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Abstract. In many regions of the world soils are contaminated with heavy metals and therefore 
restricted in their use. For instance, the absorption of nickel (Ni) in the tissue of plants increase 

fungi are known to enhance the tolerance of host plants to abiotic and biotic stress. Thus, we 
investigated the potential of the arbuscular mycorrhizal fungi Glomus intraradices to mitigate 
deleterious effects of Ni in wheat. The experiment was conducted using four levels of Ni (0, 60, 
120 and 180 mg per kg of soil) and two levels of mycorrhizal fungi application (with and without 
Glomus intraradices). Nickel stress significantly decreased seed number per spike, thousand-seed 
weight, seed yield per plant, concentration of chlorophyll a and b. At the same time, we found 
increased catalase (CAT) enzyme activity and dityrosine (DT) treatments. Mycorrhizal fungi 
application attenuated Ni effects, i.e. fungal presence increased seed number per spike, thousand-
seed weight, chlorophyll a and b. Furthermore mycorrhizal fungi application reduce CAT enzyme 
activity and DT. In general, our results suggest that mycorrhizal fungi application reduces harmful 
effects of Ni stress in wheat. 
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INTRODUCTION 
 

Soil contamination with heavy metals as a result of human activities such as mining, 
metallurgical processes and application of fertilizers, pesticides and fungicides in 
agriculture is a serious threat for ecosystems and human health. Particularly when food 
crops are grown on contaminated soil, heavy metals may enter the human food chain 
(Dixi et al., 2001; Sheetal et al., 2016). The transfer and accumulation of heavy metals 
in soil-plant systems is impress by multiple factors (Wang et al., 2017). Here we test, 
whether mycorrhizal fungi may be used to reduce the heavy metal uptake by wheat and 
thus may pose a possibility to grow crops on heavy metal contaminated soils without 
challenging human health. Among the heavy metals, Nickel (Ni) is an essential 
micronutrient for plant growth and development (Eskew et al., 1983). However, it 
becomes toxic at high concentrations, Excess Ni disturbs photosynthesis and membrane 
function (Moya et al., 1993; Madhava Rao & Sresty, 2000; Boominathan & Doran, 
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2002). High condensation of Ni, excite the production of reactive oxygen species (ROS) 
such as superoxide ion (O2 ) and hydrogen peroxide (H2O2) at cellular level. (Gajewska 
& Sklodowska, 2007) and caused oxidative stress by membrane lipid peroxidation 
(Baccouch et al., 1998). The most obvious symptoms of Ni-toxicity, the inhibition of 
growth, chlorosis, necrosis and wilting have been reported not only for wild but also 
crop plants such as cabbage or wheat (Pandey & Sharma 2002; Gajewska et al., 2006). 
The symbiosis between plants and arbuscular mycorrhiza (Glomeromycota) is one of the 
most substantial interactions between plants and microorganisms in the soil For the plant 
this coexistence leads to strengthened absorption of nutrients such as phosphorus, 
nitrogen and micronutrients through mycelium (Kapulnik & Douds, 2000; Javaid, 2009) 
and in exchange host plants provide carbohydrates to the fungi (Smith & Read, 2008). 
An enhanced phosphorus concentration in plants, in turn, raises photosynthesis rate and 

only assist host plants in absorbing nutrients, but also improve their tolerance against 
environmental abiotic factors such heavy metals (Jahromi et al., 2008). 

An improved tolerance against heavy metals is achieved by arbuscular mycorrhizal 
fungi binding heavy metals to their cell walls (Hildebrandt et al., 2007) and emit 
glomalin (Gonzalez-Chavez et al., 2004). Moreover, mycorrhiza fungi participate in 
nontoxic formation through symbiosis with plants to accumulate heavy metals in plant 
root (Joner & Leyval, 1997). The performance of these fungi in soils contaminated with 
heavy metals have been fulfilled by several studies (Khan et al., 2000; Abdel Latef, 2011; 
Miransari, 2011; Abdel Latef, 2013). In general, mycorrhizal fungi improve mineral 
nutrient balance, especially rare nutrients, stimulate their uptake when the nutrients 
amount is low and inhibit their absorption when amount of nutrients is high. The aim of 
this study was to determine Ni distribution in shoot and root of wheat grown under Ni 
contaminated soil, and to understand if mycorrhizal fungi application presents a potential 
strategy for immobilizing Ni, thus reducing its deleterious effects in wheat. We 
particularly hypothesized that the application of the arbuscular mycorrhizal fungi 
Glomus intraradices to wheat (i) lowers the inhibition of seed germination as well as, 
(ii) growth and development, and (iii) the decrease in yield of wheat when grown in 
nickel contaminated soil. 

 
MATERIAL AND METHODS 

 
The experiment was conducted in a greenhouse at Varamin- Pishva, Iran, in 2016. 

