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Abstract. The theory of the movement stability is of crucial practical importance for mobile 

agricultural machines and machine aggregates, since it determines how qualitative and stable 

their performance is in a particular technological process. It is especially urgent To ensure stable 

movement for operation at high speeds of contemporary agricultural aggregates. The aim of this 

investigation is detailed examination of criteria for the stability assessment of a mechanical 

system used in agriculture, enabling their wide application in order to study the performance of 

the system in the case when it is affected by random forces that were not taken into account in 

the original model. The considered calculation methods and examples of their application make 

it possible to evaluate the performance of complex dynamic systems without numerical solution 

of complicated differential equations of the movement in the presence of external disturbances. 

The considered example of the stability determination of the movement of a trailed cultivator 

showed that this research method can be successfully used for practical purposes. Besides, a 

differential equation of disturbed movement has been composed for an actually symmetrical 

trailed agricultural machine with a particular mass, which moves at a constant forward speed 

under the impact of summary resistance force running along the symmetry axis of the cultivator 

and is applied at its centre of gravity. Reduced to normal Cauchy form, this equation was solved 

on the PC, which made it possible to determine immediately the conditions for stable movement 

of the trailed cultivator. 
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INTRODUCTION 

 

The movement stability is of great practical importance for the agricultural 

machinery, especially for agricultural aggregates (Schwabik, 1992; Bulgakov et al., 

2017; 2018). It is widely applied in scientific research and in the calculations and design 

of automatic control systems, navigation instruments, airplanes, spacecraft, various 

kinds of engines (Matignon, 1996; Zaslavsky & Edelman, 2004). 
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The concept of stability in a broad sense is interpreted as the ability of an object to 

maintain its state, not submitting to earlier unforeseen external disturbances. This 

concept occupies one of the most important places in physics and technology. Depending 

on the nature of a specific process to be considered, there are also various 

implementations of this concept. This particularly concerns investigations of the 

movement stability of a number of mechanical systems for agricultural purposes for 

which observance of the stability conditions allows one to ensure high-quality execution 

of technological processes. 

In the works by (Zhukovsky, 1948; Merkin et al., 1997), a number of general 

questions about the movement stability are considered. The foundations of the stability 

theory are outlined in the work by A.M. Lyapunov ‘A General Problem of the Movement 

Stability’, published in 1892 (Lyapunov, 1980; Momani & Hadid, 2004). Lyapunov 

presented a precise definition of the movement stability; he obtained a complete solution 

for the problem of stable movement; he proposed two methods for the investigation of 

the movement stability characterised by simplicity and efficiency. 

From a physical point of view the equilibrium state is called stable if at sufficiently 

small initial deviations and velocities during the movement the system does not go 

beyond the limits of an arbitrarily small environment of the equilibrium state, while 

having arbitrarily small velocities. An elementary example is the physical pendulum. In 

the lower vertical position, it has stable equilibrium (after a series of vibrations it returns 

to its original rest position). In the upper vertical position the physical pendulum 

occupies an unstable equilibrium: with an arbitrarily small deviation it will move, 

moving towards a stable lower position. 

In our time Lyapunov's methods are deepened; new application areas are emerging, 

in which general methods are being developed for studying the movement stability of 

individual broad classes of systems: automatic regulation systems, controlled systems, 

etc. (Matignon, 1996; Zaslavsky & Edelman, 2004). 

The wide application of the theory of automatic control to modern agricultural 

machines and aggregates determines the creation of research methods ensuring the 

movement stability of the systems, which is one of the main tasks of this science. Yet, 

regardless of this, such investigations have not been developed to a sufficient degree in 

the field of soil tillage mechanics in which the mechanical systems of agricultural 

machines and machine aggregates should ensure high-quality execution of technological 

operations. 

Consequently, a need arises to solve a very important scientific problem how to 

expand possibilities for an accurate analytical study of the movement stability of 

complex multi-mass mechanical systems, such as agricultural machines and aggregates 

since they are under constant impact of external disturbing influences. Therefore, in-

depth consideration of the methods of studying the stability of movement, reduction of 

the basic assumptions of the classical theory of the movement stability to their specific 

application for the research of agricultural machines will help to improve further their 

dynamic, kinematic and design parameters. 

Purpose of the research - to determine the criteria for the assessment of the 

movement stability of agricultural machines and aggregates which will be most efficient 

for the study of the plane-parallel movement of a trailed cultivator and the oscillations 

of a self-propelled tool frame in the longitudinal-vertical plane. 
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MATERIALS AND METHODS 

 

The investigations have been carried out using methods of the theory of the 

movement stability, the theory of agricultural machines, as well as theoretical mechanics 

and higher mathematics (Halanay, 1966). There are used methods of the classical theory 

of the movement stability, based on the methods of constructing, solving and studying 

the systems of differential equations for the movement of agricultural machines and 

aggregates. Besides, there are considered differential equations of perturbed movement, 

and from them, by integrating in a closed form, the movement of the considered 

agricultural machine or aggregate is evaluated as stable or unstable. There are also used 

methods for estimating the movement stability without solving the systems of 

differential equations of the movement when finding the corresponding stability criteria. 

