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Abstract. Detection of heterogeneity (crop, soil, etc.) gained a lot of importance in the 
field of site-specific farming in recent years and became possible to be measured by different 
sensors. The thermal spectrum of electromagnetic radiation has a great potential today and 
experiments focused on describing a relation between canopy temperature and various vegetation 
characteristics are conducted. This paper was aimed to examine the relation between canopy 
temperature and electrical conductivity as one of staple soil characteristics. The related 
experiment was undertaken in Sojovice, Czech Republic, within an agricultural plot where winter 
wheat was grown in 2017 growing season. The examined plot was composed of three sub plots 
and 35 control points were selected within this area which the data were related to. A canopy was 
sensed by UAV (eBee carrying thermoMAP (FLIR TAU2) camera). Soil conductivity data were 
collected by terrestrial sampling using EM38-MK2 Ground Conductivity Meter in 1 m depth and 
2 m sampling point distance. This dataset was later interpolated using the kriging method. The 
correlation analysis results showed a strong negative correlation between conductivity and 
thermal data (-0.82; p < 0.001). When comparing conductivity with NDVI representing the 
aboveground biomass, there was an opposite trend but also strong result (0.86; p < 0.001). 
Correlation coefficient of thermal data and NDVI comparison was -0.86; (p < 0.001). These 
preliminary results have a potential for further research in terms of soil characteristics studies. 
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INTRODUCTION 
 

The concept of Precision Agriculture (PA) has developed rapidly in recent decades. 
As the population grows and the field of specialized technologies are enhanced, the 
methods of site-specific farming more or less engage the common practice. Many studies 
are conducted with the aim to describe relations between various soil and vegetation 
characteristics and different kind of remotely sensed (RS) data. Such knowledge is 
essential to obtain a complex overview of how the natural processes may be explained 
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by spectral imagery. The major advantage of such approach is especially the fact that the 
research may be carried out in a non-destructive mode. Related analyses may be thus 
undertaken repeatedly during one growing season, i.e. it is possible to evaluate crops on 
particular plot in different growth stages (Richards, 1993; Jones & Vaughan, 2010). It 
was determined that the spectral characteristics are related to various vegetation 
characteristics such as biochemical composition, physical structure or plant status 
(Sahoo et al., 2015). Based on this knowledge there is not only the possibility to evaluate 
the crop status at the canopy scale, but it is also possible to detect some within-field 
heterogeneity. This heterogeneity may be caused by variability of elevation or soil 

 et al., 2011; 
Sassenrath & Kulesza, 2017). Detecting of the within-field heterogeneity may be 
utilized to adjust the agricultural management and delineate so-called production zones. 
Initially, the concept of PA was based on responses in the visible and near-infrared (NIR) 
regions of the electromagnetic spectrum. Plenty of vegetation indices (VI) were 
developed as the ratios of reflectance in different wavelengths. Although many of them 
are considered to be very effective indicator of soil and vegetation characteristics, the 
research is focused on thermal infrared region of the spectrum in recent years. The major 
difference between these two approaches is that optical RS exploits the radiation 
reflected from the investigated surface, whereas thermal RS methods work with the 
amount of radiation that is emitted by the particular surface or object (Sabins Jr., 1997). 
As the temperature is such characteristic that is not visible under standard conditions, 
the thermal RS converts this information and displays the patterns as the visible image 
(Ishimwe et al., 2014). According to Khanal et al. (2017) this is especially useful for 
early detection of stressed vegetation based on the crop temperature on the contrary to 
optical RS methods, where the stress may be indicated only when visible symptoms 
appear. This statement is supported also by study of Camoglu et al. (2017), where 
thermal and hyperspectral data were analyzed to detect four levels of water stress on 
peppers (Capsicum annuum L.). Whereas spectral indices did not indicate the difference 
between 100% and 75% irrigated vegetation, thermal indices provided significant 
results. Initially, the obtaining of high resolution thermal imagery was limited by high 
acquisition costs. However, recently the low-costs platforms were developed. 
Especially, the utilization of Unmanned Aerial Vehicles (UAV) has lowered the costs 
and thus the thermal imagery became more accessible for various branches of 
agricultural research such as nursery and greenhouse monitoring, irrigation 
management, plant disease detection or yield prediction (Ishimwe et al., 2014). A 
number of studies focus on fruit trees yield prediction. An algorithm was developed by 
Stajnko et al. (2004) to estimate apple tree yield prediction using thermal data. Moreover, 
Bulanon et al. (2008) demonstrated the method how to estimate citrus fruit yield based 
on the fact that the fruits have approximately 1.6 
during the night. Nevertheless, the utilization of thermal imagery to predict cereals yield 
has still some limits in scientific literature. However, there are also studies describing 
the relation of thermal imagery and soil characteristics. Soil texture was found to be 
strongly related to a land surface temperature (Mattikalli et al., 1998). It is a factor that 
besides the others affects the amount of water held in soil profile that on the rebound 
influences the surface temperature. Soil electrical conductivity (EC) is considered to be 
a staple soil property. It determines capability of soil to transmit an electrical charge 
(Logsdon, 2008). According to various studies EC is associated to other soil attributes 
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such as soil texture or soil water content (Corwin & Lesch, 2003; Logsdon, 2008; Malin 
& Faulin, 2013). Exploration of physical and chemical soil properties within examined 
area is often expensive and time consuming procedure. Therefore, in terms of PA 
applications EC became useful and most frequently obtained measurements to determine 
soil properties. Obtained values of EC are usually processed and thereafter presented as 
a map. This kind of map thus gives approximate information about soil texture and soil 
water distribution. It may be utilized not only for appropriate crop selection, but also for 
evaluation of drainage and irrigation management or spatio-temporal changes in soil 
properties. 

