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Abstract. Feature selection can improve predictions generated by partial least squares models.
In the context of hyperspectral imaging, it can also enable the development of affordable devices
with specialized applications. The feasibility of feature selection for oat leaf chlorophyll
estimation from hyperspectral imagery was assessed using a public domain dataset. A wrapper
approach resulted in a simplistic model with poor predictive performance. The number of model
inputs decreased from 94 to 3 bands when a filter approach based on the minimum redundancy,
maximum relevance criterion was attempted. The filtering led to improved prediction quality,
with the root mean square error decreasing from 0.17 to 0.16 g m-2 and R2 increasing from 0.57
to 0.62. Accurate predictions were obtained especially for low chlorophyll levels. The obtained
model estimated leaf chlorophyll concentration from near infra-red reflectance, canopy darkness,
and its blueness. The prediction robustness needs to be investigated, which can be done by
employing an ensemble methodology and testing the model on a new dataset with improved
ground-truth measurements and additional crop species.

Key words: remote sensing, imaging spectroscopy, unmanned aerial vehicles, partial least
squares, reproducibility.

INTRODUCTION

The indispensability of chlorophyll for plant photosynthesis (Sims & Gamon, 2002;
Main et al., 2011) and its contribution to crop optical properties (Ollinger, 2011) make
the estimation of leaf chlorophyll concentration an important remote sensing application.
In large-scale assessments, leaf chlorophyll remote sensing is useful for yield prediction
(Moharana & Dutta, 2016). At finer spatial scales, it can be used for the delineation of
management zones for precision agriculture (Miao et al., 2009). As chlorophyll breaks
down under stress, its monitoring provides information about the crop status, and enables

Traditional broad-band optical remote sensing relies on vegetation indexes for
assessing crop status (e.g., Basso et al., 2016; Dom nguez et al., 2017; Barbosa et al.,
2019). Consequently, it is of limited use for estimating the concentrations of individual
pigments, such as leaf chlorophyll. Many of these indexes have been adapted for use
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with hyperspectral imaging products (Miao et al., 2009; Verrelst et al., 2019, often
leading to improved results (e.g., Miao et al., 2009). Moharana & Dutta (2016) evaluated
ten indexes in terms of rice chlorophyll prediction from proximal spectroradiometric
data. Some of the band combinations gave unsatisfactory estimates despite their high
performance in other experimental settings, which is a common problem for vegetation
indexes. On the other hand, the formulations that excelled during the screening provided
realistic maps of rice chlorophyll concentration when applied to EO-1 Hyperion imagery.
The limited index transferability across crops can be in part related to differences
between plant architectures (Ollinger, 2011). A study involving six crop species evaluated
the robustness of relationships between vegetation indexes and leaf chlorophyll with
respect to canopy structural parameters. A total of 58 formulations were tested; of this
number, only 2 were considered truly robust when applied to both measured and simulated
spectra (Zou et al., 2015). Corti et al. (2018) published a meta-analysis intended to
identify factors that foster accurate estimation of maize biochemical parameters from
optical measurements. Their results suggest that satisfactory predictions can be obtained
by avoiding certain families of vegetation indexes-regardless of sensor type, acquisition
model, and crop developmental stage. The article indicates that only statistically
significant relationships were included in the study, which means that this finding needs
to be approached with caution. A recent review by Hatfield et al. (2019) cites additional
studies devoted to vegetation indexes suitable for chlorophyll estimation. According to
the authors, vegetation indexes should be a first choice in remote sensing applications,
as they avoid computational challenges of more sophisticated approaches.

Yet, the main advantage of hyperspectral imagery lies in the possibility of applying
- borrowed from chemometrics and machine learning (Corti et

