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Abstract. For the successful control of the production process, determining the leaf area is a basic
requirement. In this context, it is important to determine the regularities of leaf formation within
the plant, considering technological parameters of agrophytocenosis construction. These are the
important issues covered in this paper based on the years of research conducted between 2013
and 2018 on three cultivars of oilseed radish: one of the poorly explored members of the
cruciferous family of multipurpose use. The conducted researches allowed to distinguish features
of longline leaf formation of oilseed radish cultivars and mathematically describe features of
formation of their area, length and width at the early flowering phase according to the Richards
growth curve. The peculiarities of formation of individual leaf area depending on the combination
of the variations of the stand density and fertilization in the context of the recommended process
regulation of oilseed radish cultivation are also determined. It has been proved possible
to use a non destructive method of determining the individual leaf area of oilseed radish,
basing on the evaluation of 29 models, using the following formula S = 7.9316
2.3613L + 0.6897 (LW)+0.0458L2 0.0005 (LW)2 (under the following test parameters of the
model: R2 0.9106; RMSE 9.75; d 0.956; BIAS 0.1523).

Key words: oilseed radish, leaf formation, leaf area estimation, non-destructive methods,
mathematical model.

INTRODUCTION

Assimilating surface of agrophytocenosis of any crop is a complex longline
structure, which reacts sensitively enough to the hydrothermal vegetation regime,
technological nature of cenosis creation, phenotypic features of the main crop forming
cenosis, level of soil and additional mineral nutrition, and nature of weediness (Long et
al., 2006; Lamptey et al., 2017; Seetseng et al., 2020). On the other hand, the area of the
assimilating surface of a plant is a combination of the number of leaves per plant and
their individual area (Kotula, 1951; Lewis, 1972; Smith et al., 1997; Tsukaya, 2003;
Doust, 2007). A common scientific challenge is the fact that a simple product of the
number of leaves per leaf area is only appropriate in case of equal leaf sizes by their

Stewart & Dwyer, 1999; Gielis, 2003; Watanabe et al.,
2005; Dornbusch et al., 2011). In the majority of cases there are significant deviations
for the plant body both in the size of leaves and in their shape in the direction from the
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first leaves to the upper leaves (Terashima & Hikosaka, 1995; Terashima et al., 2001;
- ). Such nature of the formation of differences

may take the form of a change in the leaf type (due to a combination of different
separation moduses) and is called pinnation, and is expressed in a change in the character
of the complexity of the leaf blade, starting with juvenile leaves to leaves which are
formed at late stages of growth and development of plants (Corona & Vasilyev, 2007).
Another type of differences is related to the parameters of fluctuating asymmetry of
leaves, which in fact reflects the format of lateral leaf blade variability (Parsons, 1992;
Semiarti et al., 2001; Shi et al., 2018). It should be remembered that there is one more
component of the differences between the leaves of plants of different tiers, in particular
the thickness of the leaf blade, venetion nature, anatomical differences in the tissue
texture, space angular orientation towards the stem (Wofford & Allen, 1982; Ivanov et al.,
1994; Rosa & Forseth, 1995; Deckmyn et al., 2000; Terashima et al., 2001; Runions et al.,
2005; Milla & Reich, 2007; Ford et al., 2008; Nam et al., 2008; Nicotra et al., 2011;
Dornbusch et al., 2011). In summary, there is an appropriate level of morphological
variability for plants, which can be characterized as a morphological gradient, which in
some research works is expressed as a ratio of leaf area of certain upper tiers to lower
tiers, or their individual linear sizes, in particular leaf length, leaf width or other
morphological parameter (Ivanov et al., 1994; Gielis, 2003; Breda, 2003; Efroni et al., 2010).
It is also believed that the nature and value of the mentioned variability is determined by
the main technological aspects of agrophytocenosis formation (Loomis et al., 1967;

). Most researches show
that the intensive variability of leaf morphological parameters in the vertical gradient is
determined by a number of factors from the most to the least determinant: the density of
agrophytocenosis considering the feeding area of one plant, the level of fertilization in
interaction with the density, the edaphic conditions of growth and development of plants
(Morrison & Stewart, 1995; Nanda et al., 1995; Schurr et al., 2000; Jullien et al., 2009;
Biskup et al., 2009; Ma et al., 2014; Boudaoud, 2016). The above mentioned number of
factors has a determining basis from the perspective of hydrothermal conditions of
vegetation with the maximum reduction in morphometry of individual leaves of the plant
in combination with the maximum formats of stand density, fertilization and favorable
ground conditions, as well as the most favorable, and vice versa the most unfavorable
hydrothermal regimes of the vegetation period of the respective crop (Stefanowska et
al., 1999; Nicotra et al., 2008; Hosoi & Omasa, 2012; Li et al., 2013; Wright et al., 2017).

On the other hand, it is noted that the nature of individual leaf parameters,
considering the linear growth of plants and the multiple age staging of functioning of
leaves from different tiers, is in some degree determining in providing the appropriate
levels of photosynthesis productivity in cruciferous crops, and as a result provides both
the formation of the appropriate leaf stem complex structure and the formation of
appropriate seed yield levels (Freyman et al., 1973; Thurling, 1974; Clarke, 1977 and
1978; Pecham & Morgan, 1985; Kasa & Kondra, 1986; Gabrielle et al., 1998; Khan,
2003 and 2005; Mullen et al., 2006; Jansen et al., 2009; Kirkegaard et al., 2012;
Cargnelutti Filho et al., 2015; Fochesatto, et al., 2016).