There are methods applied to linearise the differential equations of perturbed movement, 

as well a method of constructing special Lyapunov functions, which does not require 

solving these equations; in this case only the roots of the characteristic equations are 

investigated. 

In order to achieve successful theoretical study of the movement stability of a 

concrete agricultural machine, it is necessary to consider and specify some general 

provisions for the stability of mechanical systems (Hale & Verduyn Lunel, 1993). 

Sufficient conditions for the equilibrium stability of a system are reflected by the 

Lagrange – Dirichlet theorem (Malkin, 1996): ‘If in the equilibrium state the potential 

energy of a holonomic stationary system, being in the field of conservative forces, has 

an isolated minimum, then this equilibrium state is stable’. 

For a conservative system, there is a law of mechanical energy conservation in 

force: 

ПTПT +=+ 00  (1) 

where  – the kinetic and potential energy in the state of equilibrium and at 

disturbance. Since always T ≥ 0, then from expression (1) we have 

000 ³-+= ППTT  (2) 

From where 

00 ПTП +£  (3) 

Inequalities (2) and (3) show that the movement of the system after its deviation 

from the equilibrium position occurs in the vicinity of the equilibrium position. Increase 

in the potential energy is limited by inequality (3) so much that it will be one of the 

values of the potential energy in the vicinity of the equilibrium position. Based on 

expression (2), we can assume that according to the indicated initial conditions the 

speeds of all points of the system are limited by the module: when  and  decreasing 

to zero, T and also approach zero. 

The Lagrange-Dirichlet theorem provides only sufficient conditions for the stability 

of the equilibrium state. The solution of the problem of the equilibrium instability of a 

conservative system is based on two well-known A.M. Lyapunov’s theorems 

(Lyapunov, 1980) on the equilibrium instability. The essence of the Lyapunov theorem 

on equilibrium instability is that instability takes place if: 

1) the potential energy does not have a minimum that can be established by the 

terms of the second order in the layout of the potential energy in the Maclaurin series; 
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2) the potential energy has a maximum, and this can be established by the terms of 

the lowest order of smallness included in the Maclaurin series. 

As it is known from the course of analytical mechanics, the expression of potential 

energy for a holonomic stationary system can be obtained in the quadratic form as a 

function of generalised coordinates: 
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where  – generalised stiffness coefficients (coefficients of the Maclaurin series); 

 – generalised coordinates of a mechanical system. 

In expression (4) it is taken into account that the generalised coordinates and the 

potential energy in the equilibrium position are zero . In addition, 

the generalised forces in the equilibrium position are also equal to zero: 
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Since in the equilibrium position the potential energy is zero , then it 

has a minimum in this position if  is explicitly a positive function. The sign of a 

quadratic form is determined by Sylvester's theorem (Malkin, 1996). 

For a positive-definite quadratic form it is necessary and sufficient that all the main 

diagonal minors of the matrix of a quadratic form be positive. 

Let us write a matrix of coefficients of expression (4): 
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Let us create the main diagonal minors of the matrix (6): 
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1

111
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(7) 

According to Sylvester's criterion the quadratic form is positive-definite, and hence 

there will be a minimum of potential energy in the equilibrium position if the main 

diagonal minors of the coefficient matrix are positive: 

;0...,,0,0 21 >D>D>D N
 (8) 

The movement stability of a mechanical system, for example, a car, an airplane, a 

projectile, etc., depends on the acting forces and the initial conditions of the movement 

(coordinates and velocities of the points of the system at the starting moment the 

movement). Knowing the forces and initial conditions, one can theoretically calculate 

how the mechanical system will move. A movement that agrees with the calculation is 

called undisturbed (Samoilenko & Perestyuk, 1995). 

Due to certain inaccuracy in the measurement of the initial conditions their actual 

values, as a rule, differ from the calculated ones. Besides, the mechanical system during 

its movement may occur under random influences of various forces, which also 

equivalently change the initial conditions (Schwabik, 1984). Deviation of the initial 
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conditions arising because of a different reason, is called the initial disturbance, and the 

movement that the mechanical system performs in the presence of disturbances is called 

a disturbed movement. As a result of the above-mentioned, the following definition can 

be given: ‘If at sufficiently small initial disturbances any of the characteristics of the 

movement during the whole time differs little from the value that it should have during 

the undisturbed movement, then the movement of the system with respect to this 

characteristic is called stable’. The conditions under which the movement of a 

mechanical system is stable are called stability criteria. There are such kinds of stability: 

the stability of the equilibrium position and the stability of the movement. 

