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Abstract. The topic of the paper is the theory of the forced transverse oscillations performed by 
the root fixed in the soil under the action of the harmonic perturbing force vectored at right angle 
to the root’s centreline and along the line of the translational motion performed by the lifter. On 
the basis of applying the Ostrogradsky-Hamilton variational principle and using the equivalent 
schematic model developed by the authors, the expressions have been obtained that allow to 
determine the amplitude of the forced transverse root body oscillations as function of the 
perturbing force amplitude value as well as the soil’s elastic deformation and damping 
coefficients. The ranges of the elastic soil deformation coefficient values, at which the resonant 
behaviour is observed, that is, at which the forced elastic root body oscillation amplitude value 
exceeds the tolerance limits, have been determined for the 10, 15 and 20 Hz frequencies of the 
perturbing force produced by the vibrational lifting tool. That said, the mentioned oscillation 
amplitude values can vary from 0.58 to 0.45 m, which is sufficient to result in the root breaking. 
Moreover, it has been proved that, with the increase of the perturbing force frequency, the 
resonant behaviour ranges shift towards the increased values of the elastic soil deformation 
coefficient. Therefore, such elastic soil deformation coefficient ranges should be avoided in case 
of the lifting tool design proposed in the paper. As regards the damping properties of the soil, it 
has been proved that they do not cause any resonance phenomena. 
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INTRODUCTION 
 

Root-crop harvesters produced in the majority of countries worldwide are generally 
equipped with vibrational lifting tools, because such tools are capable of lifting roots 
from the soil without losing or damaging them (Gruber, 2005; Sarec et al., 2009; Gu et 
al., 2014). Also, the amount of energy required for digging roots from the soil with the 
use of vibrational lifting tools is significantly lower, than in case of using some other 
types of tools (Vasilenko et al., 1970; Bulgakov, 2005; Schulze Lammers, 2011). 
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At the initial stage of the development of vibrational lifting tools for beet harvesters, 
the forces were applied to the root sitting in the soil in the transverse horizontal plane at 
right angle to the vector of the lifter’s translational motion (Dobrovsky, 1968). However, 
despite the considerable amount of sufficiently thorough theoretical research into the 
process of the vibrational sugar beet lifting (Vovk, 1936; Myata & Chumak, 1954), in 
which the perturbing forces were applied to the roots in the transverse horizontal plane, 
as well as the numerous engineering developments in that field followed by the industrial 
scale production of several prototypes and the implementation of comprehensive 
experimental investigations and official tests, such kind of vibrating digging tools did 
not gain popularity. The main reason for such an outcome was the fact established in 
practice that these vibrational lifting tools were unable to support sufficiently high rates 
of advance (which would, accordingly, provide for higher production rates), while 
maintaining the required harvesting quality parameters. That, in its turn, was due to the 
following negative events that took place regularly, when the perturbing forces were 
applied to the beet roots in the plane that was perpendicular to the line of the lifter’s 
translational motion: the lifter’s working throat got clogged with root bodies and soil, 
the tail parts of roots were broken off, the ability to clear itself was completely lost. The 
power consumption rate of the process was also unreasonably high (Pogorely & 
Tatyanko, 2004; Schulze Lammers & Schmittmann, 2013). 

Following the above-mentioned unsuccessful attempt, it was found that there was 
a way to completely avoid those negative events. That could be achieved by changing 
the lines of action of the perturbing forces, that is, taking them away from the transverse 
horizontal plane and the perpendicular alignment with respect to the lifter’s translational
motion and placing them into the longitudinal vertical plane. Such a change resulted in 
very good indicators, when harvesting sugar beet roots at higher rates of advance. Hence, 
virtually all worldwide known manufacturers of beet root lifting machinery switched to 
the production of root-crop harvesters with the vibrational lifting tools that work on the 
principle of applying perturbing forces to the roots in the longitudinal vertical plane 
(Gruber, 2007). 

In case of the root body performing transverse free and forced oscillations, i.e. when 
the line of action of the perturbing force coincides with the line of translational motion 
of the vibrational lifting tool, substantial changes are observed in the process of 
vibrational root lifting. For example, with such alignment of the perturbing forces, the 
bonds between the roots and the soil are disrupted more effectively (as a result of the  
so-called loosening effect) and also the accumulation of roots and soil in the working 
throat of the vibrational lifting tool becomes significantly reduced. Moreover, the 
designs of the vibrational lifting tools that work on the above principle are less energy 
intensive, metal intensive etc. (Boson et al., 2019). 