It should be also noted that there is an important aspect of leaf variability expressed
in heterophylly. Almost all plants are heterophyllous, as it is difficult to find
morphologically identical leaf blades on the stem. The approaches to this issue
distinguish the typification of heterophylly: dimensional, geometric, venational, etc.
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(Korona and Vasilyev, 2007; Chitwood & Sinha, 2016; Nakayama et al., 2017). Due to
heterophylly on the plant stem, different morphotypes (categories or formations) of
leaves can be found sequentially: basal, middle and apical (Baker Brosh & Peet, 1997;
Kuwabara et al., 2001; Corona and Vasilyev, 2007; Merks et al., 2011; Nakayama et al.,
2012; Yamaguchi et al., 2012; Maugarny-Cales & Laufs, 2018). Basal leaves perform a
protective function and therefore have a simplified structure. Middle leaves are typical
for this species and constitute the basic mass of the shoot. Their primary function is
photosynthesis. Within this formation, they differ. In the beginning, they have a
simplified structure. In complex leaves of the basal formation a smaller number of leaves
are formed, then the number of leaves increases towards the middle part of the stem, and
then decreases up to the top. The apical leaves are formed in the upper part of the stem.
They cover flowers (bracts) or inflorescences, have a poorly developed leaf blade, as
well as basal leaves, sometimes change their color and function.

Given the above aspects of the importance of exploring the formation of individual
leaf morphological parameters, the researches show evidence of scientific novelty and
topicality. The developments in modern approaches to determining the area of both
individual leaves and the entire assimilation surface of plants should also be considered.
In this context, the defining methodological approach is the determination of regression
models of leaf area dependencies on its linear parameters, such as leaf length and width
or a combination of these parameters in product or power expressions. Nowadays, this
method of estimation of leaf area formation regularities is applied for many crops from
different botanical families and leaf morphological complexity (Robbins & Pharr, 1987;
Elsner & Jubb, 1988; Firman & Allen, 1989; Schultz, 1992; Uzun & Celik, 1999;
Montero et al., 2000; Kandiannan et al., 2002; Blanco & Folegatti, 2003; Stoppani et al.,
2003; Lizaso et al., 2003; de Swart et al., 2004; Demirsoy et al., 2004; Demirsoy et al.,
2005; Tsialtas & Maslaris, 2005; Gamper, 2005; Rouphael et al., 2006; Serdar &
Demirsoy, 2006; Cristofori et al., 2007; Rouphael et al., 2007; Mendoza de Gyves et al.,
2007; Cristofori et al., 2007; Rivera et al., 2007; Peksen, 2007; Ramesh et al., 2007;
Carmassi et al., 2007; Tsialtas & Maslaris, 2008; Mendoza de Gyves et al., 2008;
Antunes et al., 2008; Cristofori et al., 2008; Fallovo et al., 2008; Kumar, 2009; Mazzini
et al., 2010; Rouphael et al., 2010a and 2010b; Bakhshandeh et al., 2011; Giuffrida et
al., 2011; Cemek et al., 2011; Chavarria et al., 2011; Pompelli et al., 2012; Richter et al.,
2014; Buttaro et al., 2015; Corcoles et al., 2015; Zanetti et al., 2017) including members
of cruciferous family (Stoppani et al., 2003; Salerno et al., 2005; Olfati, 2010; Tartaglia
et al., 2016; Aminifard et al., 2019). This issue, however, remains unexplored and
conceptually important for oilseed radish plants in order to clarify the features and
regularities of leaf apparatus formation among members of the cruciferous family.

MATERIALS AND METHODS

The research was conducted on the experimental field of the VNAU (
) on dark gray forest soils Luvic Greyic Phaeozem soils (IUSS Working

Group WRB, 2015). Agrochemical field potential: humus content: 2.02 3.2%, lightly
hydrolyzed nitrogen 67 92, mobile phosphorus 149 220, exchangeable potassium
92 126 mg kg-1 5.5 6.0. The research on peculiarities of leaf apparatus
formation of the oilseed radish Zhuravka variety plants was carried out on the basis of
two cardinally distant technological options of its construction at the rate of sowing of
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4.0 million pcs. ha-1 of germinable seeds of row sowing (15 cm) and 0.5 million pcs. ha-1

of germinable seeds of wide-row (30 cm) sowing. The research of both options was
conducted on a nonfertilized ground. The sowing period for both options corresponded
to the end of the first and beginning of the second ten-day period of April. The climate
of the region is moderately continental -Geiger climate
classification (Pivoshenko, 1997)), average January temperature: -5 verage July
temperature: 20 590 mm, 80% of which occurs during a
warm period. The increase in the overall favorability of hydrothermal vegetation regimes
of oilseed radish towards reduction of weather risks should be placed in the following
order: 2018 2015 2017 2016 2013 2014 (Table 1). The research covered three
varieties of oilseed radish (Raphanus sativus L. var. oleiformis Pers.), namely

the fodder radish fruits
was carried out with a scheme including extreme gradations of the technological
spectrum of agrophytocenosis formation in the study area, taking into consideration the
borderline formats of the recommended mineral nutrition of the specimen (Table 2).

Table 1. Monthly average hydrothermal coefficient* over the growing season of oilseed radish,
2013 2018

Year of
research

Months Average for the years
of vegetationV VI VII VIII IX

2013 1.305 2.202 0.377 1.047 3.441 1.527
2014 2.783 1.078 1.137 0.750 0.736 1.269
2015 0.719 0.613 0.230 0.061 0.684 0.430
2016 1.227 0.893 0.682 0.486 0.063 0.663
2017 0.645 0.349 0.806 0.563 1.983 0.824
2018 0.258 3.124 1.349 0.349 0.680 1.179

* , where the amount of precipitation (

10 > 10) over the same period, decreased by a factor of 10.

Table 2. The range of acceptable common options for the formation of oilseed radish
agrophytocenosis in the study area (Tsytsiura, 2019)

Planting method and seeding rates
-1)

Fertilization
-1

row method (15 cm) wide-row method (30 cm)
1.0 0.5 without fertilizers
2.0 1.0 N30P30K30

3.0 1.5 N60P60K60

4.0 2.0 N90P90K90

** underlined are variants for studying.

The experiments were set in randomized blocks, in a split plot scheme, with four
replicates. Three manual weedings were performed for weed control, while pests
(Phyllotreta crusiferae Kutsch.), Goeze., Ph. armoraciae Koch.,
Meligethes aeneus F.) were controlled through the application of insecticide in the
vegetative stage.

