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Abstract. Cleaning potato tubers from soil impurities and plant debris after digging them out of 
soil is a topical problem in the work process of potato production. Therefore, the engineering of 
new designs of potato heap separators necessitates the further studying of them and the 
optimisation of their kinematic and design parameters, which must not only ensure the high 
quality of cleaning, but also rule out the possibility of damaging the tubers. The aim of this study 
is to determine the design and kinematic parameters of the improved design of the spiral potato 
separator, which will ensure the high quality of cleaning and rule out the possibility of damaging 
the t
surface of the separator. An analytical study has been carried out resulting in the construction of 
the equivalent schematic model of the interaction between the potato tuber and separator, the 
tuber being approximated by a material point on the surface formed by the two cantilevered 

time they can perform oscillations in the vertical and axial plane under the action of the varying 
load generated by the continuous feeding of the potato heap for separation. In the model, the 

selected and appropriately oriented are shown. A system of equations has been set up for the 
constructed equivalent schematic model, comprising three differential equations of the potato 

levered spirals. The 
determined kinematic and design parameters will allow to raise the quality of cleaning potato 
tubers from soil impurities and plant debris. 
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INTRODUCTION 
 

Improving the quality of the cleaning of potatoes from soil impurities and plant 
debris directly after their digging out from the soil allows considerably improving the 
main indicators of the potato harvesting work process. In order to determine the optimum 
design and kinematic parameters of the engineered design, it is necessary to investigate 
analytically the process of interaction between the potato tuber and the helical cleaning 
surface of the separator, i.e. to construct the analytical mathematical model of the said 
process. The subsequent numerical modelling of the process under consideration with 
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the use of the PC will allow determining the optimum values of the mentioned 
parameters subject to the condition that the potato tubers are not damaged, when they 
are on the surface of the spiral separator during their cleaning. 

The application of various separators and cleaning machines for cleaning the potato 
heap immediately after its extraction from the soil has stipulated the publication of 
considerable numbers of books and papers in various scientists (Peters, 1997; Petrov, 
2004; Veerman & Wustman, 2005; Bishop et al., 2012; Wang et al., 2017). That being 
the case, significant part of the published papers are concerned with the conditions that 
ensure the stable motion of potato tubers on the separating surfaces of the cleaning 
machines and the guaranteed sifting (removal) of soil impurities and plant debris from 
the separation zone (Feller et al., 1987; Misener & McLeod, 1989; Ichiki et al., 2013; 
Bulgakov et al., 2018a; 2018b). 

Authors developed a design of the spiral potato separator (Fig. 1), which includes 
the assembly of three spirals mounted each on its drive shaft with the other end free 
(cantilevered). The potato heap to be separated is fed on them from above, which results 
in a significant part of soil impurities being immediately sifted down. Meanwhile, the 
potato tubers are entrained by the coils of spirals and transported along their axes, 
provided that the coils of spiral springs do not entrain impurities, while the said coils are 
capable of self-cleaning from the stuck wet soil in the process of their operation. The 
field testing of the potato heap separator under consideration has shown positive results 
Bulgakov et al., 2017), which provides the basis for further investigation of the described 
process with the aim of optimising the design and kinematic parameters of the new 
separating appliance. 
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Figure 1. The spiral potato heap separator: a) top view; b) side view. 1  bearing pedestal; 
2  hub; 3  bearing ring; 4  fastener; 5  cleaning spiral; 6  sprocket wheel. 

 
The aim of the study is to determine the design and kinematic parameters of the 

improved design of the spiral potato separator, which ensure the high quality of cleaning 
and rule out any damage to the tubers, basing on the development of a new theory of the 

. 
 

a) b) 
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MATERIALS AND METHODS 
 
In order to construct the analytical mathematical model of 

material point, which is approximated by a solid sphere with a mass of m and a radius of 
rb. A schematic model will be constructed basing on the analysis of various modes of the 
relative motion of a single potato tuber, i.e. a material point, on the surface of the spiral 
separator (Fig. 2). The latter is represented by the two cantilevered driven spirals 1 and 
2 rotating about their longitudinal axes at equal angular velocities of . Thereby, one 
end of each spiral is attached rigidly to its drive shaft, the second end is free. The winding  
senses of the spirals 1 and 2 are 
shown by the arrows. The identical 
pitch S of both windings is shown in 
Fig. 
body in the form of the material point 
designated by the letter C, which has, 
as it was indicated earlier, a radius of 
rb, arrives onto the surface of the first 
spiral winding 1, which has a specified 
radius of R and a pitch angle of . The 
spiral winding 1 starts entraining the 
material point C, i.e. the potato tuber, 
by its helical line into their joint 
motion, i.e. in the rotational motion 
together with the spiral winding 
itself, and the translational motion 

direction of its winding. 