The authors have developed a new vibrational lifting tool (Fig. 1), which during its 
operation imparts to roots sitting in the soil both longitudinal and transverse oscillations. 
The structural layout of the proposed digging tool is presented in Fig. 2. The vibrational 
lifting tool comprises the lifting shares 1 mounted at the ends of the posts 2, which are 
connected through the suspension brackets 3 with the drive mechanism 4 that sets the 
above-mentioned shares 1 into oscillatory motion. The mechanism 4 includes the system 
that allows to set (adjust) the frequency and amplitude of the shares’ oscillatory motion 
within wide ranges (the frequency can be adjusted within 8.0 to 30.0 Hz, the 
amplitude – within 8 to 24 mm). 
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A distinctive feature of the proposed vibrational lifting tool is that the bracket 3 used 
for the suspension of the posts 2 is equipped with an additional hinge, which allows the 
coupled posts 2 to perform free movement within a small range in the longitudinal 
transverse plane. Such an arrangement provides for the self-adjustment of the shares 1 
during their translational motion in the soil. 

 

 
 

 
 

Figure 1. Vibrational lifting tool: a – general 
appearance; b – tools installed on experimental 
multiple-row root harvester. 

 

 
 

Figure 2. Design and process schematic 
model of vibrational lifting tool: 1 – lifting 
shares; 2 – posts; 3 – share spacing adjustment 
system; 4 – vibration drive with share 
oscillation amplitude and frequency 
adjustment system; 5 – guide pins. 

 
However, despite its known considerable advantages, the vibrational method of 

root lifting features also certain shortcomings. The principal drawbacks are the 
insufficient reliability (which is true first of all for the vibration drive) that is more 
pronounced, when operating on heavy and strong soils, the increased metal and energy 
intensity of the process in general. The inclusion of vibration-type lifting tools, which 
have a significant weight and oscillate at a frequency of 20 Hz, in the design of the  
root-crop harvester contributes to the degradation in the reliability of the machine’s 
operation overall. 

All the said shortcomings generate the strong need for further development of new 
principles in the theory of vibrational root lifting, which are to be efficiently utilised for 
validating the design parameters assumed for further improved lifting tools in root-crop 
harvesters. 

The first fundamental analytical study on the oscillations of the root body fixed in 
the soil was implemented and presented in the paper Vasilenko et al. (1970). In the study, 
the sugar beet root was modelled as a conical-shape body with its single lower point 
fixed, which had elastic properties. With that in view, the paper provided the detailed 
analysis of the transverse oscillations performed by the root body that were described by 
a fourth order partial differential equation. The solving of the generated equation 
provided the authors with the possibility of determining the natural frequencies of the 

a) 

b) 
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free transverse oscillations performed by the root body fixed in the soil. However, the 
paper did not provide analytical research into the process of specifically lifting sugar 
beet roots from the soil, but only stated that the conditions of their lifting had been 
obtained with the use of additionally generated kinetostatic equations. 

In the paper Pogorely et al. (1983), the main principles and assumptions that had 
effectively been stated already in the paper Vasilenko et al. (1970) were defined and 
justified. Again, the paper Pogorely et al. (1983) did not present any mathematical model 
for the vibrational lifting of sugar beet roots from the soil. 

The further development of the theory of vibrational root lifting with the perturbing 
forces applied to the roots specifically in the longitudinal vertical plane can be found in 
the papers (Vermeulen & Koolen, 2002; Pogorely & Tatyanko, 2004; Bulgakov et al., 
2005; Bulgakov & Ivanovs, 2010). However, the case of a root body performing 
transverse free and forced oscillations, when the perturbing forces are vectored parallel 
to the translational motion of the vibrational lifting tool, had still not been researched. In 
the papers Bulgakov et al. (2014, 2015a, 2015b), the development of fundamentals for 
the theory of free transverse root body oscillations in the case, where the perturbing 
forces were vectored at right angle to the root’s centreline, but parallel to the translational 
motion of the vibrational lifting tool, was presented. 

The aim of this study is to substantiate the parameters of the oscillation process that 
takes place, when lifting beet roots from the soil, on the basis of developing the theory 
of the transverse oscillations performed by the root as an elastic body sitting in the soil 
as an elastic and damping medium for the case, where the perturbing forces have the 
same direction as the translational motion of the vibrational lifting tool. 