Samples were collected in different phenological stages and in leaves of different
sizes and shapes, because radish plants produce leaves of different shapes along the
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cycle. After plant collection, the leaves were separated from the stem and only those
photosynthetically active, with no damage or deformation caused by diseases, insects or
other external factors, were selected. The annual number of the analyzed leaves was
determined by the foliage level of plants in different years of observations, and according
to the principle of single elimination, it provided for the analysis of leaves from 10
typical plants in non contiguous repetitions for each technological variation of
agrophytocenosis construction. The typicality of plants was determined for the middle
dominating tier of oilseed radish plants of each studied variety according to a number of
recommendations (Rabotnov, 1978; Ramensky, 1971).

Leaf parameters were determined using the Digimizer image analysis software
(v 4.2) (Schoonjans, 2019). This software allows determining such leaf parameters as
length (L), width (W), perimeter (P), area (LA). The specified morphometric parameters
were determined in cm and cm2, according to the image processing calibration system.
The image of the leaves to be processed in the specified program is obtained by scanning
with a CanoScan LIDE 700F scanner with the appropriate software for processing the
obtained scanned images. Scanning of leaves within individual phenological periods of
growth and development of oilseed radish plants was performed according to the order
of their placement on the plant from the bottom to the top.

Typification of morphotypes of the leaf blade was performed in accordance with
Fedorov et al. (1956), considering Cuptar (2019). Comparison of the significance of
average values in comparison with the studied technological variations of the
agrophytocenosis construction was carried out using a four-factor system of dispersion
analysis. The general research methodology, associated observations and surveys were
conducted in accordance with the baseline recommendations for studies on cruciferous
crops (Saiko et al., 2011) with the methodological and descriptive recommendations of
the classification ranking tables of variety examination (Test Guidelines for the conduct
of tests for distinctness, uniformity and stability of Fodder Radish (Raphanus sativus L.
var. oleiformis Pers., 2017) using correlation and regression methods of analysis
(Sharma, 2005) and using a software package of statistical application programs
Statistica 10, Exel 2013, Past 324.

RESULTS AND DISCUSSION

According to the results of morphometric analysis of oilseed radish leaves in their
successive placement from the lower to the upper tiers, the presence of longline
heterophylly with complex transient types of leaf blade between the tiers along the stem
height was determined. For the oilseed radish, two types of changes were observed. In
the early stages of vegetation up to the rosette phase the beginning of the stem

21), there is a gradual complication of the leaf blade from a simple
morphotype in the cotyledons (obcordate) to a more complex morphotype (pinnatisect
lyrate) for the leaves, which are formed during the period of the rosette formation and
the beginning of the stem prolongation. In the subsequent process of plant growth from

22 52), there is a domination of
morphotypes of the middle tier leaves mainly of various transitional shapes of pinnatisect
divided lyrate shape with signs of symmetry, asymmetry and disproportions with a
marked deformation of the central vein. Already at the stage of the budding beginning

50) in the zone of formed buds, the leaves of morphotypes of the upper tier
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are distinguished (pinnately divided and pinnatisect lyrate leaves, pedate, subulate, linear,
wedge shaped, sagittate, palmate, ovoid leaves, etc.). The morphotypes of oilseed radish
leaves are shown in Fig. 1. According to the presented character of the longline
morphology of leaves, oilseed radish plants can be attributed to the highly differentiated
heterophyllous type according to Corona & Vasilyev (2007) with a clear division into the
morphological types of leaf according to its height placement on the stem. In addition, by
the nature of the dominance of a certain leaf fraction, i.e. the prevalence of the corresponding
tier of leaf morphotypes, by the tier of their placement it is possible to evaluate the optimality
of applied technological parameters in the construction of agrophytocenosis, which
corresponds to the general conclusions in a number of researches on other cruciferous crops
(Clarke, 1977; Mullen et al., 2006; Maugarny-Cales & Laufs, 2018; Aminifard et al., 2019).

I

II

III

IV

V

VI

Figure 1. Morphotypes of oilseed radish leaves by tiers at the phenological flowering phase
61) (I II upper tier leaves (zone of inflorescence branches and inflorescence itself));

III IV middle tier leaves; V VI lower tier leaves). Positioning of specimens sequentially from
the lowest to the highest in a vertical sequence along the stem (composed for three varieties,
marker black square with an area of 2 cm2).
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Considering the determined tier features in the morphology of oilseed radish leaves,
different character of the structural complexity of leaves by the nature of their dwelling
structure was also determined, including the character of the right hand and left hand
placement of the serratures of the leaf blade edge, the presence of signs of fluctuating
asymmetry and other signs, which are expressed in the total points of the number of
differences (dwells) (Corona & Vasilyev, 2007). Given the above features, several basic
types (metamers) of the leaf and a number of intermediate types, which are transitional
between the main metamers within the selected axial stem tiers by leaf arrangement, can
be considered in the oilseed radish, which is clearly demonstrated in Figs 1 3. Thus,
leaves of the lower tier are characterized by the formation of an ovoid-lyrate type with
dissected or divided almost symmetrical type of leaf blade lobes, which often overlap
each other, or form a complex morphological growth type which artificially masks the
dissection of the general morphology of the leaf. Leaves of the lower tier are typical for
cruciferous crops of lyrate-sected type with 3 8 one-sided lobes of the leaf blade with
the maximum width of the leaf on the last or penultimate leaf lobe.