 

 
 
Figure 2. 
relative motion on surface of spiral separator. 

However, as a result of the action of the force of gravity on the potato tuber and the 
rotation of the spiral 1, the potato tuber will in a very short time reach the trough between 
the neighbouring spirals 1 and 2. Obviously, within this short time, after its small 
displacement along the helical line (spiral), the potato tuber will virtually not move along 

longitudinal axis, i.e. the axis MN in this instance. That means that the potato 
tuber, while residing on the upper side of the spiral 1, cannot be transported to any 
appreciable distance by the coils of this spiral alone. Therefore, the main advancement 
of the potato tuber along the MN axis can take place, only when the tuber is in the trough 
formed by the two neighbouring spirals 1 and 2. Moreover, the duration of the single 
potato tuber staying at the top, on the coil of only one spiral 1, will be negligibly small, 
because under the effect of its own weight or by the action of the continuously fed flow 
of the potato heap to be cleaned the tuber will certainly be pushed forward and down. 
Hence, detailed analysis is needed for the transportation of potato tubers just in the case, 
when the tuber has fallen into the trough formed by the two adjacent spirals 1 and 2 of 
the separator. 

At the same time, after the potato tuber falls into the space between the two 
neighbouring spirals 1 and 2 (Fig. 2), i.e. into the trough, it will surely stay in it and it is 
unlikely that the tuber immediately ascends to the top of the spiral 2, although, in 
principle, such a situation cannot be ruled out in view of the rotation of the spiral 2 and 
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the presence of the force of friction between the tuber and the coils of the spiral 2. 
Nevertheless, it is fair to say that the more probable scenario is, when the potato tuber 
under the action of the friction force, despite being possibly captured by the coils of the 
spiral 2 and drawn into the joint motion, very soon rolls or slides down either back into 
the same trough or into the next trough between the spirals 2 and 3. Summing up, the 

any breakaways will be considered. 
It is obvious that, upon reaching the certain critical angular velocity of  in the 

rotation of the spiral 1, the potato tuber can take off from the surface of the spiral 1 and 
fly over all the three spirals, but that case ought to be regarded as a sufficiently rare one 
and it should be investigated separately. 

breaking away followed by its falling down into the trough between the spirals 1 and 2, 
the spiral 2 serves as the thrust surface that prevents the potato tuber from moving 
(perpendicular to the MN axis (effectively, on the surface of the spiral 2). 

As the potato tuber, while residing in the mentioned trough between the spirals 
1 and 2, at the same time stays between two adjacent coils of the spiral 1 that continues 

sides and retaining it in the groove between them, move it along the MN axis. 
It makes no difference for the potato t

the tuber moves along the helical groove formed by the two adjacent coils or the tuber 
is quiescent and the groove moves along the tuber. Since the spiral 2 rotates with the 
same sense as the spiral 1 and the coils of both the spirals wind identically, the coil of 
the spiral 2 thrusting against the potato tuber slips on its surface, acting as a thrust 
surface. 

Thus, the contact between the potato tuber and the surfaces of the spirals 1 and 2 
ranslation along the MN axis occurs at the three points K1, K2 and K3, 

as shown in Fig. 2. 
But, the translational motion of the potato tuber along the MN axis is only 

theoretically close to straight-line motion (basing on the purely geometrical properties 
of the helical line). In effect, due to a number of random factors, in particular, due to the 
variable mass of the separated potato heap passing on the surface of all the three spirals, 
the said spirals perform linear, at a first approximation, oscillations on a vertical line, i.e. 
perpendicular to the MN axis, which contribute to the sifting of the soil fed together with 