 
MATERIALS AND METHODS 

 
In the completed theoretical research, the fundamental principles of the theory of 

agricultural machines and the methods of the theoretical mechanics, in particular, the 
methods of the theory of oscillations, the variational calculus, generation and solution of 
differential equation systems have been used. In the PC-assisted numerical calculations, 
the methods of programming and presenting the obtained graphic relations between the 
main parameters have been applied. 

 
Theory and modelling 
In order to investigate the forced transverse oscillations performed by the root 

sitting in the soil during its vibrational lifting, it is necessary, first of all, to generate the 
equivalent schematic model of the root as an elastic cone-shaped body sitting in the soil 
as a medium with elastic and damping properties as well as the external forces applied 
to the root. Such a schematic model is presented in Fig. 3. 

The root as a body has a conical shape (apex angle of the cone is equal to 2γ, its 
upper part is above the soil surface level) and is modelled as a variable cross-section bar 
with a fixed lower end (point О). The weight force ܩ ഥ of the root is applied at the centre 
of mass represented by the point C. The overall length of the root is designated as h. 

The vibrational lifting tool moving at a pre-set depth in the soil (along the vector 
ܸ ഥ ) is conventionally presented as two planes at an angle with each other, which hold the 
root on its two sides and make contact with it at the points ܭଵ and ܭଶ. Accordingly, at 
the above-mentioned points, the vibrational lifting tool imparts to the root the perturbing 
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forces .1dfQ  and .2dfQ , the vectors of which are directed forward and in parallel with 

each other and which are just the forces that generate the transverse oscillations of the 
root. These forces are applied at a distance of ݖଵ from the horizontal line passing through 
the point О. 

The soil around the cone-
shaped root body is represented by 
the two elastic and damping 
models with equal elasticity 
coefficients of с and damping 
coefficients of b. 

The equivalent schematic 
model is referenced with the 
Cartesian coordinate system xOz, 
the origin of which is at the point O 
and the vertical axis Oz coincides 
with the axis of symmetry of the 
cone-shaped root body. The 
directions of oscillations of both 
the vibrational lifting tool planes 
are shown by arrows in the 
schematic model. 

The next step is to analyse the 
oscillatory process of the 
transverse oscillations performed 
by the root body sitting in the soil 
and generated during the 
interaction between the root and 
the vibrating tool. 

The Ostrogradsky-Hamilton 
principle can be used in the analysis  

 

 
 
Figure 3. Equivalent schematic model of transverse 
oscillations performed by root sitting in soil during 
its vibrational lifting.  

of the forced transverse root oscillations that take place under the action of the horizontal 
perturbing force that varies in accordance with the following harmonic function (Dreizler 
& Lüdde, 2010): 

 . sindfQ H t  , (1) 

where H – amplitude of the perturbing force [N]; ω – frequency of the perturbing force 
[s-1]; t – time interval [s]. 

However, as is obvious from the equivalent schematic model (Fig. 3), the above-
mentioned perturbing force dfQ  is applied to the root simultaneously on two sides of it 

by the two digging shares. Therefore, it is represented in the schematic model by the two 
components .1dfQ  and .2dfQ  and they are exactly what causes the transverse oscillations 

of the root that disrupt the bonds between the root and the soil and create the conditions 
needed for lifting the root from the soil. 

On the basis of the conditions shown in the prepared equivalent schematic model, 
the Ostrogradsky-Hamilton functional can be generated, which will provide for 
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analytically describing this kind of root oscillations. Under the above assumptions, the 
displacements of the root centreline points during the transverse root oscillations are 
univalently determined by the following function of two variables: 

 ,y y z t , (2) 

where z – distance from the point on the axis Oz, through which the root cross-section 
passes, to the conventional point O of fixing the root in the soil [m]; t – current time [s]. 

Further, the following designations are introduced. 
Thus, μ(z) – running mass (mass per unit of length) of the root [kg m-1]; 

E – Young's modulus of the root material [N m-2]; J(z) – moment of inertia of the root 
cross-section with respect to the cross-section’s neutral axis that is perpendicular to the 
oscillation plane [m4]; Q(z,t) – intensity of the external transverse load vectored at right 
angle to the root’s centreline (axis Oz) along the axis Ox [N m-1]. 