1 2 3

4 5 6

7

Figure 2. General morphotypology of oilseed radish leaves with different stand density during
-row

spacing of 15 cm: 1 4.0 million pcs. ha-1 of germinable seeds; 2 3.0 million pcs. ha-1 of
germinable seeds; 3 2.0 million pcs. ha-1 of germinable seeds; 4 1.0 million pcs. ha-1 of
germinable seeds; for inter-row spacing of 30 cm: 5 2.0 million pcs. ha-1 of germinable seeds;
6 1.5 million pcs. ha-1 of germinable seeds; 7 0.5 million pcs. ha-1 of germinable seeds), 2017.
(marker black square with an area of 2 cm2).

Progressively to the upper zone, transitional leaf morphotypes with different
asymmetrical number of leaf parts of the distinct dissected leaf blade appear. These
leaves show signs of fluctuating asymmetry with less development of the left side of the
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leaf by the field of view. Leaves of the upper tier, which are mainly adjacent to the
generative part of plants, both behind the main flower stalk and lateral reproductive
branches, have the most diverse morphological structure, which consistently passes from
the dissected 1 4 lobular leaf blades to the already specified morphotypes: subulate,
linear, wedge shaped, sagittate, palmate, ovoid, etc. Similar, but less distinct, nature of
formation of morphological parameters of the leaf is noted in other cruciferous crops of
spring rape (Pecham, P.A. & Morgan et al., 1985; Chavarria et al., 2011; Cargnelutti
Filho et al., 2015), winter rape (Jullien et al., 2009), white mustard (Khader & Bhargava,
1984; Kumar et al., 1997) and other cruciferous crops (Paul, 1980; Gupta, 2009;
Weraduwage et al., 2015). As a result, morphological rows with certain regular changes
of both morphological types and morphological parameters in length, width and
perimeter of the leaf can be identified for oilseed radish plants (Fig. 2). Moreover, the
character of dynamic increase of linear parameters of a leaf (Fig. 3) during the flowering
phase differs in different technological variations of oilseed radish agrophytocenosis
construction, distinguishing two types: stably descending, providing for a constant
decrease in the linear size of a leaf and its area from leaves of the lower tier to leaves of
the upper tier, and oscillating with a gradual increase in the morphological parameters
of a leaf to 3 5 leaves in a row and a subsequent constant decrease in the specified
parameters for subsequent leaves in a row up to the uppermost ones. We marked the first
type for technological variations of 2.0 4.0 million pcs. ha-1 of germinable seeds, and
the second type for all other variations under study. For the variation of 0.5 1.0 million
pcs. ha-1 of germinable seeds in the dynamic row for the first 2 6 leaves a relative
constancy in morphological development with subsequent decrease towards the upper
tier was noted. It should also be noted that the total number of leaves on the plant during
the flowering phase differs significantly from 5 10 leaves in variations of
4.0 million pcs. ha-1 of germinable seeds to 15 22 leaves in variations of
0.5 million pcs. ha-1 of germinable seeds. However, for the indication of the number of
leaves for the various technological variants under study, a significant scale of the
indicator values was also noted. So, if for a variation of 4.0 million pcs. ha-1 of
germinable seeds it was within the range of 5 11 leaves during the period of estimations,
then for a variation of 0.5 million pcs. ha-1 of germinable seeds it was within the range
of 11 19 and even up to 40 75 leaves. It should be noted that with a decrease in sowing
rate and fertilizer growth, the number of leaves of the upper tier of the plant, which
belong to its generative zone, increases intensively, and the majority of leaves, which
determine the main course of the assimilation process, remains relatively stable and is
within the limits from 5 8 to 10 17 leaves with a range of values up to 12 24 depending
on the variation. This is clearly illustrated by Figs 1 4.

The specified features of the dynamic changes of the leaf blade area within the plant
by their height gradation of placement are most noticeable in the period of the end of

57) 62), since during this
period it is possible to distinguish the entire typology of leaf morphological forms within
the plant's upper tiers.

We researched the nature of these changes in the form of graphical interpretation
with the description of the corresponding dependence on the basis of selection of the
corresponding classical function. For our technological variations with averaging of
values on the variety factor, year of research and technological variation, these
dependencies are shown in Fig. 4.



2225

1

2

3

4

5

Figure 3. Dynamic rows of leaves in the order of their placement on the plant from the base to
61) for different technological variations of

agrophytocenosis construction for 3.0 million pcs. ha- of germinable
seeds (inter row spacing of 15 cm); 2 2.0 million pcs. ha-1 of germinable seeds (inter-row
spacing of 15 cm); 3 1.0 million pcs. ha-1 of germinable seeds (inter row spacing of 15 cm);
4 1.0 million pcs. ha-1 of germinable seeds (inter row spacing of 30 cm);
5 0.5 million pcs. ha-1 of germinable seeds (inter row spacing of 30 cm), 2016.
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Figure 4. The change model of leaf area and its morphological parameters for the average row
of three oilseed radish varieties and 32 technological variations of their agrophytocenosis
construction for the consolidated period between 2013 2018 during the phase of the end of
budding 61).

The results of selection of the corresponding dependence of changes in both the
area of the average model leaf of oilseed radish varieties and its morphological
parameters with the use of CurveExpert Pro: 2.6.5 software package allowed describing
its character with maximum approximation according to the Richards model
(at R2 99.01 99.31). The Richards curve or generalized logistic is a widely used growth
model that will fit a wide range of S-shaped growth curves. Among the closest in terms
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of approximation R2 to describe the regularities of the specified changes in leaf
morphology we have considered the Weibull model (leaf area parameters (S)
R2 = 0.98974; RMSE = 1.92674, for the leaf length parameter (L) R2 = 0.990527;
RMSE = 0.87914, for the leaf width parameter (W) R2 = 0.98756; RMSE = 0.91257) and
the Rational Function model (corresponding parameters (S) R2 = 0.97956; RMSE =
2.2584; L: R2 = 0.980421; RMSE = 1.17894; W: R2 = 0.97456; RMSE = 1.21475).
Given that the Richards model belongs to the category of complex asymmetric models,
formation of linear parameters of an oilseed radish leaf has certain regularities
determined by us, but it also has certain cautions and features. Particularly, the general
regularities in the budding flowering period include the evident persistence of the
reduction of leaf length and width in the height gradient. Moreover, 1 5 leaves should
be attributed to morphological forms with the largest linear sizes and area located in the
lower and main middle tier of the stem, 6 11 leaves to transitional forms of the middle
and upper tier, and the rest to morphological forms of the upper (generative) tier.