surfaces from the stuck soil. In this process, the potato tubers perform three-dimensional 
oscillations about their centres of mass, and in some cases also angular displacements 
about some of their axes. Evidently, the said oscillations and angular displacements are 
of random nature. But, for the most part, the potato tubers situated on the surfaces of the 

oscillations oriented vertically, i.e. perpendicular to the MN axis. 
Nevertheless, the principal motion of the potato tuber is its translational 

displacement along the MN axis (i.e. along the trough between the spirals 1 and 2) under 
the action of the reaction forces applied by the helical groove or, to be more accurate, by 
the coil that pushes against the potato tuber, propelling it along the MN axis. The said 
helical groove acts as the constraint that shapes, for its part, the line of the normal 
reaction force applied to the potato tuber during its translation along the MN axis, and 
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the equation of that line should be taken as the equation of constraint. Apparently, the 
main cleanup of the potato tubers from the stuck soil and the sifting of soil and other 
foreign materials from the potato heap fed for separation take place during the translation 
of potato tubers along the MN axis alongside with the oscillations of the spirals. 

Therefore, it is reasonable first to investigate the process of the translation of a 

helical coils. 
 

RESULTS AND DISCUSSION 
 
In order to generate the analytical mathematical model of the mentioned process, 

the equivalent schematic model of the interaction between the potato tuber and the 
surfaces of the above-mentioned separator spiral coils (Fig. 3) has to be set up. In the 
case under consideration, the potato tuber resides in the trough between the spirals 1 and 
2, and on the spiral 1 it is situated in the space between two adjacent coils, its surface 
supported by both the spiral coils. It is easily evident that, enumerating the two above-

 
coil acts as the pushing element, the 
second coil acts as the bearing part. 
The coil of the spiral 2, as it was 
already pointed out earlier, acts as the 
thrust part. Hence, as can be seen in 
Fig. 2 and Fig. 3, at the points of the 

surface (its shape being close to 
spherical) K1, K2 and K3 the normal 
reaction forces N1, N2 and N3, 
respectively, are applied. The force 
of gravity acting on the tuber  is 

of mass (point C) and is vectored 
vertically down. 

the action of the system of forces 
shown in the equivalent schematic 
model (Fig. 3) will be investigated 
with reference to the fixed Cartesian  

 

 
 
Figure 3. Equivalent schematic model of 

 
 

coordinate system xOyz with its origin (point O) situated on the MN longitudinal axis 
of the spiral 1, its axis Oz coinciding with the MN longitudinal axis of the spiral 1, the 
axis Oy being directed vertically up and the axis Ox being directed to the right and 

-section plane. 
After selecting the coordinate system, the forces applied to the potato tuber, as 

shown in Fig. 3, have to be described. 
They are, first of all: N1, N2 and N3  the normal reaction forces exerted by the 

surfaces of the coils of the spirals 1 and 2, respectively, vectored along the common 
normal lines on the surfaces of the coils and the tuber at the points of contact K1, K2 and 
K3
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action intersect at the point C. 
F1, F2 and F3  friction forces, which are generated, when the coils of the spirals 1 

and 2 as well as the spiral 3, respectively, slip on the surface of the potato tuber at the 
points of contact K1, K2 and K3, respectively. They are vectored in the same directions, 

 of rotation, along the common tangents of the coils and the surface 
of the potato tuber. 

As is known, the Fi forces of sliding friction are expressed as follows: 

,   (1) 

where f  
(most often spring steel). In case of potato tubers, it can be assumed that f = 
(Guo & Campanella, 2017). 

G  potato 
following expression: 

G mg  (2) 

where m  mass of the potato tuber (kg); g  gravity acceleration (m s-2). 
  n the spiral separator that 

 

on the basis of the constructed equivalent schematic model (Fig. 2): 

1 2 3 1 2 3 Vma G N N N F F F P , (3) 

where   
system of forces (m s-2). 

In terms of the projections on the axes of the fixed Cartesian coordinate system 
xOyz, the vector Eq. (3) takes the following form: 

1 1 2 2 3 3 1 1

2 2 3 3

1 1 2 2 3 3 1 1

2 2

cos , cos , cos , cos ,

cos , cos , ,

cos , cos , cos , cos ,

cos ,

mx N x n N x n N x n F x V

F x V F x V

my N y n N y n N y n F y V

F y V F3 3

1 1 2 2 3 3 1 1

2 2 3 3

cos , ,

cos , cos , cos , cos ,

cos , cos , .