Next let us consider the problem of the movement stability and give a definition for 

the stability of a mechanical system (Federson & Schwabik, 2006). Suppose that the 

motion of a mechanical system is described in the Cauchy form by a system of 

differential equations in the following way: 

( ) nkyyytY
dt

dy
nk

k ...,,2,1,...,,,, 21 == , (9) 

where  – some parameters that are connected with the movement, for example, 

coordinates, velocity projections, with the initial conditions at , equal to: 

( ) 00 kk yty = ,     ....,,2,1 nk =  (10) 

Let a certain solution of system (9) corresponds to some fixed initial 

conditions (10): 

( )tfy kk = ,    ,...,,2,1 nk =  (11) 

which describes a predetermined movement, but we may not know this movement 

because of the impossibility of integration. 

Solution (11) that satisfies the initial conditions (10) and describes the 

predetermined movement is called an undisturbed movement of the mechanical system. 

Further let us assign to the initial conditions  some small increments 

 behind the module, which are called the initial disturbances. Let the 

new partial solution of system (9) correspond to the new initial value : 

( ) .,...,2,1, nkty kk =j=  (12) 

Solution (12) obtained taking into account the initial disturbances , and the 

respective movement of the system is called a disturbed movement. 

Proceeding from solutions (11) and (12), we define their increments: 

( ) ( ) ( )tutft kkkyk =-j=d ,   nk ,...,2,1= , (13) 

which are called variations of the movement parameters. 

Let us consider the movement in coordinates . In the stability theory 

space  is called the phase space, the coordinates - the phase coordinates, and 

their totality, which determines a certain state of the system, which is investigated - the 

phase of the system, the coordinates  are the phase coordinates, and their totality that 

determines a certain state of the investigated system is the phase of the system. 

Any undisturbed movement is represented in the coordinate system  

by a fixed point M0 (0,...,0) which coincides with the origin of the coordinates (all) 

. Point M0 is called the equilibrium point of the system. The totality of values 

 at an arbitrary point of time t determines the respective phase state or 
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phase of the system. The geometric interpretation of the change in the phase coordinates 

determines the phase path  of the depicted point  in n -dimensional space with 

the origin at point  that corresponds to the origin of coordinates during the undisturbed 

movement. Proceeding from the above mentioned considerations, we denote the 

movement stability according to Lyapunov (Lyapunov, 1980). 

If to an arbitrarily predetermined positive number , however small it may be, a 

second positive number  can be put in correspondence, such that at any initial 

disturbances: 

( ) ( ) ( ),...,,, 0022011 tututu nn === ddd  (14) 

which satisfy at inequalities : 

( ) ( ) ( ) ,...,,, 00201 ddd £££ tututu n
 (15) 

for all  the following inequalities are fulfilled: 

( ) ( ) ( ) ,...,,, 00201 eee <<< tututu n
 (16) 

this undisturbed movement is called stable. 

In a flat phase subspace  this definition can be given a geometric 

interpretation (Fig. 1). The phase path L1 of point M1 belongs to steady movement. 

A separate group of stable movements is formed from asymptotically stable 

movements which can be defined in this way. If the undisturbed movement of the system 

is stable and, in addition, any disturbed movement at sufficiently small initial 

disturbances tends to an undisturbed movement, i.e. if then such an undisturbed 

movement is called an asymptotically stable movement (path L3 of point M3 in Fig. 1). 
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In expression (17), the sum of 

squares of the phase coordinates  is 

taken as a measure of deviations of the 

disturbed movement from the 

undisturbed one. If the movement 

parameters of the system do not satisfy 

this definition, then such a movement 

is unstable (the phase path L2 of point 

M2 on (Fig. 1). 

From the geometrical point of 

view conditions (17) are understood in 

the following way: at asymptotic 

stability the depicted point M of the 

phase path, without going beyond the 

boundaries of the radius sphere ,  

must approach unlimited to the origin  

 

 
 

Figure 1. A scheme to the geometric interpretation 

of the movement stability of a mechanical system. 

of coordinates 0 (line L3 of point M3 in Fig. 1). This means that the physical system, the 

movement of which is investigated, is trying to return to its original balanced state. 
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The peculiarities of determining the movement stability according to Lyapunov: 

- disturbances are considered small; 

- only initial conditions are subject to disturbances, i.e. at a certain point in time 

an instantaneous change in the movement parameters of the system takes place, after 

which its disturbed movement occurs under the action of the previous forces; 

- the movement stability is studied in an infinite period of time. 