The plateau presence in 3 4 initial points indicates a certain oscillatory nature of
leaf size formation from the rosette phase to the flowering phase noted by us, in
particular the formation of intermediate leaves by the order of their appearance from the
seedling phase to the rosette phase with a gradual increase of linear parameters of the
following leaves by the order of their formation on the stem up to the phase of the
beginning of budding and, accordingly, a constant decrease in leaf size by the order of
their formation from the phase of the end of budding to the phase of the end of flowering.

Similar observations on the search for regularities in the formation of shape and
size of the leaf within the plant by the height gradient of the stem have been made in
application to higher plants during the 80s 90s of the last century (Meinhardt & Gierer,
1974; Green & Poething, 1982; Cote et al., 1992; Gould et al., 1992; LAWG 1999) and
in modern times (Pugnaire et al., 2007; Shi et al., 2018). Nevertheless, the real actions,
except for the general approaches to plant modeling on the basis of botanical
specification of plant parts (Lintermann & Deussen, 1999; Prusinkiewicz, 2004) have
not been made. In this context, our researches in some aspects allow us to re-evaluate
the peculiarities of formation of individual parameters of the assimilation surface of
plants from the cruciferous family.

Also important is the assessment of both the variability in leaf morphology and the
influence of major technological approaches on its value, the results of which are
presented in Table 3. On the one hand, the data provided indicate both the high degree
of variability in the morphological parameters of the leaves and the corresponding
changes in the application of different combinations of sowing rate, row-width spacing
and fertilization. In terms of the spread of values, the overall variability of the forms and
area of the leaf has a strong tendency to increase both within the range of row and wide-
row sowing method with a decrease in sowing rate. The application of the growing
fertilization rates enhances both the overall size of the leaves and their area, and provides
for an intensive increase in the variability of leaf morphotypes, widening the
differentiation of the leaf row to the extreme morphological gradations between large
and small leaves and an overall widening of the spread of values. In addition, we noted
that this dynamics is more typical for the leaf length than its width. Thus, from this
perspective the elongation of the oilseed radish leaf blade is more sensitive to the
coenotic tension in agrophytocenosis than width changes.
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Table 3. Summary morphological individual parameters of oilseed radish leaf at the flowering
61) depending on the technological variation of agrophytocenosis construction,

2013 2018
Sowing rate (million
pcs.ha of germinable
seeds) (C), sowing
method (B)

Average for 3 varieties (Zhuravka, Raiduha and Lybid)
Range of S,

cm2
W,
cm

L,
cm

VR
*

S, cm2 W, cm L, cm S W L

4.0, row 1** 0.38 31.54 0.29 7.15 1.41 15.14 16.27 3.46 8.6 1.92 1.98 1.60
2 0.31 40.82 0.37 7.63 1.58 16.29 18.82 3.87 8.95 2.15 1.88 1.64
3 0.27 46.24 0.31 7.89 1.45 17.91 19.64 4.06 9.44 2.34 1.87 1.74
4 0.22 42.29 0.28 6.71 1.24 16.18 19.44 4.04 9.32 2.16 1.59 1.60

3.0, row 1 0.53 44.94 0.43 8.25 1.75 16.50 18.88 4.45 9.59 2.35 1.76 1.54
2 0.48 60.37 0.43 8.48 1.52 19.19 23.40 4.8 10.49 2.56 1.68 1.68
3 0.46 70.61 0.43 9.25 1.49 21.21 24.88 5.08 10.88 2.82 1.74 1.81
4 0.35 68.92 0.35 8.69 1.18 20.69 23.11 4.94 9.86 2.97 1.69 1.98

2.0, row 1 0.59 48.11 0.51 6.85 1.49 14.66 19.39 3.95 8.51 2.45 1.61 1.55
2 0.63 98.04 0.49 18.54 1.71 25.53 23.95 5.16 11.3 4.07 3.50 2.11
3 0.36 105.91 0.34 19.44 1.63 26.85 29.41 5.25 10.55 3.59 3.64 2.39
4 0.28 99.69 0.27 18.72 1.36 25.69 31.12 5.89 11.25 3.19 3.13 2.16

1.0, row 1 0.72 82.89 0.70 12.77 1.69 20.57 24.87 4.19 9.05 3.30 2.88 2.09
2 0.92 92.14 0.67 16.83 1.74 21.17 34.69 5.63 12.01 2.63 2.87 1.62
3 1.34 166.22 0.67 18.86 1.99 29.12 37.37 5.95 12.44 4.41 3.06 2.18
4 1.28 174.82 0.55 19.48 1.51 32.87 40.53 6.74 12.97 4.28 2.81 2.42

2.0, wide-row 1 0.63 88.71 0.42 11.52 1.47 16.56 21.59 4.3 9.02 4.08 2.58 1.67
2 1.19 109.74 0.96 14.82 1.84 17.68 28.74 5.4 9.89 3.78 2.57 1.60
3 1.68 141.87 1.28 16.29 1.67 19.12 33.54 5.86 10.4 4.18 2.56 1.68
4 1.44 126.81 1.19 15.12 1.48 18.20 33.75 5.93 10.52 3.71 2.35 1.59