al., 2018; Verrelst et al., 2019). Partial least squares (PLS) regression was employed to
diagnose chlorophyll levels in winter wheat leaf laboratory samples (Zhang et al., 2012).
Scanning of single leaves under controlled illumination allowed the authors to evade the
challenges inherent to canopy-level imaging in outdoor conditions, and without doubt
contributed to extremely accurate (R statistics up to 0.99) predictions. Unfortunately,
unclear study design description undermines the trustworthiness of the findings.
Kanning et al. (2018) tested a pushbroom system as a way to overcome some limitations
of 2D frame hyperspectral cameras. An experimental winter wheat field was scanned
using a UAV, and the measurements subjected to PLS modelling. When the model was
applied to the pixels of the field orthoimage, the individual nitrogen fertilization
treatment levels could be discerned. The estimation quality was sufficient to fit a model
for predicting grain yield from the obtained values. Meij et al. (2017) employed PLS to
predict chlorophyll content in oats from unmanned aerial vehicle (UAV) campaign data.
The study also included 25 published vegetation indexes. The PLS approach yielded
validation predictions inferior to the estimates obtained by using the best of the indexes.
Still, according to Verrelst et al. (2019), chemometric methods are in principle more
powerful than vegetation indexes for estimating canopy biophysical parameters. The
chemometric approach tends, in turn, to be surpassed by machine learning methods,
capable of modelling non-linear relationships. A comparison of selected algorithms from
both groups demonstrated substantial performance variability within the machine learning
family. Robust leaf chlorophyll content predictions for multiple crops were obtained
with kernel ridge and Gaussian process regression. On the other hand, artificial neural
networks, an approach with a comparable level of sophistication, failed to provide
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consistently reliable estimates (Caicedo et al., 2014). By applying support vector machines
(SVM) to maize hyperspectra, Karimi et al. (2008) obtained very good validation estimates
for the tasseling stage. The prediction quality was worse, but still satisfactory, for the early
growth stage, which the authors attributed to the soil showing through the crop canopy.

Despite its potential, the adoption of imaging spectroscopy remains hindered, in
part by the high investment costs involved (Corti et al., 2018). Scene acquisition using a
modern 2D camera tends to be slow due to sequential capture of a large number of bands.
As a consequence, the speeds of airborne platforms become constrained (Honkavaara et
al., 2017) and band registration needs to be performed during the imagery post-
processing (Jakob et al., 2017). The voluminous data contained in hyperspectral data
cubes require substantial computational capacities and specialized knowledge to process
(Yang et al., 2017; Aasen et al., 2018). In the realm of field point spectrometry, similar
challenges have been overcome by the development and commercialization of
specialized proximity sensors, such as chlorophyll meters (Govender et al., 2009; Miao
et al., 2009). These sensors exploit information from limited numbers of pre-selected
bands, and have a predictive model embedded in the firmware to perform the
computations. A similar route could be taken for imaging spectrometers in order to make
the technology more accessible (Govender et al., 2009). One can envision an affordable
specialized device capable of capturing narrow-band imagery, as hyperspectral cameras
do, comprising bands that were pre-selected to optimize for accurate remote chlorophyll
content estimation.

Feature selection methods have proven to be useful for the screening of spectral
bands for a variety of applications. In addition to reducing the number of required model
inputs, they were shown to improve the prediction accuracy (Ding & Peng, 2005;
Mehmood et al., 2012). Fewer computations are required to process data subjected to
feature selection, and model interpretation is facilitated (Ding & Peng, 2005). Band pre-
selection prior to data acquisition can also address the problem of slow operation of
hyperspectral cameras (Yang et al., 2013; Zhang & He, 2013). As demonstrated by the
Zhang & He (2013) oilseed rape yield study, substantial reduction of data volume can
be attained without impairing model performance. Discarding of 98% of hyperspectral
bands had a minimal effect on the quality of nitrogen content prediction in pepper plants,
while significantly simplifying the obtained model (Yu et al., 2014). Behmann et al.
(2014) proposed an SVM model for detecting water stress in barley. The model inputs
comprised vegetation indexes, the combinations of which were determined using
wrapper feature selection. Increased detection sensitivity was obtained, allowing for
earlier drought detection relative to the raw indexes. The aim of the present study is to
investigate the effect of two feature selection approaches on the prediction of leaf
chlorophyll concentration in oats from hyperspectral imaging data.

