

 

 
Figure 1. Soil basal respiration in conventional and reduced tillage treatment from 1996–2003, 

Slovak University of Agriculture in Nitra, Experimental Station Dolná Malanta, the average 
means at different letter are significant at the P ˂ 0.5 probability level. 

 

Mineral fertilizers may support the basal respiration via increasing of roots biomass 

nutrient availability and strongly correlated with soil organic carbon (Dimassi et al. 

2014) but in oure fertilization treatments average soil basal respiration ranged only in 

narrow interval of 2.52–2.65 mg CO2–C 100 g per day without statistical differences at 

the P ˂ 0.5 probability level. The reduced tillage has positive influence on soil carbon 

sequestration with comparison to conventional mouldboard ploughing (Table 2). 
 

Table 2. Soil carbon stock (t ha-1) in each tillage and fertilization treatments. The means between 

fertilization treatments (small letters) and tillage treatments (capital letters) followed by the same 

letter are not significant at P < 0.05 probability level 

Conventional 

tillage/fertilization 

treatments 

1996– 

2003 

2005– 

2007 

Reduced 

tillage/fertilization 

treatments 

1996– 

2003 

2005–
2007 

CT-0 30.9a 29.1a CT-0 32.2a 31.1a 

CT-PH 31.2b 30.2a CT-PH 32.9a 33.4b 

CT-PZ 32.1b 33.4b CT-PZ 32.6a 33.9b 

Conventional tillage 31.4A 30.9A Reduced tillage 32.5B 32.8B 

 

Both fertilization treatments reached the higher soil C stock with comparison to 

treatments without any form of fertilization. In control treatment without fertilization 

31.4 t ha-1 of C in 20 cm soil layer was stored with comparison to 32.5 t ha-1 in treatments 

with forecrop biomass incorporation. After another four year treatment history in 2007 

the significant influence of tillage on soil C stock was confirm. Temporal change in SOC 

can be defined in two ways as an absolute change in stored C which provides an estimate 
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of the actual C exchange between soil and atmosphere or as a net change in storage 

among treatments (Ellert et al., 2008). Some differences between the treatments with 

application of mineral fertilizers (PH) or organic and mineral fertilizers (PZ) with control 

treatments (RT-0) are associated with the decomposition of incorporated plant residues 

and great amount of biomass production (roots, exudates and post-harvest residues) 

(Table 2, Figs 2–4). 
 

 
 

Figure 2. The changes of the soil carbon stock (t ha-1) in the upper soil layer of 20 cm at different 

fertilization treatments in conventional tillage. SAU Nitra, Experimental station Dolná Malanta, 
Slovakia. 

 

In treatments with incorporation of aboveground plant material (PZ) average input 

of aboveground dry matter calculated for whole rotation cycles was 5.15 t ha-1. Non 

significant differences between treatments with application of mineral fertilizers (PH) 

and fertilizers plus incorporation of all aboveground plant biomass (PZ) of growing 

crops indicated that for increase of stocked SOC in the soil profile another input of SOM 

is needed. Similarly Hernanz et al. (2009) for active sequestration recommended 

adoption of another measure as crop rotation, tillage treatment and also input of organic 

matter. 

The results of the long–term field trials on chernozem soils showed that properly 

applied agronomic practices such as crop rotation, fertilization, and tillage are the most 

appropriate method for preservation of SOC content in soil. The application of N 

fertilizers resulted in greater aboveground and belowground biomass in the fertilized 

treatments, which was beneficial for maintaining SOC in the soil but not sufficient for C 

enrichment, while mouldboard plowing resulted with SOC depletion (Manojlović et al., 
2008). 
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Figure 3. The changes of the soil carbon stock (t ha-1) in the upper soil layer of 20 cm at different 

fertilization treatments in reduced tillage. SAU Nitra, Experimental station Dolná Malanta, 
Slovakia. 