In accordance with Babakov (1968), the Ostrogradsky-Hamilton functional for a 
variable cross-section bar, which performs transverse oscillations under the action of an 
external transverse load, appears as follows: 
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                  

  . (3) 

In view of the fact that the root is modelled as a cone-shaped body, the values 
present in the functional (3) can be expressed in terms of the main parameters of its 
conical surface. 

It is obvious that the running mass of the root can be determined with the use of the 
following expression: 

  2 2tanz z       , (4) 

where ρ – specific gravity of the root material [kg m-3]; 2 γ – taper angle of the cone used 
as the root body model [deg] (Fig. 3). 

The root’s moment of inertia J(z) is determined as follows: 

 
4 4tan

4

z
J z

  
 . (5) 

Since the value Q(z,t) that is a component of the functional (3) is the intensity of a 
distributed load measured in the N m-1 units, the perturbing force .dfQ  that is a 

concentrated load measured in newtons must also have N m-1 as the unit of its 
measurement. For that purpose, the first-order impulse function ߪଵ(ݖ) is introduced 
(Babakov, 1968). 

Hence, if  .dfQ t  is a concentrated perturbing force applied at the point ݖଵ and 

measured in newtons [N], the function 

     . . 1 1,df dfQ z t Q t z z    (6) 

has N m-1 as the unit of its measurement and represents the intensity of the concentrated 
load at the point ݖଵ. The function ߪଵ(ݖ −  except ,ݖ ଵ) is equal to zero for all values ofݖ
ݖ =  .ଵ, where it goes to infinityݖ

Subsequently, taking into account the expression (1), the following can be written 
down: 

     . 1 1, sindfQ z t H t z z     . (7) 
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At the start of the oscillatory process, the root is firmly bonded with the soil, the 
latter being an elastic and damping medium. Therefore, when the perturbing force, the 
value of which is determined by (1), acts on the root, the force of soil resistance to the 
transverse root oscillations emerges. Obviously, the soil resistance force (acting on the 
whole root body) is a load distributed over the area of contact between the root and the 
soil. Moreover, it is an external force with regard to the root body and it acts as a 
perturbing force generated by the soil acting on the root. 

Further, the parameter c is introduced, which is the elastic deformation coefficient 
of the soil related to the area of contact between the root and the soil, measured in N m-3. 
It is assumed that the root during its transverse oscillations is supported by the soil on 
half of its side surface along the whole depth of its sitting in the unbroken soil. The soil 
contacting with the said half of the side surface generates a distributed load vectored 
opposite to the perturbing force. Thus, when the root as well as the tool itself perform 
transverse oscillations, a distributed load, which is applied to the root by the surrounding 
soil and is opposite in direction to the perturbing force, arises in turn on one side of the 
root, then on the other side of it, and so on. 

Hence, taking into account the above-said and subject to the condition that the root 
is conically shaped, it is possible to state to some approximation that the intensity P(z, t) 
[N m-1] of the distributed load generated by the elastic resistance of the soil is equal to: 

   , tan ,P z t c z y z t       (8) 

In view of the fact that the perturbing forces generated by the vibrational lifting tool 
and the soil resistance have opposite directions, the resulting intensity of the external 
transverse load acting on the root has the following value: 

     ., , ,dfQ z t Q z t P z t  ,   [N m-1], (9) 

or, taking into account the expressions (7) and (8), the following expression for the soil 
damping force is arrived at: 

       1 1, sin tan ,Q z t H t z z c z y z t            , (10) 

Also, the damping properties of the soil have to be taken into account. They are, 
first of all: b – damping coefficient of the soil measured in (N s2) m–3. 

The following considerations have to be taken into account with regard to the root 
sitting in the soil at the moment of its lifting. In view of the fact that the root grows and 
develops its shape in the soil during a considerable length of time, there are good reasons 
to believe that the area of contact between the whole conical root body and the soil is 
like a continuous body (it can be said that the root has rather strongly grown into the 
soil). Therefore, it is also reasonable to assume that great root body deformation rates 
result in also great deformation rates of the soil around the root. That is due to the 
certainly great value of the bonding force between the root and the soil enveloping it on 
all sides, especially in the case, when the root sits in (has grown in) dry and hard soil. 
Hence, the deformation rate of the soil surrounding the root is virtually equal to the 
deformation rate of the root body. It is common knowledge that, in case of high rates, 
the resistance forces follow not linear, but quadratic laws (Schmitz & Smith, 2012). 
Therefore, it can be assumed to some approximation that the soil damping force is in the 
quadratic relation with the root body deformation rate. 
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Therefore, taking into account the conical shape of the root, the soil damping force 
can be determined with the use of the following expression: 

    2
,

, tan
y z t

R z t b z
t

 
 

       
,   [N]. (11) 

Thus, taking into account the expressions (4), (5), (10) and (11), the functional (3) 
assumes the following form: 
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 
 (12) 

In order to analyse the forced transverse oscillations of the root body fixed in the 
soil, the Rietz method can be applied (Babakov, 1968). 