MATERIALS AND METHODS

Experimental data
The present study partially replicates and extends the results of Meij et al. (2017),

using the same experimental data. Their experiment evaluated the soil-mediated carry-
over effects of preceding and cover crops on crop-of-interest status. The data collection
took place in summer 2015, which was the second year of the study, and was focused on
experimental plots with oats in the grain-filling developmental stage.
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The dataset includes narrow-band reflectance spectra of the experimental plots (one
averaged spectrum per plot) obtained from UAV imagery. The spectra cover the range
of wavelengths from 450 to 915 nm, i.e., between visible blue and near infra-red. The
spectral resolution is 5 nm, thus yielding 94 bands. The spectra are accompanied by
ground-
among others, SPAD-estimates of leaf chlorophyll concentrations (one averaged
estimate per plot), which are the focus of the present study. There are 56 data points in
total, labelled as either calibration or validation data in 1:1 proportion. The dataset is in
the public domain, and for the purpose of this study, it was downloaded from the Dryad
repository (Meij et al., 2018).

Reproduction of the original analysis
In order to obtain a baseline for the assessment of feature selection performance, a

reproduction of the Meij et al. (2017) result was prepared. The original study employed
vegetation indexes and PLS modelling for predicting leaf chlorophyll from the imaging
spectra. This paper focuses on the latter approach.

The data partitioning from the original dataset was preserved, and a PLS regression
model was fitted to the calibration subset. Leaf chlorophyll concentration was modelled
as the dependent variable, and the reflectance values for the whole range of the
wavelengths as the independent variables. The number of latent variables was tuned
using leave-one-out cross-validation by calculating the cross-validation root mean
square error (RMSE) for each value from between 1 and 20. The validation spectra were
then fed to the model exhibiting the lowest error, and the generated predictions compared
with the SPAD chlorophyll estimates to obtain validation RMSE, normalized RMSE
(NRMSE), and the R2 statistics. To reproduce the original validation results, RMSE had
to be normalized by dividing it by the mean chlorophyll concentration, rather than the
standard deviation or range. Likewise, R2 had to be calculated as the square of the
correlation coefficient between the predicted and observed values, rather than derived
from the sums of squares.

Application of feature selection
Next, the fitting of the PLS model to the calibration dataset was repeated, but in

addition to the tuning of the latent variable number, feature selection was performed.
Two approaches to feature selection were tested: a filter method based on the minimum
redundancy, maximum relevance (MRMR) criterion, and a forward selection wrapper
method.

Under the filtering approach, variables are evaluated independently of model
fitting, according to a measure the value of which determines which of them will be
discarded (Mehmood et al., 2012). In the MRMR method, this measure is the mutual
information shared by the candidate feature and the predicted variable, reduced by the
average mutual information shared by the candidate feature and the features already
accepted for inclusion into the model. The mutual information is a function of the
correlation coefficient (De Jay et al., 2013).

With wrapping, models are fitted to multiple pre-selected feature subsets, and the
fit quality itself serves as the selection performance criterion, making it a computationally
more demanding approach (Mehmood et al., 2012). The wrapper forward selection
method is analogous to the forward selection in the stepwise regression: candidate
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features are picked one by one from the feature pool, and their influence on the
performance of the refitted model is assessed. The variable associated with the highest
performance increase is kept in the model, and the process continues iteratively, until
there is no further improvement.

For each method, the present study aimed to obtain a series of models with the input
feature number ranging from 2 to all 94 bands (i.e., no selection). In this way, the
influence of feature selection intensity on the prediction quality could be investigated.

Computational reproducibility
The analysis was prepared with reproducibility in mind (Piccolo & Frampton,

2016). It was programmed in the R language (R Core Team, 2019), using the packages
pls (Mevik et al., 2019) for model fitting, mRMRe (De Jay et al., 2013) for assessing the
MRMR criterion, and mlr (Bischl et al., 2016) for model tuning. GNU Make (Stallman
et al., 2016) was used as the build tool, and GNU Guix enabled isolation and

Wurmus, 2015). The computational scripts are available from a Zenodo repository
-64 machine, the analysis took approximately 100 minutes

without parallelization and excluding the time needed to set up the environment. The
latter can last hours on the first run, depending on the state of a
& Wurmus, 2015) and availability of pre-compiled package substitutes. It is reduced to
minutes on subsequent runs.