It followed a completely randomized 4  2 factorial design, with three replicates per 
treatment combination. The soil of the experimental site was a clay loam one, with a 
montmorillonite clay type, low in nitrogen (0.06 0.07%), low in organic matter (0.56
0.60), and alkaline in reaction with pH of 7.2 and Ec = 0.66 dS m-1. The soil texture was 
sandy loam, with 10% of neutralizing substances. For the experiment, sterilized field soil 
(autoclaved at 121 efore being used 
as culture soils) was used to prepare four levels of Ni-contamination (0, 60, 120 and 
180 mg of Ni chloride per 1 kg of soil) and filled in 30 x 30 cm plastic pots. For the 
second treatment factor, the top layer of the soil of half of the pots was inoculated with 
2 g of Glomus intraradices spores and fungal propagules inoculum (purchased from 
Biotech Turan Company, Semnan, Iran) just before seed sowing. Each pot was fitted 
with ten seeds of cultivar Pishtaz before placing it in the controlled environment. The 
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room was equipped with cool white fluorescent lamps. Room air temperature was 
20 22 hetically active radiation 
at the top of the canopy was 400  m-2 s-1, during the light photoperiod. Relative 
humidity in the room was 70%. Plants were hand irrigated daily until optimal field 
capacity was reached. The field capacity was determined by slowly saturating four  
soil-filled pots until water started to drip from the bottom. Pots were covered and allowed 
to drain for 24 h and then weighted. The average weight was the definition of field 
capacity and the pots were kept watered to this weight. At seed filling stage, flag leaves 
were collected and immediately frozen in liquid nitrogen and stored at 80 
laboratory analyses. At physiological maturity stage, plants were harvested at the soil 
surface and seed per spike counted and weighted to determine thousand seed weight and 
seed yield per plant. Chlorophyll was extracted by 80% acetone according to Arnon 
(1949). The extracts were filtrated, and chlorophyll a and b content were determined by 
spectrophotometer (model Cintra 6 GBC; GBC Scientific Equipment, Dandenong, 
Victoria, Australia) at 645 nm and 663 nm. The content of chlorophyll was expressed as 
mg  g-1 of fresh weight. Catalase activity was estimated by the Cakmak & Horst (1991) 
method. The reaction mixture contained 100   mM H2O2 
and 1,400  mM sodium phosphate buffer. Catalase activity was estimated by 
recording the absorbance reduction at 240 nm, for 1 min, using a spectrophotometer. 

Dityrosine was estimated by the Amado et al. (1984) method. Leaf samples were 
homogenized with 5 mL of 0.16 M Tris-phosphate, pH 7.5. The plant tissue homogenate 
was centrifuged at 5,000 g for 60 min to remove debris. o,o-dityrosine was recovered by 
gradient elution from the C-18 column (Econosil C18, 250 mm  10 mm) and was 
analyzed by reversed-phase HPLC with simultaneous UV-detection (280 nm).  
A gradient was formed from 10 mM ammonium acetate, adjusted to pH 4.5 with acetic 
acid, and methanol, starting with 1% methanol and increasing to 10% over 30 min.  
A standard dityrosine sample was prepared according to Amado et al. (1984). Dityrosine 
was quantified by assuming that its generation from the reaction of tyrosine with 
horseradish peroxidase in the presence of H2O2 was quantitative (using the extinction 
coefficient e315 = 4.5 mM-1 cm-1 at pH 7.5). From each treatment, one gram of dried 
tissue (root and shoot) was placed in an electrical oven at 480  h. After cooling, 
obtained ash was solved in 10 mL 10% nitric acid. After filtering, the solution was 
poured in plastic tubes and the amount Ni in roots and shoots were analyzed by atomic 
absorption spectroscopy (Model GBC 932 plus) (Reeves et al., 1996). 

All data were analyzed by analysis of variance using the GLM procedure in SAS 
(SAS Institute Inc., 2002). The assumptions of the variance analyses were tested by 
checking if the residuals were random, homogenous, with a normal distribution and a 
mean of about zero. The significance of differences among means was carried out using 

 < 0.05. 
 

RESULTS AND DISCUSSION 
 
The main effects of Ni and fungus were significant on all measured traits (Table 1). 

The interaction between Ni and fungus was significant on CAT enzyme activity 
(Table 1). The lowest seed number per spike, 1,000 seed weight and seed yield per plant 
were obtained when wheat plants were exposure to 180 mg NiCl2 (Table 2). 
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Table 1. Analysis of variance on wheat attributes affected by nickel stress and mycorrhizal fungi 

*, ** and ns significant at 0.05, 0.01 percentage and no significant, Myc = Mycorrhiza, Ni = nickel. 
 
Table 2. Comparison of main means wheat attributes affected by nickel stress condition and mycorrhizal fungi 

Treatment means followed by the same letter within each common are not significantly different (P < 
 
 

S.O.V d.f 
Seed number  
per spike 

Thousand seed 
weight 

Seed yield 
per plant 

Chlorophyll 
a 

Chlorophyll 
b 

Catalase enzyme 
activity

Ni 3 55.38** 65.40** 44.57** 0.205** 0.003** 1
Myc 1 5.22** 91.26** 6.38* 0.035** 0.005** 2,338.20**
Ni* Myc 3 0.21ns 2.27ns 0.35ns 0.0001ns 0.00001ns 280.25*
Error 16 0.47 6.76 1.69 0.0003 0.00006 53.98
C.V (%) 1.73 6.77 6.02 1.46 1.61 5.35