1.5, wide-row 1 0.72 106.84 0.50 10.70 2.53 29.43 27.58 4.87 10.38 3.85 2.09 2.59
2 3.14 193.85 1.65 16.45 3.72 29.68 33.45 5.94 12.09 5.70 2.49 2.15
3 2.02 191.1 1.03 30.34 2.39 33.13 42.39 6.34 13.29 4.46 4.62 2.31
4 1.54 172.63 1.02 27.28 1.89 27.44 45.84 6.98 13.72 3.73 3.76 1.86

1.0, wide-row 1 1.13 101.33 0.63 9.97 2.13 23.56 40.19 5.35 11.2 2.49 1.75 1.91
2 0.96 294.84 0.65 26.39 2.26 31.92 49.27 5.99 12.08 5.96 4.30 2.46
3 4.52 310.48 1.46 27.05 3.94 31.80 57.36 6.71 12.2 5.33 3.81 2.28
4 4.18 339.47 1.28 28.57 2.73 32.82 64.44 7.6 13.43 5.20 3.59 2.24

0.5, wide-row 1 3.87 277.64 1.63 24.02 3.74 29.96 51.12 6.19 12.59 5.36 3.62 2.08
2 2.67 286.91 1.47 26.97 2.68 31.51 64.6 8.24 16.08 4.40 3.09 1.79
3 3.02 359.57 1.64 30.62 2.96 34.33 70.68 8.31 16.48 5.04 3.49 1.90
4 2.84 396.80 1.55 33.61 2.75 36.27 79.22 9.16 17.87 4.97 3.50 1.88

For average values S W L
Impact
share

S W L

LSD05 0.21 0.05 0.09 19.77 15.91 21.64
LSD05 0.12 0.03 0.05 B 30.80 24.42 15.36
LSD05 0.17 0.04 0.08 C 28.60 28.18 32.78
LSD05 factor D 0.17 0.04 0.08 D 9.82 22.46 17.38
LSD05 0.30 0.07 0.13 AB 1.45 0.26 0.23
LSD05 0.42 0.10 0.19 AC 1.33 0.36 0.46
LSD05 interaction AD 0.42 0.10 0.19 AD 0.48 0.20 0.15
LSD05 0.24 0.06 0.11 BC 4.99 4.00 7.32
LSD05 interaction BD 0.24 0.06 0.11 BD 1.32 0.87 0.60
LSD05 0.34 0.08 0.15 CD 1.01 2.76 3.19
LSD05 0.60 0.14 0.27 ABC 0.22 0.11 0.15
LSD05 interaction ABD 0.60 0.14 0.27 ABD 0.06 0.01 0.01
LSD05 interaction ACD 0.85 0.20 0.38 ACD 0.06 0.07 0.08
LSD05 0.49 0.12 0.22 BCD 0.08 0.35 0.64
LSD05 interac 1.20 0.29 0.54 ABCD 0.01 0.02 0.02
* oscillation coefficient by Gumbel (1947);
** 1 without Fertilizer, 2 N30P30K30?, 3 N60P60K60, 4 N90P90K90.
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This effect is more noticeable in the variations of row sowing than in wide-row
sowing, and corresponds to the general typology of reaction of plants with relatively
tolerant type to clotting (Rabotnov, 1978). The high variability of the leaf morphological
parameters also confirms the value of the oscillation coefficient (VR). The proximity of
the values of this indicator for all the studied parameters S, L, and W indicates the
possibility of a non-destructive method of determining the leaf area by the corresponding
ratio of its length and width. On the other hand, its constant growth in comparison with
non fertilized and fertilized variations indicates that the application of additional
fertilizer contributes to the expansion of the spread of variation and the corresponding
range of leaf parameters within the plant. At the same time, the maximum variation of
the leaf morphological features is maximum in the variants of 0.5 million pcs. ha-1 of
germinable seeds. For this variation, the average VR for certain leaf parameters was 3.43
with the same indicator in the variation 4.0 million pcs. ha-1 of germinable seeds 1.87.

1 2 3

4 5 6

7

Figure 5.
flowering phase with a sowing rate of 3.0 million pcs. ha-1 a of germinable seeds in the ground
with the application of N60P60K60 (position 1 6) and one typical plant with a sowing rate of
0.5 million pcs. ha-1 of germinable seeds in the same fertilization ground (position 7) (marker
black square with an area of 2 cm2), 2014.

This is clearly confirmed by the data presented in Fig. 5, which shows a comparable
comparison of the morphological row of leaves of the plant, namely for variations 4.0
and 0.5 pcs. ha-1 of germinable seeds
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for intensive growth processes. It should also be noted that wide-row sowing variations
ensured much higher variability of leaf morphological features than ordinary row sowing:
the average VR for row sowing was 2.40, meanwhile for wide-row sowing variations this
value was 3.22. For different fertilizer options in comparison of non fertilized ground
and ground at application of 90 kg ha-1 of the primary material 2.46 and 2.85,
respectively. The conducted 4-factor dispersion analysis of morphological features of
oilseed radish leaf confirms the previously made summaries concerning the influence of
technological parameters of oilseed radish agrophytocenosis construction on the size of
its leaf (the share of corresponding B and C factors is from 15 to almost 33% with the
maximum combined effect on the leaf area indicator).

The results of the dispersion analysis also showed the determinant role of
hydrothermal conditions during the year (factor A) in the range from 15 to 22% with the
highest level of impact on the formation of leaf length indicator (L). Graphically, this
dependence (Fig. 6, position 4) has a complex power nature.