Vy V G P

mz N z n N z n N z n F z V

F z V F z V

 

(4) 

In order to simplify the obtained system of differential Eq. (4), it is assumed that 
the potato tuber sits symmetrically in the trough between the spirals 1 and 2, i.e. its centre 
of mass (point C) is located in the middle of the said trough. In that event, as may be 
inferred from Fig. 2, the following is obtained: 
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1 2 1 3 3

1 2 1 3 3

1 2 1 3 3

1 2 1 3 3

1 2 1 3 3

cos , cos ,

cos , cos , ,

cos , cos ,

cos , cos , ,

cos , cos ,

V

mx N N x n N x n

F F x V F x V

my N N y n N y n

F F y V F y V G P

mz N N z n N z n

1 2 1 3 3cos , cos , .F F z V F z V

 

(5) 

where , ,   common normal lines on the surfaces of the coils and the tuber at the 
points of contact K1, K2 and K3, respectively; , ,   velocity vectors of the potato 

s at the points of contact K1, K2 and K3, 
respectively, vectored along the common tangents of the surfaces of the coils and the 

of contact. 
The next step is to determine the direction cosines of the angles between the axes 

1, K2 
and K3 points of contact between the potato tuber and the coils of the spirals 1 and 2 
included in the system of differential Eq. (5). 

The direction cosines cos , ix n , cos , iy n , cos , iz n , 1, 2, 3, are 

defined by the following dependencies: 
1

cos , k
i k

f
x n f

x
, 

1
cos , k

i k

f
y n f

y
, 

1
cos , k

i k

f
z n f

z
, 

i = 1, 2, 3; k = 1, 2, 

(6) 

where   modulus of gradient of the function  determined from the 
following expression: 

22 2

k k k
k

f f f
f

x y z
,  k = 1, 2 (7) 

, k = 1, 2  equation of constraint that corresponds to the equation of 
surface of the spiral winding. 

For the cylindrical spiral 1 with the specified dimensions and the longitudinal axis 
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coinciding with the coordinate axis Oz, the equation of constraint in the Cartesian 
coordinate system xOyz appears as: 

2

1 2 2 2 2 2

2
2 2 2

2 2
sin cos

cos
4 2

0.

z z
x yS SS Sf

x y x y

x y R r

 
(8) 

Since the longitudinal axis of symmetry of the spiral 2 is offset to the right along 
the Ox axis by the centre-to-centre distance equal to a, its equation of constraint in the 
Cartesian coordinate system xOyz appears as follows: 

2

2 2 2 22 2

2
2 2 2

2 2
sin cos

cos
4 2

0,

z z
x a yS SS Sf

x a y x a y

x a y R r

 
(9) 

where S  spiral winding pitch. 
At this stage, it is necessary first to determine the relevant partial derivatives and 

the gradient of the function that represents the equation of constraint. In order to achieve 
that, the equations of constraints (8) and (9) have to be differentiated with respect to the 
x, y, z variables, then, in the obtained expressions, the x, y and z variables have to be 
substituted by their parametric expressions, which will be determined as follows. 
According to Krause & Minkin (2005), the parametric equations of the helical lines 
(coils) of the spirals 1 and 2 have to be written down. They appear as follows:  

 for the spiral 1: 

01

01

1

cos ,

sin ,

2 ,

x R

y R

z S

 
(10) 

 for the spiral 2: 

02

02

1

cos ,

sin ,

2 ,

x a R

y R

z S

 
(11) 

where R  radius of the spiral;   independent angular parameter of the spiral, 
which defines the position of the cross-  

,   initial values of the independent angular parameters of the spirals 1 and 2, 
respectively, at the initial instant t = 0; a  centre-to-centre distance between the spirals 
1 and 2. 