In order to investigate the disturbed movement in accordance with its definition in 

the system of phase coordinates , it is appropriate to reduce differential 

equations (9) to new variables , where . Substituting the 

parameters of the disturbed movement  into equation (9), we obtain a new 

system of equations: 

( ) ( )=-jj= nknkk fftYtYu ,...,,,...,, 11
&  

( ) ( )=-++= nknnk fftYufuftY ,...,,,...,, 111
 

( ),,...,, 1 nk uutU=    ,,...,1 nk =  

(18) 

In the theory of the movement stability equations (18) are called the differential 

equations of the disturbed movement.  

To each disturbed movement of the investigated object there corresponds a certain 

partial solution of system (18). It is known that zero values of phase coordinates  

correspond to any undisturbed movement, i.e. a trivial solution  of 

system (18), which it must have. For this purpose it is necessary that functions 

change into zero at . 

Consequently, investigation of the stability of any undisturbed movement can be 

reduced to the stability research of a trivial solution of system (18). The physical sense 

of the system of equations (18) is that it determines the velocity vector of the depicted 

point  along the phase path : 

{ } { },,...,,,...,, 2121 nnM UUUuuuu ==  (19) 

Equalities  may be considered as parametric equations of the motion of 

a point. 

A system (18) in which the right-hand parts of equations depend on time 

 is called a no stationary or non-autonomous one, like the physical system 

itself the movement of which is described by this system of equations. The 

corresponding movement of the physical system is unsteady. 

However, in many cases, the right-hand parts of the equations of disturbed 

movement do not explicitly depend on time: 

( ),...,,1 nkk uuUu =&      ....,,2,1 nk =  (20) 

System (20) is called stationary or autonomous, and its movement is steady. It is 

these systems that are discussed further. 

Assuming that the right-hand parts of equations (20) are decomposed into a Taylor 

(Maclaurin) series by powers , we write: 

( )nknknkkk uutUupupupu ...,,,... 12211

*

++++=& ,  nk ...,,2,1= , (21) 
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where coefficients  in a general case are functions of time  (for 

autonomous systems, steady); kU
*

 – a totality of all the terms of decomposition of higher 

orders of smallness (starting from the second one) in relation to . 

Neglecting the higher order terms in equations (20), we obtain a linear 

homogeneous system for a steady movement. 

nknkkk upupupu +++= ...2211
& ,   ....,,1 nk =  (22) 

 

RESULTS AND DISCUSSION 

 

Theoretical investigation of disturbed movement of a symmetric trailed 

agricultural machine 

Let us create a differential equation of a disturbed motion of the symmetric trailed 

agricultural machine (trailed cultivator) with mass m moving at a constant forward speed  

under the impact of the force of total 

resistance , which runs along the axis 

of symmetry and is applied to the 

centre of mass O. Force  coincides 

with the direction of the traction force 

of the tractor applied at point  

(Fig. 2). The moment of inertia of the 

cultivator l0 relative to the centre of 

mass. 

Because of the random lateral 

forces the total resistance of the 

cultivator has shifted. As a result of 

this, pair of forces have arisen under 

the impact of which the entire 

aggregate turns counterclockwise. The 

pair is partly compensated by a reactive  

 

 
 

Figure 2. Plane-parallel movement of the trailed 

symmetric cultivator. 

pair  which arises from the lateral resistance of the wheels and the working parts 

of the cultivator. 

The cultivator is under the impact of the total disturbed moment: 

M R r F l= × - × , (23) 

where  – deviation of force  from the line of symmetry;  – the arm of the reactive 

pair . 

Confining to a small angle , which we take for the generalized coordinate, we will 

assume that: 

tanF R Rq q= × » × , (24) 

Therefore, equation (23) will be as follows: 

( )M R r l q= - × . (25) 
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Let us write the equation of the link as distance which always remains preserved 

between the hitch point  and the centre of mass ,  is the distance 

between the indicated points: 

( ) ( ) .2
0

2

1

2

1 lyyxx =-+-  (26) 

Since 
1 0x = , 

1 0y V t l= × + , equation (26) will change: 

( )22 2

0 0 0x V t l y l+ × + - = . (27) 

The Cartesian coordinates of the centre of mass, expressed in terms of the 

generalised coordinate q , are equal to: 

0 sinx l q= × ,  ( )0 0 1 cosy V t l q= × + - . (28) 

Taking the time derivative from expression (28), we have: 

0 cosx l q q= ×q qcos0x l0 q qcoq q= ×x lx l q qq qcoq qq q ; 
0 0 0 siny V l q q= + × ×q qsinqq0 0 0y V l0 0 00 0 00 0 0y V ly V0 0 00 0 00 0 0 . (29) 

The machine is a system with one degree of freedom, so the Lagrange equation can 

be written as: 
d T T

Q
dt

qq q
¶ ¶æ ö - =ç ÷¶ ¶è øq q

- =- =ç ÷ç ÷q qq qç ÷ç ÷q qq qq qq qq q
,
 

(30) 

where T – the kinetic energy; Qq  – a generalised force; qq  – generalised speed. 