Figure 6. The reaction surface (projection (axis z)) of the formation of area depending on the
sowing rate (stand density) of plants and fertilization in the index expression linear parameters of
the leaf (width (W) and length (L)). The graphical dependence between the hydrothermal
coefficient of the seedling flowering period and the linear sizes of the leaf during the flowering
period (position 4 (the relationship between the parameters: z = -3.1375-0.7967x+3.5622y-
1.5772x2+1.0431xy-0.2929y2)) for the average value of varieties and years of study over the
period 2013 2018.
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Although, the growth of leaf length is associated with the growth of leaf width, but
hydrothermal conditions during the period of leaf formation up to the flowering phase at
their growth according to the hydrothermal coefficient (HTC) contribute to the overall
growth of morphological parameters of the leaf with peak growth up to the HTC level
of 1.6 1.8 with subsequent reduction of the overall length of the leaf blade at the HTC
growth to the level of 1.8 2.6. The angular inclination of the reaction curve indicates
the already determined advance effect
of elongation of the leaf in comparison
with the increase in its width. The
determined features point to the fact
that the increase in the intensity of
growth processes due to excessive
hydrothermal resources leads to
intensive disproportional growth in
above-ground biomass, including
intensive leaf-making. The general
shading and the increase of the coenotic
tension contribute to the reduction of
the average values for the plant of leaf
morphological indicators and provide,
as an option, the formation of a larger
number of leaves with their significantly
smaller average area. This distinguishes
the average HTC level of 1.7 as the
threshold for oilseed radish varieties
from the perspective of combination of
optimal growth rates and formation
rates of individual leaf parameters. The
results obtained correspond to the
biological components of cruciferous
crops growth processes and their
reaction to stress factors (Paul, 1980;
Nanda et al., 1995; Kumar et al., 1997;
Kirkegaard et al., 2012), particularly
positive reaction to the improvement of
hydrothermal conditions in combination
with sufficient humidity and moderate
temperatures, guarantees the growth of
HTC to 1.2 1.5 1.2 1.5.

The conclusions about the
formation of average linear sizes of the
leaf and its area depending on the range
of applied technological solutions for
growing oilseed radish varieties are
also confirmed by the results of cluster
analysis (Vard method) (Fig. 7), the
index of Euclidean distances the system

Figure 7. Cluster dendrograms of formation of
the leaf average individual area and leaf linear
sizes at various technological variations of the
oil radish agrophytocenosis construction at the

-61) on the average
by the fertilizer options, 2013 2018.
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of row sowing according to which by and wide-row sowing have significant differences
in the size of morphological features of the leaf on the plant, starting with the sowing
rate of 1.5 million pcs. ha-1 of germinable seeds due to the classification of the variation
of 2.0 million pcs. ha-1 of germinable seeds at wide-row sowing to one cluster group with
row sowing variations. The morphological parameters of the leaf are significantly higher
in the variation of 0.5 million pcs. ha-1 of germinable seeds. Close in terms of formation
of both length and width of the leaf were variations of 4.0 and 3.0 million pcs. ha-1 of
germinable seeds with row sowing and 1.0 and 1.5 million pcs. ha-1 of germinable seeds
with wide row sowing. Generally speaking, in terms of the association distances indicator,
as it has been noted, the variability range of the leaf width within the oilseed radish plant
is significantly less variable than its length in terms of the ratio of the specified distances
as 1:2 in favor of the leaf width indicator (W).

Thus, the analysis and the intermediate generalizations that have been done confirm
that it is possible to determine the leaf area using a non destructive method of calculating
it by selecting the appropriate functional connection between the initial parameters S, L
and W. Possibility of such methodical approach is caused by the established features of
uniformity of value formation of both width, and length of a leaf at various technological
variations and certain proximity of determining factors in system of conditions year
variety sowing method sowing rate fertilizer.

This is also confirmed by the conducted correlation analysis for the totality of the
examined leaves between the formation of its main morphological features, their
combinations and the leaf area (Table 4, Fig 8).

Table 4. Correlation coefficients between the area (S), length (L) and width (W) of individual
leaves of oilseed radish and some its combination (in the cumulative total of accounted plant
leaves for all varieties, technological variations and years of research)

Parameters S, cm2 L, cm W, cm L+W, cm W2, cm2 L2, cm2 L2+W2, m2 L W, cm2

S, cm2 1.000 0.880 0.885 0.903 0.914 0.809 0.926 0.928
L, cm 0.880 1.000 0.896 0.989 0.952 0.729 0.937 0.894
W, cm 0.885 0.896 1.000 0.953 0.847 0.885 0.892 0.927
L+W, cm 0.903 0.989 0.953 1.000 0.939 0.799 0.944 0.927
W2, cm2 0.914 0.952 0.847 0.939 1.000 0.782 0.988 0.943
L2, cm2 0.809 0.729 0.885 0.799 0.782 1.000 0.868 0.939
L2+W2, cm2 0.926 0.937 0.892 0.944 0.988 0.868 1.000 0.981
L W, cm2 0.926 0.937 0.892 0.944 0.988 0.868 1.000 0.981
* all correlations are significant at the level p < 0.001.

The provided data show that there is a direct close relation between the leaf area
and its linear parameters. At the same time, the closeness of relation with the parameter
of its width is higher by 4.4%.

This confirms our conclusions on different rates of linear and latitudinal increase
of the oilseed radish leaf blade and the significantly higher reaction of the leaf length
parameter on changing the agrophytocenosis density against the background of
increasing fertilizer rates. Due to this difference, the reaction plane between the length,
width of the leaf and the hydrothermal coefficient has an angular inclination with respect
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to the Z axis (see Fig. 6, position 4). Thus, the established closeness of the relation
enabled us to search for an appropriate regression equation of the relation between the
leaf area and the variants of attracting to the equation its length (L) and width (W), or
their respective combinations (Table 5). The results obtained on 29 models of different
combinations of leaf parameters in the consolidated totality proved the complexity of
dependencies between the leaf area and its basic dimensions.

Figure 8. Correlation matrix of dependencies between leaf area (S, cm2) its length (L, cm) and
width (W, cm) for oil radish varieties in the totality of data for the period between 2013 and
2018 (matrix diagonal from left to right; 1 S (cm2); 2 L (cm); 3 W (cm); 4 L+W (cm);
5 W2 (cm2); 6 L2 (cm2); 7 (L+W)2 (cm2); 8 LW (cm2)).