 

 
 

Figure 4. The changes of the soil carbon stock (t ha-1) in the upper soil layer of 20 cm at 

conventional and reduced tillage treatments. SAU Nitra, Experimental station Dolná Malanta, 
Slovakia. 
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Regression coefficients showed significant SOC change over time that can be 

explained with the quadratic equation. Higher correlation was found at 3–year fertilized 

rotation whereas 3-year unfertilized rotation can not be explained with quadratic function 

(Fig. 5). This indicate stabile trend of SOC change with less variation. Generally, for the 

most cropping system SOC stabilization occurred after 2000 that could be attributed with 

the improved crop residue management in relation with advanced machinery. The 

preservation of SOC in wheat monoculture, found in the LTE, coincided with findings 

reported by Lithourgidis et al. (2006) that under continuous wheat cropping particular 

soil properties (such as SOC) could be preserved. By contrast, the higher content of SOC 

at WWF in this study did not correspond with higher yields of winter wheat, which 

indicates that long–term monoculture is not a sustainable cropping alternative for wheat 

production (Milošev et al., 2014). Although the soil under permanent wheat monoculture 

exerts some favorable physical and chemical soil properties, it cannot be recommended 

for wide adoption as a management option, since significant yield variation could be 

expected as well as and pathogen proliferation. Defining a clear relationship between the 

agricultural yields of wheat and the OM is not always possible to determine, because the 

grain refers to the plot, and the amount of returned C is conditioned by the effect of a 

number of factors which can have a significant impact on OM (infestation level, rainfall, 

pest attack, the time of sowing, fertilising etc). The fertilized two–year and 3-year 

rotations can be considered as potential alternatives for sustaining yield and preserving 

soil properties with improved cropping technology (Šeremešić et al., 2011). 
 

 
 

Figure 5. Regression fit of soil organic carbon (SOC) from the LTE experiment (1975–2010). 

**significant at P < 0.01 probability level; *significant at P < 0.05 probability level;  

fertilized 3-year rotation (MSWF); fertilized 2-year rotation (MWF); fertilized wheat 

monoculture (WWF); unfertilized 3-year rotation (MSW) and unfertilized 2-year rotation (MW). 
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The average SOC stock for selected cropping systems (0–20 cm) showed 

significant differences for the analysed period. Significantely higher SOC stock was 

observed in winter wheat monoculture compared with WMF, WMS and WM (Fig. 6). 

Significantely lower value was found at the unfertilized 2-year rotation comapred to 

other systems. Besides that, the unfertilized crop rotation contain 80% of the SOC found 

at the fertilized rotation. The study conducted at the same long-term experiment showed 

that additional C input did not increase the SOC pool, suggesting that the invetsigated 

cropping systems had a limited ability to increase SOC (Šeremešić et al., 2017). 
 

 
 

Figure 6. Average soil carbon stock (t ha-1) of different cropping systems in LTE calculated from 

1975–2010 (0–20 cm). The column followed by the same letter are not significant at P < 0.05 

probability level; fertilized 3-year rotation (MSWF), fertilized 2-year rotation (MWF), fertilized 

wheat monoculture (WWF), unfertilized 3-year rotation (MSW) and unfertilized 2-year rotation 

(MW). 
 

Further on, explaining the relationship between the crop residues C input and SOC 

must implicate on the fact that crop are grown in rotation. Therefore, in our study C 

inputs were accounted as average for the entire rotation. On the basis of the dispersion 

diagram (Fig. 7) the amount of C in plant residues and SOC content in the soil can be 

displayed using the regression curve, covering the average values of SOC content on 

different systems of farming for 2 layer of soil and the amount of C remaining in the 

plant residues inputs. The values of the coefficient of reggresion shows that their 

relationship is largely explained and that there is a strong positive correlation between 

the total average C incorporated with crop residue and SOC content in the soil. For the 

0–20 cm soil depth higher regresion was observed. 
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Figure 7. Relationship of C input and soil organic matter (SOC) for different depths. 

 

CONCLUSIONS 

 

The fertilization treatments do not revealed the significant differences in soil basal 

respiration in an average. Higher soil basal respiration and more CO2 was realised from 

reduced-till compared to conventional tillage despite there being increased levels of soil 

C. The reduced tillage has positive influence on soil C sequestration with comparison to 

conventional mouldboard ploughing. The NPK treatment was important for increasing 

crop yields, organic material inputs, and soil C fractions, so it could increase the 

sustainability of cropping system in the long–term experiments in Slovakia and Serbia. 

The recommended fresh residues C necessary for SOC maintenance is estimated at 

approximately 500 g C m-2 per year. In addition to that, soil tillage was found to be 

significantly related to changes in SOC. 
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