Let us determine the kinetic energy of the machine: 

( )2 2 2 2 2

0 0

1 1 1 1

2 2 2 2
T m V I m x y Iq q= × + × = + + × 21 1( )2 2 2 22 2 2 2( )q q 222 2 2 22 2 2 22 2 2 2(2 2 2 22 2 2 2(2 2 2 22 2 2 22 2 2 2(q qq qm xm x(2 2 2 22 2 2 22 2 2 2(0 00 00 0(0 00 00 0)0 00 00 0)q q0 00 00 0)q q0 00 00 00 0)2 2 2 2 )2 2 2 2 )2 2 2 2 )2 2 2 22 2 2 2 )q qq q0 0m x y Im x y I)y I2 2 2 22 2 2 22 2 2 2 )0 00 00 0) .

 (31) 

By substituting expression (29) into (31), we have: 

( )2 2 2 2

0 0 0 0 0

1 1
2 sin

2 2
T m l V V l Iq q q q= × + + × × × + ×2 2 2 21 1)2 2 2 22 2 2 2)q q2 2 2 22 2 2 22 2 2 22 2 2 22 2 2 22 2 2 22 2 2 22 2 2 2)2 2 2 22 2 2 22 2 2 2)2 2 2 22 2 2 22 2 2 22 2 2 22 2 2 22 2 2 22 2 2 22 2 2 22 2 2 22 2 2 22 2 2 2q qq q2 2 2 2

0l Vl Vl V2 2 2 22 2 2 22 2 2 22 2 2 2II)2 2 2 22 2 2 22 2 2 22 2 2 2)0 0 0 0 00 0 0 00 0 0 00 0 0 0 )2 sin2 s2 sin2 sin2 2 2 22 2 2 22 2 2 22 2 2 2

0 0 0 00 0 0 00 0 0 0 .
 (32) 

We find the partial derivatives from expression (32). We have: 

( )2

0 0 0 0 sin ,
T

m l I m V lq q
q
¶

= × + + × × ×
¶

I m V lI mI m V lI mI m V l0 0 00 0 00 0 00 0 0( 0 0 0m l0 0 0q
= ×(m lm l0 0 0

 
0 0 cos

T
m V l q q

q
¶

= × × × ×
¶

q q .
 

(33) 

In order to determine the generalised force Qq
, we write the expression of the 

elementary work of the applied forces on the possible displacements of the points of the 

system: 

( )A M R r ld dq q dq= × = - × , (34) 

hence: 

( )Q R r lq q= - × . (35) 

Substituting all the values that we found into expression (30), we have: 

( ) ( )2

0 0m l I R r lq q× + = - ×(I RI R r lI R (I RI R r lI RI R ( , (36) 

or 
2 2 kq l q l+ × = ×2 2q l 2 22 2q l q lq l 2 22 2

, (37) 

where 2

0 0

R l

m l I
l

×
=

× +
;
  

l

r
k = .

 

It is equation (37) that is the differential equation for the disturbed movement of 

the trailed cultivator. 
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Let us reduce the differential equation (37) to the normal Cauchy form. We have: 

1 2;x x=1 2;x x1 21 2x xx x     2 2

2 1x x kl l= - +2 2

2 1x x2 12 12 12 12 1

2 2

2 1xx2 2

2 12 12 1 . (38) 

Thus, a differential equation of the disturbed movement of a trailed symmetric 

cultivator has been compiled, which allows it to be used for further studies of the 

movement stability, as well as to determine its optimal design and kinematic parameters. 

 

Investigation of the movement stability of the system 

Let us further discuss methods for the investigation of the movement stability of 

the system. If the differential equation of the movement is integrated in a closed form, 

then the study of the stability movement occurs without complications. Yet such cases 

are practically very rare. As a rule, Lyapunov's predecessors used the linearisation 

method of the equations of the movement. Its essence is to replace equations (18) of the 

system to be investigated by a linear system (21). The solution of the problem was 

greatly simplified, especially for autonomous systems, the equation of the movement of 

which is integrated in a closed form, and with constant coefficients  

it will look like: 

nkkkk uauauau
n

+++= ...21 21
& ,   nk ...,,1= . (39) 

However, such a replacement means substitution of one task with another. 