Considering the fact that the corresponding cross-section of the spiral 2 (in the place 
of contact of the mentioned spirals with the potato tuber at the points K1, K2 and K3 is 
displaced by an angle of  with respect to the angular parameter of the spiral 1, the 
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following initial values of the angular parameters are assumed:

= 0,  = . (12) 

Thereupon, the parametric Eq. (10) and (11), subject to (12), take the following 
form: 

 for the spiral 1: 

1

cos ,

sin ,

2 ,

x R t

y R t

z S t

  (13) 

 for the spiral 2: 

1

cos ,

sin ,

2 ,

x a R t

y R t

z S t

 (14) 

or 

1

cos ,

sin ,

2 .

x a R t

y R t

z S t

 
(15) 

As a result of the above-mentioned operations of differentiating the constraint 
equations and substituting the variables x, y and z in the obtained values of partial 
derivatives by their parametric expressions (13) and (15), the following expressions are 
obtained for the partial derivatives in the parametric form: 

1 2 sin cos sin 2
f f

A t B t t
x x

, (16) 

1 2 cos sin sin 2
f f

A t B t t
y y

, (17) 

1 cos 2
f

C t
z

, (18) 

2 cos 2
f

C t
z

, (19) 

where  
2

2
cos

4 2
S S

A
R R

, (20) 

2 3

2 3 2
cos sin

4 2 8 2

S S S S
B

R R R R
,  (21) 

cos
2 2

S S
C

R
.  (22) 
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Thereat, the gradients of the functions and  are equal and, 
according to (7), are determined by the following formula:

2

1 2

2
2 2

sin cos sin 2

cos sin sin 2 cos 2 .

f f A t B t t

A t B t t C t

 
(23) 

Taking into account the expressions (6) and (16) (23), finally, the target values of 

normal reaction forces at the K1, K2 and K3 points of contact between the potato tuber 
and the surfaces of coils of the spirals 1 and 2 are obtained: 

1 2 3

2

2
2 2

cos , cos , cos ,

sin cos sin 2
,

sin cos sin 2

cos sin sin 2 cos 2

x n x n x n

A t B t t

A t B t t

A t B t t C t

 

(24) 

1 2 3

2

2
2 2

cos , cos , cos ,

cos sin sin 2
,

sin cos sin 2

cos sin sin 2 cos 2

y n y n y n

A t B t t

A t B t t

A t B t t C t

 
(25) 

1 2 3

2

2
2 2

cos , cos , cos ,

cos 2
.

sin cos sin 2

cos sin sin 2 cos 2

z n z n z n

C t

A t B t t

A t B t t C t

 

(26) 
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Further, the cosines of the angles between the vectors of the relative velocity of the 
t the points of contact K1, K2 and K3 

and the coordinate axes Ox, Oy and Oz, i.e. the values cos , ix V , cos , iy V  and 

cos , iz V ,  i = 1, 2, 3, have to be determined. 

Since the velocity vectors  and  are collinear, the following holds true: 

2 1cos , cos ,x V x V , 
2 1cos , cos ,y V y V , 

2 1cos , cos ,z V z V . 

The direction cosines cos , ix V , cos , iy V  and cos , iz V  can be found 

with the use of the following expressions (Vasilenko, 1996): 

2 2 2

2 2 2

2 2 2

cos , ,

cos , ,

cos , ,

1, 2, 3.

i
i

i
i

i
i

x x
x V

V x y z

y y
y V

V x y z

z z
z V

V x y z

i

 
(27) 

For that purpose, the velocities 
along the coils of the spirals 1 and 2 , respectively, have to be determined. That requires 
differentiating the systems of Eq. (13) and (15) on time t. The following is obtained for 
the spiral 1: 

1

sin ,

cos ,

2 ,

x R t

y R t

z S

 
(28) 

and for the spiral 2: 

1

sin ,

cos ,

2 .

x R t

y R t

z S

 
(29) 

The systems of Eq. (28) and (29) represent the formulae for finding the projections 
of the circumferential velocities of the points on coils during the rotation of the spirals 1 
and 2, respectively, on the coordinate axes Ox, Oy and Oz. 
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Considering the fact that the velocities , 
motion along the coils are vectored in opposition to the vectors of the circumferential 
velocities of the points on coils, the projections of their vectors on the coordinate axes 
Ox, Oy and Oz are opposite in sign, therefore, the systems of Eq. (28) and (29) take the 
following form: 

1

sin ,

cos ,

2 ,

x R t

y R t

z S

 
(30) 

and 

1

sin ,

cos ,

2 ,

x R t

y R t

z S

 
(31) 

coils is equal to: 