In view of the fact that the perturbing force acts on the root at a frequency of ω, its 
solely forced oscillations occur in accordance with the following function (Babakov, 1968): 

     , siny z t z t  , (13) 

where ߮(ݖ) – waveform of the forced oscillations. 
The necessary partial derivatives have to be derived from the expression (13). They 

appear as follows: 
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By substituting the expressions (13) and (14) into the functional (12), the latter’s 
following representation is arrived at: 
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After integrating the expression (15) over ݖ within the limits of one period, that is, 

within ܶ = ଶగ
ఠ , the result is: 
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In accordance with the Rietz method, the values of the functional (16) have to be 
analysed on the class of linear combinations defined as follows: 
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   z z    , (17) 

where α – parameter, the variation of which produces a class of admissible functions; 
 .basis function – (ݖ)ߖ

After the expression (17) is substituted into the functional (16), the following is 
arrived at: 
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Next, the following designations have to be introduced: 
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After substituting the expressions (19) – (23) into (18), the result is: 
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Thus, on the class of functions (17), the functional (18) becomes a function of the 
free variable α. The necessary extremum condition of the function (24) is that its first-
order derivative with respect to α is equal to zero. Accordingly, after differentiating the 
expression (24) with respect to α and equating the obtained derivative to zero, the 
following equation is arrived at: 

   22 2 0M F N R L          , (25) 

from which the parameter   can be determined, that is: 

 22

L

N R M F





     
. (26) 

Further, the waveform of the forced transverse oscillations performed by a 
homogeneous bar with a constant elastic stiffness of EJ, one end of which is rigidly 
fixed, under the action of a transverse harmonic unit force with a frequency of ߱ applied 
at the point ݖ =  In accordance with .(ݖ)ߖ ଵ is assumed to be the basis functionݖ
(Babakov, 1968), this waveform appears as follows: 

     z C U kz D V kz     ,   10 z z  , (27) 
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       13

1
z C U kz D V kz V k z z

k EJ
          

,   1z z h  , (28) 

where ܷ(݇ݖ), ܸ(݇ݖ) – Krylov functions (Babakov, 1968), ݇ = ටఓ∙ఠమ

ா௃
ర

 – coefficient 

representing the mass, kinematic and strength properties of the bar’s material, 
,ܥ ;running mass of the bar – ߤ  arbitrary constants. At the same time, the boundary – ܦ
conditions for the oscillations performed by the above-mentioned bar are as follows: 

   
   
0 0 0,

0 .

y y

y h y h

 

  
 (29) 

Taking into account the said boundary conditions (29) for the free end of the 
bar (ݖ = ℎ), the following system of equations with respect to the unknown quantities 
,(ݖ)ߖ ,ܥ  :is obtained ܦ

       

     

     

1

1 13

13

13

0, 0 ,

1
, ,

1
,

1
.

z z

z C U kz D V kz
V k z z z z h

k EJ

C S kh D T kh T k h z
k EJ

C V kh D S kh S k h z
k EJ


 

                

          


          


 (30) 

For the problem under consideration, it is necessary to determine only such a basis 
function (ݖ)ߖ   that meets the above-mentioned boundary conditions. Using the Cramer’s 
rule, the target value of (ݖ)ߖ  is obtained from the system of Eqs (30). It is equal to: 

            
          

1 13

1 1 13
, 0 ,

U kz
z T k h z S kh T kh S k h z

k EJ

V kz
T k h z V kh S k h z S kh z z

k EJ






            

              

 (31) 

or 

 
 

      
          
          

1 2
3

1 13

1 1 13
, ,

V k z z
z S kh T kh V kh

k EJ

U kz
T k h z S kh T kh S k h z

k EJ

V kz
T k h z V kh S k h z S kh z z h

k EJ








        
 

             

               

 (32) 

where   – principal determinant of the system of Eqs (30) equal to: 

     2T kh V kh S kh    . (33) 

Further, the following designations have to be introduced: 
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       1 1

3

T k h z S kh T kh S k h z
B

k EJ
            

 
, (34) 

also: 
       1 1

3

T k h z V kh S k h z S kh
G

k EJ
            

 
, (35) 

finally: 
     2

3

S kh T kh V kh
K

k EJ
 


 

. (36) 

By substituting the expressions (34), (35), (36) into the expressions (31), (32), the 
following is obtained: 

      1, 0 ,z B U kz G V kz z z        (37) 

       1 1,z K V k z z B U kz G V kz z z h             . (38) 

The next step is to determine the coefficients M, N, R, F, L that are present in the 
expressions (26). 