Although the research of linearity, or as a first approximation, sometimes solves the 

problem correctly, in other cases, this method leads to incorrect conclusions. A question 

arises: What are the conditions for the credibility of the answer obtained on the basis of 

the study of the movement stability that will be in the first approximation? 

For the first time the answer to this question was given by Lyapunov  

(Lyapunov, 1980). He received a complete solution of the problem for the steady-state 

and periodic movements, as well as for a wide range of unsteady movements. He also 

considered some of the main cases when one cannot confine to the first approximation. 

Lyapunov divided all methods for studying motion on stability into two categories: 

- the first method, which concerns systems the movement of which is described by 

nonlinear differential equations, is based on the study of linearised equations of 

disturbed movement or differential equations of the first approximation; 

- the second (direct) method is connected with the construction of special Lyapunov 

functions, which have properties on the basis of which it can be concluded that the 

movement is stable without solving differential equations. 

The study of the movement stability in the first approximation. Lyapunov’s 

theorems. Let us consider a linearised system of the first approximation (39) in an 

expanded form, replacing kk xu = : 

1
1 11 1 12 2 1

2
2 21 1 22 2 2

1 1 2 2

... ,

... ,

... .

n n

n n

n
n n n nn n

dx
x a x a x a x

dt

dx
x a x a x a x

dt

dx
x a x a x a x

dt

= = + + +

= = + + +

= = + + +

1 11
1dx

x a1 111 111 111 11= =1x ax ax a1
1 111 11

2
2 21

dx
x a2 212 212 21

2x ax ax a2
2 212 21

 

(40) 
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We remind that for the autonomous system, which is discussed here, all the 

coefficients of equations (40)  – are constant numbers. As it is known, a particular 

solution of linear systems is sought in the form: 

.,...,, 2211
t

nn
tt eAxeAxeAx lll ===  (41) 

We substitute solution (41) into equation (40), and, after grouping the terms, we 

will have: 
( )

( )

( ) .0...

;0...

;0...

2211

2222121

1212111

=l-+++

=++l-+

=+++l-

nnnnn

nn

nn

AaAaAa

AaAaAa

AaAaAa

LLLLLLLLLL

 
(42) 

In order the system of algebraic equations (42) had a solution, different from zero, 

it is necessary that its determinant be zero: 

0

...

............

...

...

21

22221

11211

=

l-

l-

l-

nnnn

n

n

aaa

aaa

aaa

 
(43) 

The determiner (43), which is composed for the system (40), is called a 

characteristic. Expanding this determinant by the elements of the first line, we obtain an 

equation in relation to , which is called a characteristic and contains the unknown  in 

the degree n , having roots . 

We formulate the main conditions on the basis of the Lyapunov stability theorems 

in the first approximation: 

1. If the valid parts of all roots of the characteristic equation are negative, then the 

undisturbed movement is asymptotically stable. 

2. If among the roots of the characteristic equation there is at least one root, the 

valid part of which is positive, then the undisturbed movement is unstable. 

3. If the valid parts of some roots of the characteristic equation are zero, and the 

valid parts of other roots are negative, then the undisturbed movement is stable, but not 

asymptotically stable. 

The presented Lyapunov theorems on the movement stability in the first 

approximation completely solve the problem of the stability of movement. The 

assessment of the stability of the movement is also carried out applying the Hurwitz 

criterion. From the foregoing it is clear that, in order to make a conclusion about the 

movement stability it is of great importance to know what is the sign of the valid parts 

of the roots of the characteristic equation, that is, it is important to know the necessary 

and sufficient conditions under which the roots of the equation have negative valid parts. 

Such conditions must satisfy the Hurwitz criterion. Such conditions must satisfy the 

Hurwitz criterion. 

Let us open determiner (43) by grouping the terms by powers : 

.0... 1
1

10 =++++ -
-

nn
nn aaaa lll  (44) 

In order to determine the movement stability using the equations of the first 

approximation, it is necessary to previously know when the valid parts of all the roots of 

the characteristic equation are negative, without solving the characteristic equation, 
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without calculating its roots. For this it is necessary to construct the Hurwitz matrix from 

the roots of the characteristic equation (44): 

na

aa

aaa

aaa

...000

...............

0...0

0...

0...