RESULTS AND DISCUSSION

Visual data assessment

Figure 1. a) Narrow-band spectra of experimental oat plots in the calibration and validation data
subsets acquired using an unmanned aerial vehicle. Line hues reflect the differences in SPAD-
estimated leaf chlorophyll concentrations. The figure can be rendered in color by running the
computational scripts that accompany the article; b) Loadings in the partial least squares model
for predicting leaf chlorophyll concentrations from the narrow-band spectra. The model is based
on three bands obtained from minimum redundancy, maximum relevance filtering. Latent variable
loadings are given in the parentheses, wavelength loadings are given on the y axis.

Fig. 1, a depicts the experimental plot spectra matched to the ground-truth data,
analogously to Fig. 4 in Meij et al. (2017). High leaf chlorophyll concentration appears

a) b)
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to be associated with increased near infra-red reflectance and a steep red edge both
regions repeatedly considered important for chlorophyll prediction by earlier studies
(Govender et al., 2009; Main et al., 2011). On the other hand, contrary to expectation,
no apparent red-edge shift can be discerned. The calibration and validation spectra are
well mixed in terms of the chlorophyll measurements, as can be expected from the
stratified random partitioning, employed by the original study. Regarding the
reflectance, the validation subset seems to cover a wider range of values than the
calibration subset, but the difference is too small to raise concerns about a mismatch
between the partitions.

Reproduction of Meij (Meij et al. (2017)
Despite the variety of existing PLS flavours and implementations, the attempt to

reproduce the validation results of the Meij et al. (2017) paper turned out to be
successful, with only NRMSE showing a slight deviation (Table
However, as discussed above, the high number of bands contributing to the model make

- - at least until
hyperspectral imagers become affordable (Aasen et al., 2018). In addition, the result of
model tuning, which set the number of the latent variables to five, makes an insight into
its workings challenging.

Table 1. Tuning parameters and validation statistics of the partial least squares models. Each
model was calibrated using 28 spectra and validated using another set of 28 spectra

Study
Input
bands

Latent
variables

RMSE
(g m-2)

NRMSE
(%)

R2

Meij et al. (2017) 94 5 0.17 23.82 0.57
Reproduction 94 5 0.17 23.75 0.57
Filter feature selection 19 7 0.21 28.36 0.52
Filter feature selection (truncated) 3 3 0.16 21.84 0.62
Wrapper feature selection 1 1 0.20 28.23 0.43
RMSE = root mean square error, NRMSE = normalized root mean square error.

Feature selection
The cross-validation results of models employing filter feature selection exhibit

two local error minima (Fig. 2). The absolute minimum corresponds to 19 input bands,
a much lower number than for the reference model, but still too high for developing
reasonably priced specialized device. What is more, the model shows higher validation
error and involves even more latent variables (seven) than the reproduction model
(Table

Conversely, three wavelengths, as in the second minimum, seem a good middle-
ground between technical feasibility and expected estimation error. The fact that the
number of latent variables in PLS regression cannot exceed the number of inputs
contributes to the model interpretability. Notable is the improvement of the validation
statistics (Table
influence of feature selection on prediction accuracy (Mehmood et al., 2012). Although
the obtained gains may seem modest, one should consider other advantages offered by
feature selection, such as the reduced cost of a specialized imager (Govender et al.,
2009), more efficient data acquisition (Yang et al., 2013; Zhang & He, 2013), and
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smaller volumes of the collected data (Zhang & He, 2013). On a closer examination, the
model appears to give accurate predictions for low levels of chlorophyll, but its
performance deteriorates above the level of about 0.75 g m-2 (Fig. 3). A similar pattern
occurred in the Kanning et al. (2018) pushbroom imager study. An attempt to further
improve the prediction quality could be made by log-transforming the chlorophyll
content values prior to modelling.

Fig. 1, b depicts the band
loadings for each latent variable and
the latent variable loadings of this
model. The chlorophyll content is,
thus, predicted as LCC = 6.3 PLS1 +
4.0 PLS2 + 7.5 PLS3. The value of
the first component PLS1 = 0.0 r455

0.1 r710 + 1.0 r775 corresponds to the
near infra-red reflectance, in
accordance with the visual assessment,
above. The second component PLS2

= 0.7 r455 1.0 r710 0.1 r775 includes
the bottom part of the red edge and,
interestingly, a blue band., it can be
interpreted as canopy darkness (low
visible albedo), and linked to the
absorbance in the photosynthetically-
active spectral region. The third
component value PLS3 = 1.0 r455 +
0.0 r710 +0.0 r775 is determined by
canopy blueness (blue hue intensity).