In comparison with similar researches on rapeseed (Chavarria et al., 2011;
Cargnelutti Filho et al., 2015; Tartaglia et al., 2016) and radish (Salerno et al., 2005;
Aminifard et al., 2019), where models of correlation of leaf area with its morphological
parameters were determined, which provide the level of approximation (R2) 0.972 0.984
with the RMSE value 6.19 11.28, in our case, the approximation level of the examined
models in the maximum value was 0.9106 (model 26) with a spread of RMSE values
9.75 21.19.
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According to the criteria of correlation of the model evaluation parameters, four
models have been distinguished, which ensure the combination of the above criteria with
the possibility of meeting the requirements of the regression model between the defined
and calculated value of the individual leaf area (Fig. 9).

Figure 9. The dependence between the individual area of the oilseed radish leaf defined using
appropriate mathematical models that include the appropriate morphological parameters of the
leaf and the same area defined by scanning the entire leaf. The solid line represents the linear
regression line; the line represents the 1:1 relationship.

Assessing the accuracy of the prediction in the system of non-destructive
determination of individual leaf area, we can distinguish the model 26 with the highest
level of approximation (R2), the d criterion and the lowest RMSE value. Although there
are general cautions concerning the application of this model and similar to it among 29
analyzed oilseed radish plants. Particularly, the high variability of the leaf area within
the plant and the complexity of its morphotypes, defined by us in the first part of the
paper, caused certain difficulty in observing the regular correlations between the length
(L) and width (W) of an oilseed radish leaf. As a result, direct dependencies of both non
power and direct power linear nature do not provide sufficient level of regression ratio
significance. The effectiveness of predictive models based on a combination of power
and linear dependencies is higher, especially when using the leaf length criterion (L) in
equations. Thus, the L criterion is parametrically more informative for determining the

Calculated area =

r = 0.94943              Model 10

Calculated area =

r = 0.95419              Model 26

Calculated area =

r = 0.95109              Model 27

Calculated area =

r = 0.95136 Model 29
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area of an oilseed radish leaf (R2 level was 0.823 on average for models using the L
criterion and 0.755 for using the leaf width criterion (W)), than the width criterion (W),
which is consistent with the results of researches Chavarria et al. (2011) on the use of
leaf length in the variations of determining the leaf area by indirect methods of its
measurement. Relatively high values of the BIAS criterion for models with the highest
level of approximation R2 indicate, according to the properties of this indicator (Leite et
al., 2002), an increase in the regression dependence bias for leaves with an intensively
developed leaf blade of large sizes, which, as we have already noted, may have the nature
of a mutual overlap of the divided lobes, and often a complex corrugated surface (see
Fig. 5, position 7). As a result, the overall variability predetermines the expansion of the
deviation from the desired regression dependence for leaves with an area of more than
150 cm2. Thus, regression dependence nature for prognostic and actual leaf area value
has a sectoral nature with an extension from the minimum point of regression values to
the maximum point, which attributes the dependence model to a multi component in
which linear and power variations can be combined (Sheskin, 2007). This nature is
confirmed by the value of the AICS indicator, which according to the obtained
parameters of values attributes morphological parameters of oilseed radish leaves within
the plant to the highly variable ones (Motulsky & Christopoulos, 2003; Floriano et al.,
2006). The nature of morphological misbalance between L and W parameters also
confirms the nature of approximation of a certain model of oilseed radish leaf formation
according to a height gradient (see Fig. 4), where approximation expression of the leaf
area is lower than its linear parameters, that, according to the determination of the area
of geometrical parts of plants (Klingenberg, 2015), attributes oilseed radish leaf to the
body of complex morphologic configuration (Efroni et al., 2010).

CONCLUSIONS

1. The leaves of oilseed radish differ both in morphological features, and in the
regularities of formation within the plant from other representatives of the cruciferous
family, with the possibility of distinguishing a number of its morphotypes typical for
three tiers of plants, of which the most variable is the upper tier, which forms their pre
generative and generative part.

2. The analysis of a variation range of leaf morphotypes allowed us to distinguish
a longline type in the nature of leaf formation by a height gradient of oilseed radish
plants, respectively, of the lower, middle and upper tier with maximum expressions of
such nature of leaf formation at the phase of the beginning of flowering.

3. The peculiarities of leaf placement along the high gradient from the lower tier to
the upper one are described by the Richards model with the approximation value (R2)
99.01 (at RMSE 1,605) for leaf area, 99.19 (at RMSE 1.605) for leaf length (L) and 99.31
(at RMSE 0.70122) for leaf width (W).

4. It has been determined that the reduction of the feeding area of one plant with
fertilization increase under favorable hydrothermal conditions in the period of seedling
and beginning of flowering with the threshold optimal HTC for this period of 1,7 ensures
the growth of both the variation of morphological parameters of the leaf and its average
sizes in all linear parameters with the impact on the formation of the annual conditions
15.91 21.64%, sowing rate 28.18 32.78%, fertilization rate 9.82 17.38%.
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5. The cluster analysis, including leaf morphology indicators for the examined
technological groups of options for oilseed radish agrophytocenosis construction,
determined a smaller scale interval of leaf width variability in comparison with its length
in relation to the Euclidean distances as 1:2 in favor of leaf width indicator (W).

6. The individual area of the oilseed radish leaves can be determined without their
selection, by measuring their length and width using the S model = 7.9316-
2.3613L+0.6897 (LW)+0.0458L2-0.0005 (LW)2 (under the following test parameters of
the model: R2 0.9106; RMSE 9.75; d 0.956; BIAS 0.1523).

7. Further researches on the non destructive way of determining the individual
area of oilseed radish leaf should focus on approaches to exploring models for area
determination for its different morphotypes, considering the tier of their placement along
a height gradient on the stem.
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