31

420

531

. 
(45) 

We compose from the matrix (45) the main diagonal minors: 

.;...;; 1

20

31

211 -D=D=D=D nnn a
aa

aa
a  (46) 

In order all the roots of the characteristic equation (44) had negative valid parts, it 

is necessary and sufficient that all the main diagonal minors (46) were positive, that is: 

.0;0...,;0;0 121 >D>D>D>D - nn
 (47) 

Let us discuss further the direct Lyapunov’s method. Therefore, it is necessary to 

compile Lyapunov functions. This method is most suitable to examine the stability of 

the movement of autonomous systems. The direct or the second Lyapunov’s method is 

characterised by the fact that in its application there is no need to integrate the differential 

equations of the disturbed movement. This method is connected with a search for some 

functions V of the disturbance variables , , where  – 

disturbance,  – a partial solution of the disturbed movement,  – a partial solution 

of the undisturbed programmed movement (basis). The method also involves the study 

of the properties of these functions, which are called Lyapunov functions, and the 

properties of their derivatives. Let us treat only a steady-state (stationary) movement 

(autonomous systems), for which  in the environment

, where  is a sufficiently small positive number, considering 

these functions to be continuously differentiated, unambiguous, and such that they 

change into zero at the origin of the coordinates . 

In the stability theory the direct method is considered the main one. It is a 

qualitative method since it does not need any solution of the equations of the movement 

but studies the properties of the ‘test’ functions, i.e. Lyapunov functions. 

The simplest example of a ‘test’ function may be an expression of the potential 

energy of the system with which it is possible to establish stability or instability of 

equilibrium. 

The derivative of the Lyapunov function is determined from the expression: 

.
1

å
= ¶

¶

¶
¶

=
N

j

j

j t

x

x

V

dt

dV  (48) 

In addition, the Lyapunov functions may have special properties. Function V is 

called a positively-defined function in the environment  if at any point in this 

environment, except for the origin of coordinates (where function  is zero), the 

condition V > 0 is fulfilled. If V < 0, then function  is called a negatively-defined 

function. In these two cases, function  is called a sign-definite function. If in this 

environment  function  acquires the value of only one sign (V ≥ 0)≤ or V ≤ 0, 

but can change into zero not only at the origin of the coordinates, then it is called a sign-
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fixed (positive or negative) function; if function  acquires both positive and negative 

values, then it is called an alternating function in this environment. 

For example, function  at  is an alternating function, and 

function  is positively-definite, function  is a sign- fixed function 

since it changes into zero on axis , but beyond the boundaries of this axis it is positive. 

So, if V it is a quadratic form, then definiteness of the sign can be established using 

the Sylvester criterion. If  is a form of an unpaired degree, then it is clear that it is a 

sign-alternating function. Consequently, Lyapunov functions are functions of variables 

, each of which in a certain n -measurable region, containing the origin of 

space coordinates, is a sign-definite, a fixed or an alternating function, and in this region 

it has continuous first-order partial derivatives of the first order with respect to variables 

, i.e. it has a full differential. The issue about the stability of undisturbed 

movement is solved on the basis of an investigation of the behaviour of function  

 and its derivatives in time. It should be taken in account that variables 

 are solutions of differential equations of the disturbed movement. The 

study of the behaviour of function  along the path of the system allows one to make a 

conclusion about the behaviour of the paths of a mechanical system being investigated, 

i.e. to solve the problem of the stability or instability of the movement. 

Since the issue about the sign-definiteness of a quadratic form is solved quite 

simply (Sylvester's criterion (8)), when constructing Lyapunov functions, the sign-

determined quadratic form is chosen as the basis, adding, if necessary, forms of higher 

orders. The resulting function will have the same sign-definiteness properties as the 

original quadratic form. 

 

Theoretical investigation of the movement stability of a model of the self-

propelled chassis 

Let us investigate by the direct Lyapunov’s method the movement stability of a 

model of the self-propelled chassis with mass  and the inertia moment in relation to 

the transverse axis that passes through its centre of mass – , where  is the inertia 

radius of the chassis body, ,  – the rigidity coefficients of the frontal and rear springs  

of the self-propelled chassis (Fig. 3). 

We will discuss the longitudinal 

oscillations of the self-propelled 

chassis. In the process of oscillations 

its position is determined by two 

generalised coordinates: the vertical 

displacement of the centre of mass 

(point C) and the turning angle Q of 

the frame. The kinetic energy of the 

self-propelled chassis is: 

 

 
 

Figure 3. An equivalent scheme of the oscillation 

pattern of the self-propelled chassis. 