2 2 2 , 1, 2, 3iV x y z i ,  (32) 

or, after substituting the values (30) and (31) and carrying out the corresponding 
transformations, the following is obtained: 

2 2 24 , 1, 2, 3
2iV R S i . (33) 

Thereafter, in accordance with the expressions (27), the required cosines of the 
angles between the vectors , 1, 2, 3, and coordinate axes Ox, Oy and Oz are finally 
obtained. They appear as follows: 

1 2 2 2 2

2 sin
cos , cos ,

4

R t
x V x V

R S
,  (34) 

1 2 2 2 2

2 cos
cos , cos ,

4

R t
y V y V

R S
,  (35) 

1 2 2 2 2
cos , cos ,

4

S
z V z V

R S
,  (36) 

3 2 2 2

2 sin
cos ,

4

R t
x V

R S
,  (37) 

3 2 2 2

2 cos
cos ,

4

R t
y V

R S
,  (38) 

3 2 2 2
cos ,

4

S
z V

R S
.  (39) 
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By substituting the expressions (24) (26) and (34) (39) in the system of differential 
Eq. (5), the following system of differential equations is obtained: 

1 2 3

2

2 2 2

1 2 3 2 2 2

1 2 3

2

sin cos sin 2

sin cos sin 2

cos sin sin 2 cos 2

2 sin
,

4

cos sin sin 2

sin cos sin 2

cos sin

mx N N N

A t B t t

A t B t t

A t B t t C t

R t
F F F

R S

my N N N

A t B t t

A t B t t

A t B t
2 2 2

1 2 3 2 2 2

1 2 3

2

2 2 2

1 2 3 2 2 2

sin 2 cos 2

2 cos
,

4

cos 2

sin cos sin 2

cos sin sin 2 cos 2

,
4

V

t C t

R t
F F F G P

R S

mz N N N

C t

A t B t t

A t B t t C t

S
F F F

R S

 

(40) 

where the coefficients A, B and C are determined in accordance with the expressions 
(20), (21) and (22), respectively. 

Thus, the system of differential Eq. (40) has been obtained, which describes the 

coordinate system xOyz, when the tuber resides in the trough between the adjacent 
spirals. 

of, , the potato tuber under the conditions of such steady-state motion moves 
at a constant velocity of , relative to the surfaces of coils of the spirals 1 and 
2, which velocity can be found from the expression (33). But, in the absolute coordinate 
system the projections of the  and 

, because the potato tuber in the form of a material point moves 
only along the Oz axis. 
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Thereby, the ,  and  accelerations of the tuber along the three coordinate axes 
Ox, Oy and Oz can be considered as equal to zero. Hence, putting the left-hand sides of 
the differential equations in the system (40) to zero, in view of the formula (1), the 
following system of linear algebraic equations in the unknown quantities N1, N2 and N3 

with variable coefficients is obtained: 

1 2 3 2

2 2 2

1 2 3 2 2 2

1 2 3 2

sin cos sin 2

sin cos sin 2

cos sin sin 2 cos 2

2 sin
0,

4

cos sin sin 2

sin cos sin 2

cos sin sin 2

A t B t t
N N N

A t B t t

A t B t t C t

R t
fN fN fN

R S

A t B t t
N N N

A t B t t

A t B t t
2 2 2

1 2 3 2 2 2

1 2 3 2

2 2 2

1 2 3 2 2 2

cos 2

2 cos
0,

4

cos 2

sin cos sin 2

cos sin sin 2 cos 2

0.
4

V

C t

R t
fN fN fN mg P

R S

C t
N N N

A t B t t

A t B t t C t

S
fN fN fN

R S

 

(41) 

In essence, the system of Eq. 
equilibrium, when it resides in the trough between the adjacent separator spirals 1 and 2 
in contact with the coils of these spirals at the points K1, K2 and K3 (Fig. 1) at the random 
instant of time t . The fulfilment of the conditions set by (41) ensures the theoretically 
stable position of the potato tuber in the trough with the constant points of contact K1, 
K2 and K3 
axis Oz, up to the moment of its final departure from the spirals.  