Treatment 
Seed number  
per spike 

Thousand seed 
weight 
(g) 

Seed yield 
per plant 
(g) 

Chlorophyll 
a 
(mg g-1FW) 

Chlorophyll 
b 
(mg g-1FW) 

Catalase enzyme 
activity

Nickel concentration       
0 43.31a 42.15a 11.04a 1.576a 0.540a 74.22d
60 41.58b 40.11a 9.51a 1.368b 0.500b 116.63c
120 37.65c 36.36b 7.14b 1.236c 0.495b 170.59b
180 37.05c 35.00b 4.82c 1.151d 0.485c 187.30a
Mycorrhiza       
- 39.43b 36.45b 7.61b 1.295b 0.490b 147.06a
+ 40.36a 40.35a 8.64a 1.371a 0.520a 127.31b
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Plants grown in Ni contaminated soil showed visible symptoms of injury reflected 
in terms of chlorosis, growth inhibition and browning of root tips. The lowest seed 
number per spike, 1,000 seed weight and seed yield per plant were obtained when no 
mycorrhizal fungus was applied, while the highest seed number per spike, 1,000 seed 
weight and seed yield per plant were obtained by treating the soil with mycorrhizal 
fungus (Table 2). Increased water and nutrients absorption after the application of 
mycorrhizal fungus may explain the increase in seed number per spike, thousand seed 
weight and seed yield per plant. In addition, arbuscular mycorrhizal fungi may also 
increase plant growth by improving nutrition through increasing water uptake and 
reduced soil compaction (Gaur & Adholeya, 2004). The present study showed that 
chlorophyll a and b production decreased when wheat plants were exposure to 
180 mg NiCl2 (Table 2). The plants response to Ni in the soil seems to be closely linked 
to the chlorophyll activity, since the highest levels of chlorophyll-a and chlorophyll-b 
were obtained when the plants were colonized with mycorrhizal fungus (Table 2 and 
Fig. 2). Analogously, several authors report decreased chlorophyll contents in the leaves 
of Ni-exposed plants (Pandey & Sharma, 2002; Seregin & Kozhevnikova, 2006; 
Gajewska & Sklodowska, 2007). Dhir et al. (2009) assumes that this decline in 
chlorophyll levels might be due to a lower Fe content, reduced efficiency of enzymes 
involved in chlorophyll biosynthesis and replacement of central Mg2+-molecules in 
chlorophyll by heavy metals. Accordingly, earlier research already suggested that some 
heavy metals disable the biosynthesis of chlorophyll (Ouzounidou, 1995). 
 

 
 
Figure 1. Interaction between nickel stress condition and mycorrhizal fungi on CAT enzyme 
activity- Nickel-chloride concentrations (0, 60, 120 or 180 mg per kg of soil) and presence 
(AMF+) or absence (AMF-  

 
Sohrabi et al. (2018) also reported that the Pb-contamination caused a significant 

decrease in total chlorophyll contents. The lowest CAT enzyme activity was obtained 
when mycorrhizal fungus was applied, also according to our results the highest CAT 
enzyme activity was obtained when wheat plants were exposure to NiCl2 concentration 
with 180 mg per kg of soil (Table 2 and Fig. 1). The results showed that the highest 
dityrosine content was observed in wheat plants exposed to 180 mg NiCl2 per kg of soil 
(Table 2). CAT enzyme activity increases when plants have to increase their defense 
activity against oxidative stress. Consequently, several researchers have reported an 
increase in CAT activity under heavy metal stress, e.g. Cd, Hg, Ni, Pb and Fe (Ma, 2000; 
Pang et al., 2001; Yang et al., 2001; Parlak, 2016). The primary response of plants to 
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heavy metal stress is the generation of ROS upon exposure to high levels of heavy metals 
that which destroys chlorophyll molecules by ROS, reducing photosynthesis and growth 
(Wojtaszek, 1997; Halliwell & Gutteridge, 1998; Feda et al., 2004; Mithofer et al., 
2004). Again, stress through heavy metals was  as indicated by a low CAT enzyme 
activity  lowest when mycorrhizal fungus was applied (Table 2 and Fig. 1). The 
capability of arbuscular mycorrhiza to lower stress plants experience when exposed to 

ce Glomalin (Arriagada et al., 2005). 
This insoluble glycoprotein, which is produced by the hyphae, was shown to bind 
potentially toxic elements including heavy metals (Gonzalez-Chavez et al., 2004). 

 

 
 

Figure. 2. Interaction between nickel stress condition and mycorrhizal fungi total chlorophyll 
(mg g-1 FW) activity- Nickel-chloride concentrations (0, 60, 120 or 180 mg per kg of soil) and 
presence (AMF+) or absence (AMF-) of arbuscular mycorrhizal fungi. Presented are the 
means  SE. 

 
CONCLUSION 

 
In conclusion, evidence is now accumulating that mycorrhizal fungus can filter out 

toxic heavy metals and thus keep them away from the plants. The results of this study 
showed that inoculation with Glomus. intraradices increases wheat resistance against Ni 
stress and improves seed yield under Ni stress. 
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