Since thermal RS methods gained attention in recent years and the soil EC is 
considered to be a staple soil factor, this study aimed to describe the relation between 
these two variables. Experimental data presented in this paper are aimed to be analysed 
to determine the level of association of canopy temperature (Tc) and soil EC as the staple 
soil factor. 
 

MATERIALS AND METHODS 
 
Experimental Site 
The experiment was conducted within an agricultural plot near the Sojovice town 

in Czech Republic. It is located approximately 25 km north-east from Prague 
 ha and it is 

composed of three smaller plots marked by numbers (Fig. 1). The west side plot [7] 
has 8.4 ha and there are cambisols as a staple soil type. The northern part of plot [9] has 
10.0 ha and the southern one [5] has 5.8 ha. There are regosols as the staple soil type 
within both of these plots. According to the DEM the elevation ranges between 175 184 
m a.s.l. thus there is no significant elevation variability over the area. This agricultural 
plot has already been monitored in recent years. Certain pattern in crop heterogeneity  
is observable  on  different  kind  of  imagery  during  the  growing  season  (Fig.  2).  

 

 
 

Figure 1. Experimental plot localization and composition (subplots marked by numbers 5, 7, 9) 
with 35 control points depicted within the field and Jizera river flow on the west side. 
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Figure 2. a) Soil electrical conductivity (EC), 
b) canopy temperature (Tc) and c) Normalized 
Difference Vegetation Index (NDVI) derived 
from remotely sensed imagery. 

 
This heterogeneity is very likely influenced by the nearby flow of Jizera river and it is 
planned to be examined also in upcoming growing season. For a purpose of pedological 
research in total 35 control points were selected (Fig. 1). This control points selection 
was based on remotely sensed data from years 2015 and 2016 that were generally poor 
on precipitation. Therefore, zones of crops stressed by insufficient amount of water 
appeared in certain pattern during both examined growing season. Thus, points were 
selected to represent zones with different rate of crop water stress. 

Agricultural management of the examined plot works with crop rotation of winter 
wheat and potato with one-year period. In 2017 growing season there was a winter wheat 
grown in two varieties. Variety Patras was sown on the southern part of the plot [5], 
while the other two parts were sown with Epos variety. Consequently all data analysis 
and results interpretation are related to winter wheat as one of the staple agricultural 
crops. 

 
Remotely sensed Data 
To obtain spectral data in sufficient spatial resolution the canopy of the 

experimental plot was sensed using UAV on 19th June 2017. A fully autonomous drone 
eBee (senseFly, Cheseaux-Lausanne, Switzerland) was utilized to carry two different 
types of camera. Canopy temperature data were obtained using thermal camera senseFly 
thermoMap. The images were processed and composed using specialized SW. In order 

a) b) 

c) 
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to calculate Normalized Difference Vegetation Index (NDVI) sensing with multispectral 
camera senseFly multiSPEC 4C was done as well. To acquire absolute reflectance 
measurements the calibration with calibration target was necessary to be done before 
flight. This multispectral camera contains four separate sensors that acquire data in four 
bands  green, red, red-edge and NIR. Based on multispectral imagery NDVI index was 
calculated using ENVI 5.4 (Exelis Visual Information Solutions, Boulder, Colorado, 
USA). This index was derived and used in the analysis as the indicator of aboveground 
biomass. Technical specifications of utilized cameras and their settings for this particular 
sensing are given by Table 1, whereas Table 2. describes meteorological conditions 
during the process of data acquisition. 