In this case, the potato tuber, as already mentioned, moves at a constant velocity of 
 along the Oz axis up to the point of its departure from the spirals onto 

the discharge conveyor. 
The system of Eq. (41) can be solved analytically with the use of Cramer's rule. In 

order to do that, the system is to be transformed into the form that allows applying the 
said method. Hence, the following designations are introduced: 
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12

2 2 2

sin cos sin 2

sin cos sin 2

cos sin sin 2 cos 2

A t B t t
A

A t B t t

A t B t t C t

(42) 

22

2 2 2

cos sin sin 2

sin cos sin 2

cos sin sin 2 cos 2

A t B t t
A

A t B t t

A t B t t C t

 

(43) 

32

2 2 2

cos 2

sin cos sin 2

cos sin sin 2 cos 2

C t
A

A t B t t

A t B t t C t

 

(44) 

12 2 2

2 sin

4

R t
B

R S
 (45) 

22 2 2

2 cos

4

R t
B

R S
 (46) 

32 2 24

S
B

R S
. (47) 

 

Substituting the expressions (42 47) in the system of Eq. (41), the following system 
of equations is obtained: 

1 2 3 1 1 2 3 1

1 2 3 2 1 2 3 2

1 2 3 3 1 2 3 3

0,

,

0.

V

N N N A fN fN fN B

N N N A fN fN fN B mg P

N N N A fN fN fN B

 (48) 

After certain transformations, the system of equations suitable for solving with 
the use of Cramer's rule is obtained: 

1 1 1 1 1 2 1 1 3

2 2 1 2 2 2 2 2 3

3 3 1 3 3 2 3 3 3

0,

,

0.

V

A fB N A fB N A fB N

A fB N A fB N A fB N mg P

A fB N A fB N A fB N

 (49) 

 
The principal determinant of the system (49) has to be written down. It is as follows: 
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1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

.

A fB A fB A fB

A fB A fB A fB

A fB A fB A fB

 (50) 

The next step is to write down the determinants  required for finding the unknown 
quantities , 1, 2, 3: 

1 1 1 1

1 2 2 2 2

3 3 3 3

0

,

0
V

A fB A fB

mg P A fB A fB

A fB A fB

 (51) 

 

1 1 1 1

2 2 2 2 2

3 3 3 3

0

,

0
V

A fB A fB

A fB mg P A fB

A fB A fB

 
(52) 

 

1 1 1 1

3 2 2 2 2

3 3 3 3

0

.

0
V

A fB A fB

A fB A fB mg P

A fB A fB

 (53) 

Then, pursuant to Cramer's rule, the following solution of the system of equations 
is obtained: 

1
1N , 2

2N  and  3
3N .  (54) 

The obtained values of the normal reaction forces N1, N2 and N3 provide for the 
stable position of the potato tuber during its translation along the longitudinal axes of the 
separator spirals. 

The necessary and sufficient condition of the existence and uniqueness of a solution 
for the system of Eq. 
being equal to zero, i.e. the condition that . 

The next stage in the development of the mathematical model for the process of 
cleaning potatoes on the surface of the spiral separator is the compilation of the computer 
programme and the numerical solution of the obtained system of Eq. (49), which 
describes the motion of the potato tuber on the surface of the spiral separator, with the 
use of the PC. That would enable finding the optimum parameters of the spiral separator. 
Further, it is also necessary to investigate analytically the possible angular displacements 
of the potato tuber about the axes that pass through its centre of mass during its stay on 
the surface of the spiral separator under the action of the moments produced by the 
friction forces. 

 
CONCLUSIONS 

 
1. An analytical mathematical model has been developed for the process of 

cleaning potatoes on cantilevered cleaning spirals. The model allows determining the 
efficient design and kinematic parameters of the spiral separator with the use of 
analytical methods. 
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2. It has been established that the main work process of the transportation and 
cleaning of potato tubers takes place in the troughs between two adjacent spirals of the 
separator. 

3. As a result of the analytical investigation, the system of linear equations of the 
n, which, in effect, are the equations of the relative equilibrium of 

generated. 
4. Solving the obtained system of equations on the basis of Cramer's rule and with 

the use of the PC will make it possible to plot the graphical dependencies that show the 

process of separating the potato heap and cleaning the tubers from stuck soil. 
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