For that purpose, the expressions (37), (38) are substituted into the expressions (19) 
and the value of the coefficient M  is found. It is equal to: 

   

      

1

1

2
2 2

0

2
2 2

1

tan

tan .

z

h

z

M z B U kz G V kz d z

z K V k z z B U k z G V kz d z

  

  

           

              




 (39) 

In order to determine the coefficient N, the second derivatives of the expressions 
(37), (38) are obtained as follows: 

     2 2
1, 0z B k S kz G k T kz z z          , (40) 

       2 2 2
1 1,z K k T k z z B k S kz G k T kz z z h                 . (41)

After the expressions (37), (38) are substituted into the expression (20), the value 
of the coefficient N  is found as follows:  

   

      

1

1

24
4 4

0

24
4 4

1

tan

4

tan
.

4

z

h

z

E
N k z B S kz G T kz d z

E
k z K T k z z B S kz G T kz d z

 

 

            

 
            




 (42) 

By substituting the expressions (40), (41) into the expression (21), the value of the 
coefficient ܴ is obtained as follows: 

   

      

1

1

2

0

2

1

tan

tan .

z

h

z

R c z B U kz G V kz d z

c z K V k z z B U kz G V kz d z

 

 

           

             




 (43) 
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By substituting the same expressions into the expression (22), the value of the 
coefficient ܨ is found as follows: 

   

      

1

1

2

0

2

1

tan

tan .

z

h

z

F b z B U kz G V kz d z

b z K V k z z B U kz G V kz d z

 

 

           

              




 (44) 

The coefficient L is obtained by substituting the expressions (37), (38) into the 
expression (23). Its value is equal to: 

     

        

1

1

1 1

0

1 1 1 .

z

h

z

L H z z B U kz G V kz d z

H z z K V k z z B U kz G V kz d z





          

            




 (45) 

The numerical values of the coefficients M, N, R and F can be calculated with the 
use of the PC either by directly taking integrals of the Krylov functions or after the 
transition to elementary functions in accordance with (Babakov, 1968). 

In view of the fact that the expression (45) intended for finding the coefficient ܮ 
contains the impulse function ߪଵ(ݖ −  ଵ) that does not fall into the category of classicalݖ
functions, the integrals present in the said expression have to be calculated analytically 
with the use of the generalised function integration technique. 

As a result of integrating the expression (45), the following is obtained: 

   1 1L H B U kz G V kz      
. (46) 

Then, after substituting the expressions (39), (42), (43), (44) and (46) into the 
expression (26), the required value of the parameter α, at which the functional (16) has 
a stationary value, is obtained. Respectively, taking into account the expressions (17), 
(37) and (38), the expressions that represent the waveform of the forced transverse 
oscillations of the root body fixed in the soil are obtained. 

These expressions appear as follows: 

   ( )z B U kz G V kz         
,   10 z z  , (47) 

        1z K V k z z B U kz G V kz             ,   1z z h   (48) 

where α is determined by the expression (26). 
The substitution of the expressions (47) and (48) into the expression (13) results in 

obtaining the final representation of the function governing the forced transverse 
oscillations of the root body fixed in the soil: 

       , siny z t B U k z G V kz t         
,   10 z z  , (49) 

          1, siny z t K V k z z B U kz G V kz t             ,  1z z h  . (50) 
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RESULTS 
 
Following the results of the theoretical research into the forced transverse root body 

oscillations described above, the authors developed the algorithm for calculating the said  
oscillations. 

The following initial data has 
been used in the calculations. In 
accordance with (Vasilenko et al., 
1970), the ranges of the soil’s 
elastic stiffness and damping 
coefficients were assumed to  
be as follows: b = 0–10 N s2 m–3, 
c = 0–20 105 N m–3. 