Figure 2. Cross-validation prediction performance
and tuning results of the oat leaf chlorophyll
prediction models according to the number of
features selected using the minimum redundancy,
maximum relevance filter. CV RMSE = cross-
validation root mean square error.

Wavelength combinations similar to the one picked by the filtering algorithm
seldom occur in vegetation index formulations. They can be found in the Enhanced

et al., 1995), the Modified Simple Ratio, and the Modified Normalized Difference
(mND705) (Sims & Gamon, 2002). No such index was investigated by Meij et al. (2017).
In the study by Main et al. (2011), the first three indexes fared poorly when used for
predicting chlorophyll content in maize leaves at various developmental stages. The
authors attribute this to the weak relationship between the blue spectral region and the
leaf chlorophyll concentration.

Regarding mND705, it was among the best-performing indexes in Main et al. (2011),
and in Miao et al. (2009) - also a maize study. On the other hand, it occurred to be a poor
predictor of chlorophyll content in rice (Moharana & Dutta, 2016). The mND705 index
formula includes blue reflectance as a way to account for specular reflectance (Sims &
Gamon, 2002). The third latent variable of the discussed PLS model may play the same
role.

Alternatively, it may adjust for Rayleigh scattering. According to Beisl et al.
(2008), atmospheric effects occur even in low-altitude airborne remote sensing
applications. Although the analysed dataset has been subjected to atmospheric
correction, it was based on a single reference panel measurement (Meij et al., 2017). The
weakness of this approach is the assumption of constant illumination conditions as
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individual images are acquired. The blue band information may account for the residual
error that still remained after the correction.

The forward selection within the wrapper approach stopped after picking one band
(775 nm), thus reducing the PLS model to a classical regression model with a single
independent variable. The selected wavelength lies in the near infra-red spectral region,
which agrees with the observation from the visual assessment, above. According to the
validation statistics (Table
the model performs surprisingly well in terms of RMSE. However, the low R2 value puts
in question the feasibility of its practical use. Moreover, like the preceding model, it
exhibits uneven prediction quality for various levels of chlorophyll (Fig. 3).

Figure 3. Prediction error patterns of the studied models with respect to the ground-truth data.

In the light of this finding, it can be recommended to avoid wrapper selection for
chlorophyll content prediction, especially considering the substantial computational
demands of this approach (Ding & Peng, 2005; Mehmood et al., 2012). Conversely, the
encouraging results attained with MRMR suggest high potential of the filter strategy
towards picking highly predictive spectral bands. The MRMR criterion seems
particularly well-suited to data acquired using optical remote sensing methods. As
reflectance measurements exhibit substantial spectral autocorrelation (Karimi et al.,
2008; Verrelst et al., 2019), a naive algorithm could pick a set of neighbouring bands,

MRMR avoids this issue by taking correlations between features
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into consideration (Ding & Peng, 2005). Still future research might consider examination
of feature selection methods from the filter family. The performance of the three classes
of methods reviewed by Mehmood et al. (2012): based on loading weights, regression
coefficients, and variable importance in projection; could be compared, for instance.

Possibilities of assessing and improving study generalizability
The present study illustrates the application of feature selection for obtaining a

parsimonious predictive model with high interpretability. Just as omitting model cross-
validation can lead to over-fitting, a model that performs well on a single validation
dataset does not necessarily generalize to new circumstances. This is especially true for
unstable models, whose parameters change radically in response to even slight
modification of the training data.

In the present study, an improvement of validation statistics was obtained after
filtering the spectral bands using the MRMR algorithm. As highlighted by De Jay et al.
(2013), the algorithm in its original form produces results that are unstable with respect
to data modifications. The cited authors proposed an ensemble extension of the filter to
stabilize its output.

Ensemble modelling has been shown to improve prediction accuracy, as
exemplified by random forests (Breiman, 2001), and enable interval estimation, as
exemplified by bootstrap methods (Wood, 2005). Its obvious application in the
discussed study would be to abandon the fixed data partitioning, which was inherited
from Meij et al. (2017), in favour of multiple analyses, each based on a different
assignment of the data points to the calibration and validation subsets. By the subsequent
aggregation of the obtained partial results, the stability of the best performing models
could be assessed - not only with respect to the selected wavelengths, but also to their
loadings and validation statistics.