 
Table 1. Technical parameters of canopy remote sensing at 80 above ground level 

 Thermal camera MS camera 
Typ of device thermoMap multiSPEC 4C 
Sensor   
Ground resolution at 100 m, cm/px 19 10 
Velocity, m s-1 12 13 
Vertical overlap, % 80 
Horizontal overlap, % 80 
SW  eMotion, Pix4D 
 

Soil Electrical Conductivity Data 
In order to gain the soil EC data, a terrestrial sampling was carried out using widely 

known probe for electromagnetic induction (EMI) (Corwin and Lesch, 2005) 
measurement EM38 MK2 (Geonics Limited, Ontario, Canada) on 13th September 2017. 
Weather conditions during the 
process of measurement are given 
in Table 2. The probe was pulled 
by quad by the speed approximately 
2.8 m s-1, while the data were 
acquired in the soil profile 0 1 m. 
The measurement was performed 
as the set of points with the 
distance of 2 m in the direction of 
quad motion. Weather conditions 

 
Table 2. Meteorological conditions by data collection 

 Tc EC 
Date of sensing 19.6.2017 13.9.2017 
Time of sensing 2 3 PM 2 4 PM
Aerial temperature,  29 16.4 
Precipitation, mm 0.0 0.0 
Wind velocity, k h-1 8.6 18 
Air pressure, hPa 1,020.3 1,005.8 
 

during the process of measurement are given in Table 2. The probe was pulled by quad 
by the speed approximately 2.8 m s-1, while the data were acquired in the soil profile  
0 1 m. The measurement was performed as the set of points with the distance of 2 m in 
the direction of quad motion. The distance between particular trajectories was 
approximately 20 m. Data from probe was recorded to the measuring unit together with 
DGPS signal each second. In order to eliminate recorded errors, some modifications on 
the original EC values were performed before processing. Data were treated at the 
extreme values. Data of conductivity were processed using statistical and geostatistical 
methods. The set of 7,428 points was interpolated in order to get coherent map  
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representing the EC values distribution within the examined area. The maps were created 
using the kriging interpolation method (see Table 3). Software Microsoft office 
(Microsoft Corporation, Redmond, USA) and ArcGIS 10.5 (ESRI, Redlands, California, 
USA) were used. 
 
Table 3. Parameters of Kriging as a method of interpolating the point electrical conductivity (EC) 
data 

Method of estimation Method of Moments (MoM) 
Method of interpolation Kriging 
Variogram model Spherical 
Nugget variance 0.776 
Distance parameter (r) 43.471 
Partial sill 12.349 
 

Data Analysis 
Since the data were acquired and processed, it was possible to display numerical 

values of examined vegetation and soil characteristics in form of raster layer. This 
kind of visualisation showed certain pattern of data variability within examined 
agricultural plot. Nevertheless, the analysis needed to be done to describe the relation 
between Tc and EC more precisely. In addition, analysis of the relation between EC and 
NDVI, respectively Tc and NDVI was done as well to obtain complex information about 
the dataset. Since there was set of 35 control points selected within the experimental 
area, the other data analysis was related to those points. Values from raster layers (Tc, 
EC and NDVI) were extracted using the Extract Multi Values to Points tool in ArcMap 
10.5 SW and added to the attribute table of 35 control point vector layer. Thus, the result 
was the table with in containing exact numerical information about Tc, the soil EC and 
NDVI at the particular point. Statistical analysis process was done in R Studio SW 
(RStudio n coefficient was 
calculated at three levels. At first the relation Tc and EC was evaluated, followed by the 
calculations for Tc and NDVI and also EC and NDVI. 
 

RESULTS AND DISCUSSION 
 
First, summary statistics of examined variables was done to acquire complex 

information about the dataset intended to be analysed. Results of the summary are given 
by Table 4. Mean value of EC was 10.306 mS m-1, whereas median reached only 
9.310 mS m-1. These values were in accordance with possitive skewness (0.403) that 
indicated the data are more distributed on the right side of the mean value, i.e. the field 
is mostly characterized by lower values of EC, however the mean value is influenced by 
several parts with higher EC values. Mean canopy temperature was calculated to be 
30.4  31.6 
the dataset. NDVI mean value was 0.66 and slightly negative skewness showed on more 
values distributed on the left side of the mean. 
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Table 4. Summary statistics of soil electrical conductivity (EC), canopy temperature (Tc) and 
Normalized Difference Vegetation Index (NDVI) 