In accordance with (Pogorely 
et al., 1983), the average statistic 
values of the root’s physical and 
mechanical properties were 
assumed to be as follows: h = 
0.25 m; γ = 14○; E = 18.4 106 N m–2; 
ρ = 750 kg m–3. 

Calculations were carried out 
with the use of the compiled 
programme. Their results were used 
to plot the diagrams that 
represented the relations between 
the amplitude of the forced 
transverse oscillations performed 
by the root body as an elastic body, 
which sits (in practice, is fixed) in 
the soil as an elastic and damping 
medium, and the amplitude H of 
the perturbing force as well as the 
mechanical properties of the soil 
surrounding it. The obtained 
diagrams are presented in Figs 4–7. 

Fig. 4 features the diagrams 
of the relations between the 
amplitude of the forced transverse 
elastic root body oscillations and 
the coefficient c of the elastic soil 
deformation at various perturbing 
force frequencies: 10 Hz, 15 Hz, 
20 Hz. The calculations have been  

 

 
 

 
 

 
 
Figure 4. Relation between amplitude of forced 
transverse root body oscillations on one hand and 
coefficient of elastic soil deformation c and 
perturbing force frequency ν on the other hand for 
root’s cross-section at point of its gripping 
ݖ) = ଵݖ = 0.15 m): a)  = 10 Hz; b)  = 15 Hz; 
c)  = 20 Hz (perturbing force amplitude 
Н = 500 N, b = 6.5 N s2 m–3, c = 0–20 N m-3). 

carried out for a perturbing force amplitude of Н = 500 N and a soil damping coefficient 
of b = 6.5 N s2 m-3. 

a) 

b) 

c) 
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As is seen in the presented diagrams, the resonance state takes place at the  
following values of the parameters:  = 10 Hz, c = 1.0–1.3·105 N m-3;  = 15 Hz, 
c = 2.5–2.7·105 N m-3;  = 20 Hz, c = 4.5–5.0·105 N m-3. 

Moreover, at  = 10 Hz the amplitude of the root body oscillations in the resonance 
state varies within the range of – 0.58 to 0.17 m, at  = 15 Hz within the range of – 0.31 
to 0.18 m, at  = 20 Hz within the range of – 0.17 to 0.45 m. 

That said, it ought to be noted that the resonance state range shifts to the right with 
the increase of the perturbing force frequency, that is, the resonance takes place at higher 
values of the elastic soil deformation coefficient с. 

Hence, within the above-mentioned resonance state ranges of the root body 
oscillation parameters, the chipping off of the root, especially in its tail part, can take 
place. 

In Fig. 5, the diagrams are shown for the relations between the amplitude of the 
forced transverse root body oscillations on the one hand and the elastic soil deformation 
coefficient c and the distance ݖ from the root’s cross-section to the conventional point 
of its fixing in the soil O on the other hand at a perturbing force amplitude of Н = 500 N 
and a damping coefficient of b = 6.5 N s2 m-3. 
 

 

 

 
Figure 5. Relation between amplitude of forced transverse root body oscillations on one hand 
and coefficient of elastic soil deformation c and distance from root’s cross-section to conventional 
point of its fixing ݖ on the other hand: a) z = 0–0.15 m; b) z = 0.15–0.25 m; (perturbing force 
amplitude Н = 500 N, b = 6.5 N s2 m-3, perturbing force frequency 10 = ݒ Hz). 

 
As is obvious from the above diagrams, the amplitude of the forced transverse 

oscillations sharply rises at ܿ = 1.0 ∙ 10ହ … 1.3 ∙ 10ହ, N mଷ and ݖ = 0.15 ݖ ,݉ = 0.5 ݉, that 
is, at the point, where the tool grips the root and at the end of the root. 

a) b) 
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Also, in these cases the frequency of forced oscillations is virtually equal to  
the frequency of free oscillations of the root body. Within this range of parameters of the 
elastic soil deformation, the 
amplitude can reach up to 0.58 m. 
At all other values of the elastic soil 
deformation coefficients, the 
amplitude is close to zero and stays 
within the range of several 
millimetres. 

Fig. 6 features the graphic 
relations between the amplitude of 
the forced transverse root body 
oscillations and the soil damping 
coefficient b at perturbing force 
frequencies v equal to 10 Hz, 
15 Hz, 20 Hz, a perturbing force 
amplitude of Н = 500 N and an 
elastic soil deformation coefficient 
of ܿ = 2.0 ∙ 10ହ, N m-3. 