 

( )2 2 2 2 21 1 1

2 2 2
cT m y I m y rq q= × + × = + ×( )2 2 2 2 2(12 2 2 22 2 2 2 )1 12 2 2 22 2 2 2y I m y r(2 2 2 22 2 2 21 12 2 2 22 2 2 22 2 2 2

2 2 22 2
c q q2 2 2 2m y r(2 2 2 22 2 2 22 2 2 22 2 2 2y Iy Iy I2 2 2 22 2 2 22 2 2 2q qm y rm y r(2 2 2 22 2 2 2 )2 2 2 2 2(2 2 2 22 2 2 2q q2 2 2 2 22 2 2 2 2(2 2 2 22 2 2 22 2 2 22 2 2 22 2 2 2(2 2 2 22 2 2 22 2 2 2q qq q2 2 2 2m y r(2 2 2 22 2 2 22 2 2 22 2 2 2(  (49) 

The potential deformation energy of the chassis wheels: 

( ) ( )2 2

p zП C y a C y bq q= + × + - × . (50) 
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Let us compile the movement equations of the self-propelled chassis using for this 

the initial equations in the Lagrange form of the II-nd kind: 
  

. (51) 

Substituting into equations (51) a derivative from T and П , we obtain differential 

equations of the oscillatory movement of the self-propelled chassis: 
( ) ( )
( ) ( )2

2 2 0,

2 2 0.

p z

p z

my C y a C y b

mr C y a a C y b b

q q

q q q

+ + × + - × = üï
ý

+ + × + - × = ïþ

(my C y(2 22 2(p z(2 22 2(2 22 2(
(C yC y(2 22 2(2 22 2(

 
(52) 

We transform differential equations (52) in the Cauchy normal form: 

( ) ( )

1 2

2 1 3 1 3

,

1
2 2 ,p z

x x

x C x a x C x b x
m

=

é ù= - + × + - ×ê úë û

1 2 ,x x1 21 2x xx x

2 1 3 1

1
x C2 1 3 1

1 é ù
x Cx C2 2x Cx Cx C2 1 3 1x Cx C2 2x Cx C2 1 3 12 1 3 12 22 1 3 12 1 3 1x Cx Cx C2 22 1 3 12 1 3 12 1 3 12 1 3 12 1 3 12 1 3 12 1 3 12 1 3 12 1 3 12 1 3 12 1 3 12 1 3 12 1 3 12 1 3 12 1 3 12 1 3 12 1 3 1

( ) ( )( )
3 4

4 1 3 1 32

,

1
2 2p z

x x

x C x a x a C x b x b
mr

=

= - + × + - ×

3 4 ,x x3 43 4x xx x

4 1 3 14 1 3 14 1 3 1

1
x C4 1 3 14 1 3 14 1 3 1

1
x Cx Cx C4 1 3 14 1 3 14 1 3 1

 
(53) 

These differential equations (53) are called the disturbed movement equations of 

the self-propelled chassis. 

Let us select a Lyapunov function in the form of full mechanical energy: 

( ) ( ) ( )2 22 2 21

2
p zV T П m y r C y a C y bq q q= + = + × + + × + - ×) (2 2 2 C y) (2 2 2 C yC y) (2 2 2y r2 2 22 2 22 2 22 2 2y ry r2 2 22 2 22 2 22 2 22 2 22 2 22 2 22 2 22 2 22 2 2  

(54) 

We write the Lyapunov function in the new variables. We have: 

( ) ( ) ( )2 22 2 2

2 4 1 3 1 3

1

2
p zV m x r x C x a x C x b x= + × + + × + - ×  

(55) 

Let us take a full derivative of the Lyapunov function (55) with respect to time. We 

will have: 
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(56) 

By virtue of the equations of disturbed movement we have  In this case the 

movement of the self-propelled chassis will be stable. 

 

CONCLUSIONS 

 

1. Since the stability of movement is one of the most important categories in the 

theoretical research of functioning of various mechanical systems, including the 

agricultural machines and equipment, finding methods for their efficient use is an 

important scientific task. Application of the basic assumptions of the classical theory of 

the movement stability in the analytical research of agricultural machines and aggregates 

is connected with considerable difficulties when integrating nonlinear differential 

equations in a closed form. However, it is possible to apply efficiently the criteria of the 

movement stability in order to evaluate how an agricultural machine will continue to 

move if it is accidentally subject to external forces that had not been taken into account 

in the model. The latter is equivalent to a change in the initial conditions on which the 

pattern of the movement of the agricultural machine or aggregate directly depends. 

d T T П

d t y y y

æ ö¶ ¶ ¶
- = -ç ÷¶ ¶ ¶è ø y y

ç ÷
d t yd t y y yd t yd t yd t yd t yd t yd t yd t yd t yd t yd t y

d T T П

dt q q q
æ ö¶ ¶ ¶

- = -ç ÷¶ ¶ ¶è ø
- =- =ç ÷ç ÷q qq qç ÷ç ÷q qq qq qq qq q



1860 

2. Presented scientific problem has been solved concerning the development of 

methods and their efficient application in the analytical research of agricultural 

aggregates, which provides an opportunity to consider the behaviour of a machine 

without using complex differential equations of the movement in the case of 

perturbations. 

3. Application of various methods of the theory of the movement stability is 

considered in the research of the movement of a trailed cultivator and a self-propelled 

agricultural tool frame. 
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