 EC Tc  NDVI 
Count 35 35 35 
Mean 10.306 30.440 0.660 
Median 9.310 31.600 0.679 
Sample variance 14.621 5.825 0.040 
Standard deviation 3.824 2.413 0.199 
Minimum 4.280 26.440 0.323 
Maximum 18.048 33.910 0.901 
Skewness 0.403 -0.215 -0.179 
 

Relation of soil EC and Tc was 
evaluated within selected agricultural plot. 
Additionally, the NDVI was added to the 
analysis as the aboveground biomass 
indicator. The analysis was concentrated in 
35 control points selected in terms of 
previous research. Correlation coefficients 
were calculated for combinations of three 
examined variables, however, the relation of 
EC and Tc was the most required one. Fig. 3 
gives a complex overview of correlation 
analysis results. Significantly strong 
correlation was detected at all levels. Soil 
EC and Tc were negatively correlated with 
the correlation coefficient value -0.82. Even 
stronger negative correlation was observed 
by Tc and NDVI relation (-0.86), while 
conversely very strong positive correlation 
was found by EC and NDVI (0.86). Fig. 4 
gives detailed information about the relation 
of EC and other two examined variables 
(Tc and NDVI). 

 

 
 

Figure 3. Results of correlation analysis 
presented as correlogram, where the dark 
grey colour within a pie chart represents a 
positive trend of correlation coefficient, 
while the light grey indicates a negative 
trend (p-value < 0.001). Confidence 
intervals are given in round brackets. 
 

Based on the results of correlation analysis the relation of soil property and canopy 
temperature may be described. The negative value of correlation coefficient is the 
indicator of indirect proportion. In fact, with lower values of EC the canopy temperature 
tends to increase. It is generally known that plant temperature is associated with the 
stomatal conductance that further links to the nutrient uptake and therefore it influences 
actual biomass of the crop (Cai & Cespedes, 2012). This fact is also in accordance with 
result of analysis of thermal data and NDVI representing aboveground biomass, where 
the correlation coefficient indicated indirect proportion as well. 
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Figure 4. a) Trend of Tc and EC and b) trend of NDVI and EC relation based on the data from 
35 control points. 

 
Multispectral imagery can provide quick information about crop biomass within 

the field by calculating particular VI. In this case, NDVI values ranges from 0.323 to 
0.901 and the heterogeneity is apparent also from attached map (Fig. 2, c). When having 
such information about the crop vegetation status, the cause of such differences should 
be determined. Various factors may influence the crop growth, e.g. topography 

 or effect of plant 
disease. As was stated above, the elevation variability is not significant within the 
examined plot. Very likely the heterogeneity is caused by variable soil properties, but 
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the soil sampling is difficult to be conducted during growing season. On the contrary, 
evaluation of vegetation cover using thermal RS techniques may be carried out 
regardless of time. Tc and EC correlation analysis showed the value -0.89 and thus the 
EC may be very likely explained by remotely sensed thermal data. There are studies that 
describe very tight correlation of EC and other soil properties (Corwin & Lesch, 2003). 
However, other studies were conducted with different results. Malin & Faulin (2013) 
evaluated two agricultural plots to determine the relation of EC and clay and water 
content. Significant results were found only on one of two evaluated plots, where spatial 
variability of soil texture was higher. Moreover, the study of Valente et al. (2012) found 
no significant results when evaluating EC and soil texture and moisture, respectively 
various chemical properties. It is clear that conclusions differ across the scientific 
literature, so the particular limiting soil factor may not be always identified precisely 
without soil sampling. 
 

CONCLUSIONS 
 

A number of studies were conducted to describe possible utilization of recently 
enhanced thermal RS data to predict yield of agricultural plot. However, the potential of 
thermal data to explain the soil properties that are a major factor influencing the crop 
growth, i.e. yield as well, is not described yet. In order to determine some basic relation 
of thermal response and soil characteristics this study was conducted. Soil electrical 
conductivity was chosen to be analysed as the factor subsuming most of other soil 
properties. At first, correlation analysis showed that aboveground biomass (presented by 
NDVI) is strongly influenced by EC (0.86). Based on this piece of information the 
correlation of canopy temperature and EC was examined and provided significant 
results, respectively close negative correlation (-0.82) was indicated. Such conclusion 
may be considered as some preliminary result supporting the thesis on possibility of soil 
properties to be explained by thermal RS. Further research may be conducted based on 
this conclusion to explore how are the thermal data capable to explain other soil 
properties. 
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