As is seen in the diagrams, at 
ν = 10 Hz and when the elastic 
deformation coefficient b  varies 
within the range of 0 to 10 N s2 m-3, 
the amplitude of the forced 
transverse oscillations decreases 
from 0.088 to 0.056 m; at 
v = 15 Hz, it increases from 0.050 
to 0.175 m; at v = 20 Hz, it 
increases from 0.015 to 0.025 m. 

However, at b = 6.5 N s2 m-3, 
which is the most common value 
of the soil damping coefficient, the 
amplitudes in the above cases are 
equal to: 

at v = 10 Hz – 0.063 m; 
at v = 15 Hz – 0.085 m; 
at v = 20 Hz – 0.020 m, 

which is within the range of the 
permissible root body deformations. 

As is seen in the diagrams 
presented in Fig. 6, the resonance 
phenomena in these cases do not 
take place. 

 

 
 

 
 

 
 
Figure 6. Relation between amplitude of forced 
transverse root body oscillations on one hand and soil 
damping coefficient b and perturbing force frequency  
 on the other hand for root’s cross-section at point of ݒ
its gripping by tool (z = z1 = 0.15 m): a) v = 10 Hz; 
b) v = 15 Hz; c) v = 20 Hz (perturbing force amplitude 
Н = 500 N, b = 0–10 N s2 m-3, c = 2 105 N m3). 
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According to the diagrams shown in Fig. 7, the maximum amplitude of the 
transverse oscillations is reached at the point, where the tool grips the root (0.15 = ݖ m), 
and at the end of the root (0.24 = ݖ m), but again, resonance phenomena are not observed 
in these cases. 

 

  
 
Figure 7. Relation between amplitude of forced transverse root body oscillations on one hand 
and soil damping coefficient b and distance from root’s cross-section to conventional point of its 
fixing z on the other hand: a) z = 0–0.15 m; b) z = 0.15–0.25 m; (perturbing force amplitude 
Н = 500 N, perturbing force frequency ν = 10 Hz). 

 
Thereby, by using the results of the PC-assisted calculations, the ranges of values 

have been obtained for the elastic soil deformation coefficient, within which the 
resonance state takes place. That is, the value of the amplitude of the forced transverse 
oscillations performed by the elastic root body exceeds the acceptable limit values. 

 
CONCLUSIONS 

 
1. The fundamental principles have been developed for the theory of the transverse 

oscillations performed by the root as an elastic body sitting in the soil as an elastic and 
damping medium during its vibrational lifting in the case, where the perturbing forces 
are vectored the same as the translational motion of the digging tool. 

2. By using the generated equivalent schematic model and applying the 
Ostrogradsky-Hamilton variational principle, the analytical expressions have been 
obtained for calculating the amplitude of the forced transverse root body oscillations at 
any cross-section of the root. 

3. The specially developed computer programme has been used to carry out the 
PC-assisted numerical calculations, which have provided for plotting the diagrams 
showing how the amplitude of the forced transverse oscillations of the root as an elastic 
body sitting in the soil as an elastic and damping medium varies in relation to the 
amplitude of the perturbing force and the coefficients of elastic soil deformation and soil 
damping. 

a) b) 
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4. The results of the calculations have been used to find the ranges of the elastic 
soil deformation coefficient values, within which the resonance state takes place. That 
is, the value of the amplitude of the forced transverse elastic root body oscillations 
exceeds the permissible limits, for the cases, when the frequency of the perturbing force 
generated by the vibrational lifting tool is equal to ν = 10, 15 and 20 Hz. Under such 
conditions, the above-mentioned amplitudes of oscillations can vary within the range of 
0.45 to 0.58 m, especially at the points of gripping the root and at the end of the root. 
That can result in chipping off the root’s end, therefore, such ranges of the soil’s elastic 
stiffness should be avoided. 

5. When the soil damping coefficient b varies within the sufficiently wide range of 
0–10 N s2 m-3, resonance phenomena are absent, the amplitudes of transverse oscillations 
stay within permissible limits. Therefore, the damping properties of the soil are 
acceptable within the whole range under consideration. 

6. When engineering the lifting tools with the discussed direction of oscillations, it 
is necessary to take into account the elastic properties of the soil, with which such tools 
can operate efficiently. 

7. The results of the completed analytical research have been used in the 
development of a new design of vibrational lifting tools. 
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