Two candidate models fitted to filtered bands were elected by hand for further
evaluation based on CV RMSE and feature selection intensity as an auxiliary criterion.
Repeated data partitioning would result in proliferation of models, making the manual
approach unfeasible. Replacing it with an algorithm would necessitate taking both
optimization criteria into account, which can be accomplished with aid of model-based
multi-objective optimization (Horn et al., 2015).

These avenues could not have been taken due to high computational complexity
involved, especially if wrapper feature selection were also included. In the future, an
adaptation of the analysis for an execution in a high-performance computing
environment might be attempted. At that point, an extension of the study to include
ensemble modelling would become feasible.

An evident weakness of both the present and the original Meij et al. (2017) study
is the fact that the ground-truth data were obtained using a SPAD chlorophyll meter, and
thus include spectroscopic estimation errors (Uddling et al., 2007). It is possible that
similar errors present in the discussed PLS results become masked in the consequence,
leading to overoptimistic validation statistics. Therefore, it would be desirable to
replicate the study using laboratory analyses for the ground truth, instead.

Spectral responses of leaf pigments differ across plant genotypes. Although the
chlorophyll signal is readily discernible in a leaf or canopy spectrum (Ollinger, 2011),
the reflectance is modified by additional factors. They include leaf and canopy anatomy
and morphology (Asner, 1998; Jacquemoud & Ustin, 2001; Ollinger, 2011) and spectral
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properties of additional foliar pigments present in the tissues (Jacquemoud & Ustin,
2001; Ollinger, 2011). Research is needed to establish whether feature selection can
yield a set of bands that enable calibration of models for chlorophyll content estimation
in multiple crops, and how big this set needs to be for the models to be accurate.

CONCLUSIONS

Filtering of bands according to the minimum redundancy, maximum relevance
criterion can improve the performance of a partial least squares model aimed at oat leaf
chlorophyll prediction from airborne hyperspectral imagery. Chlorophyll concentration
can be estimated from near infra-red reflectance, canopy darkness, and its blueness. The
obtained size of the feature space (three bands in the present study) is sufficiently small
for the development of affordable single-purpose imagers. Although a wrapper approach
based on forward feature selection can yield an even more parsimonious model, the
resulting prediction quality is not satisfactory. The robustness of the findings remains to
be investigated using an ensemble of dataset partitionings and ground truth obtained
from laboratory analyses based on samples collected from multiple crops.

ACKNOWLEDGEMENTS. The work was conducted with the financial support from the
Ministry of Agriculture of the Czech Republic, institutional support MZE-RO0418; and from the
European Union Erasmus+ Programme. Lammert Kooistra and Jan Clevers read the paper draft
and provided valuable remarks. Suggestions from three anonymous reviewers were of immense
help to further improve the manuscript.

REFERENCES

Aasen, H., Honkavaara, E., Lucieer, A. & Zarco-Tejada, P. 2018. Quantitative remote sensing at
ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement
procedures, and data correction workflows. Remote Sensing 10, 1091.

Asner, G.P. 1998. Biophysical and biochemical sources of variability in canopy reflectance.
Remote Sensing of Environment 64, 234 253.

Barbosa, B., Ferraz, L., Marin, D., Maciel, D., Ferraz, P. & Rossi, G. 2019. RGB
vegetation indices applied to grass monitoring: A qualitative analysis. Agronomy Research
17, 349 357. https://doi.org/10.15159/AR.19.119

Basso, B., Fiorentino, C., Cammarano, D. & Schulthess, U. 2016. Variable rate nitrogen fertilizer
response in wheat using remote sensing. Precision Agriculture 17, 168 182.

Behmann, L. 2014. Detection of early plant stress responses in
hyperspectral images. ISPRS Journal of Photogrammetry and Remote Sensing 93, 98 111.

Beisl, U., Telaar, M. 2008. Atmospheric correction, reflectance calibration
and BRDF correction for ADS40 image data. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences 37, 7 12.

Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., Casalicchio, G. &
Jones, Z.M. 2016. mlr: Machine learning in R. Journal of Machine Learning Research 17, 1 5.

Breiman, L. 2001. Random forests. Machine Learning 45, 5 32.
Caicedo, J.P.R., Verrelst, -Mar , J., Moreno, J. & Camps-Valls, G. 2014. Toward a

semiautomatic machine learning retrieval of biophysical parameters. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing 7, 1249 1259.



2675

Corti, M., Cavalli, D., Cabassi, G., Gallina, P.M. & Bechini, L. 2018. Does remote and proximal
optical sensing successfully estimate maize variables? A review. European Journal of
Agronomy 99, 37 50.

L. & Wurmus, R. 2015. Reproducible and user-controlled software environments in
HPC with Guix. In: Euro-Par 2015: Parallel Processing Workshops. Vienna University of
Technology, Vienna, pp. 579 591.

De Jay, N., Papillon-Cavanagh, S., Olsen, C., El-Hachem, N., Bontempi, G. & Haibe-Kains, B.
2013. MRMRe: An R package for parallelized mRMR ensemble feature selection.
Bioinformatics 29, 2365 2368.

Ding, C. & Peng, H. 2005. Minimum redundancy feature selection from microarray gene
expression data. Journal of Bioinformatics and Computational Biology 3, 185 205.

Dom nguez, P. 2017. Assessment of the relationship between
spectral indices from satellite remote sensing and winter oilseed rape yield. Agronomy
Research 15, 55 68.

Gao, X., Huete, A.R., Ni, W. & Miura, T. 2000. Optical biophysical relationships of vegetation
spectra without background contamination. Remote Sensing of Environment 74, 609 620.

Govender, M., Govender, P.J., Weiersbye, I.M., Witkowski, E.T.F. & Ahmed, F. 2009. Review
of commonly used remote sensing and ground-based technologies to measure plant water
stress. Water SA 35, 741 752.

Hatfield, J.L., Prueger, J.H., Sauer, T.J., Dold, P. & Wacha, K. 2019. Applications
of vegetative indices from remote sensing to agriculture: Past and future. Inventions 4, 71.

Honkavaara, E., Rosnell, T., Oliveira, R. & Tommaselli, A. 2017. Band registration of tuneable
frame format hyperspectral UAV imagers in complex scenes. ISPRS Journal of
Photogrammetry and Remote Sensing 134, 96 109.

Horn, D., Wagner, T., Biermann, D., Weihs, C. & Bischl, B. 2015. Model-based multi-objective
optimization: Taxonomy, multi-point proposal, toolbox and benchmark. In: International
Conference on Evolutionary Multi-Criterion Optimization
pp. 64 78.

Jacquemoud, S. & Ustin, S.L. 2001. Leaf optical properties: A state of the art. In: 8th
International Symposium of Physical Measurements & Signatures in Remote Sensing.
CNES, Aussois, pp. 223 332.

Jakob, S., Zimmermann, R. & Gloaguen, R. 2017. The need for accurate geometric and radiometric
corrections of drone-borne hyperspectral data for mineral exploration: MEPHySTo a
toolbox for pre-processing drone-borne hyperspectral data. Remote Sensing 9, 88.

Kanning, I., Trautz, D. & Jarmer, T. 2018. High-resolution UAV-based
hyperspectral imagery for LAI and chlorophyll estimations from wheat for yield prediction.
Remote Sensing 10, 2000.

Karimi, Y., Prasher, S., Madani, A. & Kim, S. 2008. Application of support vector machine
technology for the estimation of crop biophysical parameters using aerial hyperspectral
observations. Canadian Biosystems Engineering 50, 13 20.

Main, R., Cho, M.A., Mathieu, M.M., Ramoelo, A. & Koch, S. 2011. An
investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS Journal of
Photogrammetry and Remote Sensing 66, 751 761.

Mehmood, T., Liland, K.H., Snipen, S. 2012. A review of variable selection methods in
partial least squares regression. Chemometrics and Intelligent Laboratory Systems 118, 62 69.

Meij, B. van der, Kooistra, L., Suomalainen, J., Barel, J.M. & Deyn, G.B.D. 2017. Remote
sensing of plant trait responses to field-based plant soil feedback using UAV-based optical
sensors. Biogeosciences 14, 733 749.

Meij, B. van der, Kooistra, L., Suomalainen, J., Barel, J.M. & De Deyn, G.B. 2018. Data from:
Remote sensing of plant trait responses to field-based plant soil feedback using UAV-based
optical sensors. doi:10.5061/dryad.75k1d



2676

Mevik, B.-H., Wehrens, R. & Liland, K.H. 2019. pls: Partial least squares and principal
component regression. https://CRAN.R-project.org/package=pls

Miao, Y., Mulla, D.J., Randall, G.W., Vetsch, J.A. & Vintila, R. 2009. Combining chlorophyll
meter readings and high spatial resolution remote sensing images for in-season site-specific
nitrogen management of corn. Precision Agriculture 10, 45 62.

Moharana, S. & Dutta, S. 2016. Spatial variability of chlorophyll and nitrogen content of rice
from hyperspectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing 122,
17 29.

Ollinger, S.V. 2011. Sources of variability in canopy reflectance and the convergent properties
of plants. New Phytologist 189, 375 394.

J., Baret, F. & Filella, I. 1995. Semi-empirical indices to assess carotenoids/chlorophyll
a ratio from leaf spectral reflectance. Photosynthetica 31, 221 230.

Piccolo, S.R. & Frampton, M.B. 2016. Tools and techniques for computational reproducibility.
GigaScience 5, 30.

R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna. https://www.R-project.org/

Sims, D.A. & Gamon, J.A. 2002. Relationships between leaf pigment content and spectral
reflectance across a wide range of species, leaf structures and developmental stages. Remote
Sensing of Environment 81, 337 354.

Stallman, R.M., McGrath, R. & Smith, P.D. 2016. GNU Make. A program for directing
recompilation. Free Software Foundation, Boston. 220 pp.

Uddling, J., Gelang-Alfredsson, J., Piikki, K. & Pleijel, H. 2007. Evaluating the relationship
between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings.
Photosynthesis Research 91, 37 46.

Verrelst, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J.-P., Lewis, P.,
North, P. & Moreno, J. 2019. Quantifying vegetation biophysical variables from imaging
spectroscopy data: A review on retrieval methods. Surveys in Geophysics 40, 589 629.

Wood, M. 2005. Bootstrapped confidence intervals as an approach to statistical inference.
Organizational Research Methods 8, 454 470.

Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., Xu, B., Yang, X., Zhu, D., Zhang, X.,
Zhang, R., Feng, H., Zhao, X., Li, Z., Li, H. & Yang, H. 2017. Unmanned aerial vehicle
remote sensing for field-based crop phenotyping: Current status and perspectives. Frontiers
in Plant Science 8, 1 26.

Yang, W., Duan, L., Chen, G., Xiong, L. & Liu, Q. 2013. Plant phenomics and high-throughput
phenotyping: Accelerating rice functional genomics using multidisciplinary technologies.
Current Opinion in Plant Biology 16, 180 187.

Yu, K.-Q., Zhao, Y.-R., Li, X.-L., Shao, Y.-N., Liu, F. & He, Y. 2014. Hyperspectral imaging for
mapping of total nitrogen spatial distribution in pepper plant. PLoS ONE 9, e116205.

Zhang, D., Wang, X., Ma, W. & Zhao, C. 2012. Research vertical distribution of chlorophyll
content of wheat leaves using imaging hyperspectra. Intelligent Automation & Soft
Computing 18, 1111 1120.

Zhang, X. & He, Y. 2013. Rapid estimation of seed yield using hyperspectral images of oilseed
rape leaves. Industrial Crops Products 42, 416 420.

Zou, -Clemente, R., Tammeorg, P., Lizarazo Torres, C., Stoddard, F.L.,
P., Pellikka, M. 2015. Retrieval of leaf chlorophyll content in field

crops using narrow-band indices: Effects of leaf area index and leaf mean tilt angle.
International Journal of Remote Sensing 36, 6031 6055.

W.R. 2020. Application of feature selection for predicting leaf chlorophyll content in
oats (Avena sativa L.) from hyperspectral imagery (computational scripts).
doi:10.5281/zenodo.3573320


