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Abstract. Individualization is a common trend in many fields of production across the industries. 
Also in the food sector, significant changes can be observed. For many products, individual 

offerings towards the customer are meanwhile either mandatory or at least help to increase the 

sales and revenue. Somehow, individual product design and production contradicts scaling 

effects, which are especially important for food production. On the other hand, as digitalization 

is implemented in a fairly limited way in the food sector, currently great chances can be observed 

to build a unique selling proposition and consequently gain market share by implementing 

appropriate measures to enable a digital food factory. This is where the proposed idea comes into 

the game. The starting point is the idea to produce individually developed beer and ship it to the 

individual customer. The beer can be designed on a web page based on typical parameters, like 

beer type, bitterness, colour, or alcohol concentration. In an expert mode, individual beer 

creations may be thoughtful, allowing the creation of completely individual recipes (for sure, not 

guaranteeing the customer a perfect drinking experience). In any way, the data from the web page 
is directly fed to the brewing equipment in the brewing facility. There, using newly to be 

developed specialized machines, the individually ordered beer will be produced automatically. In 

this paper we discuss the individual challenges at each point in the production cycles and propose 

solutions to those. 

 

Key words: digital factory, individual food production, smart manufacturing, gamification, 

industry 4.0. 

 

INTRODUCTION 
 

There are two trends, which also the food industry cannot withstand: automation of 

production (Thomas et al., 2017; Morgan & Haley, 2019; Schallmo, 2019; Sonnen, 
2019) and individualization of products (Ettl et al., 2015; Neef et al., 2020). Customers 

request more and more individual products (e.g., cereals (mymuesli GmbH (2020), Zhou 

& He, 2019) or beer (Beer Engineer (2020)). In the context of competitiveness and 
efficiency, automation of production needs to be considered as well. The key question 

arising is: How to automate individual wishes? As long as the definition of the individual 

request is precise in the form of a formal recipe, this might be directly possible. In 

general, however, the description from the customer is imprecise and personally biased 
(Leckner et al., 2003; Kreye, 2018). Furthermore, the quality of raw material and the 
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production processes underlay natural and statistical fluctuations. Therefore the food 

industry has a strong demand for approaches dealing with the question how to guarantee 

the satisfaction of the customer reliably and automated (Shewhart, 2012; Caroco et al., 
2018). Developing (a) solution(s) to this problem is challenging, while the path to the 

solution marks significant milestones in the research field of food technology (Pramanik 

et al., 2018), as will be shown in the following. For illustrative purposes, we follow a 
specific real world example for immediate clarification of the argumentation chain, 

which is the beer brewing process alongside with a digitally transformed brew master 

involved in the process. 
 

Basic Technological Challenges and Implementation Approaches 

The first challenge related to individual beer brewing, for sure, is, to automate the 

beer production on small batches, e.g., 20–30 litres per brewing cycle. This amount is 

assumed to be a production quantity, which is possible to be sold to an individual 
customer within one single sales process. Beer Engineer (2020) use a procedure to create 

individual beers by creating cuvees from several base beers. However, a very limited 

amount of different beers can be created and – to be fair – the created beer is not really 
brewed individually. The customer can choose between Pils and Bock, each with two 

colour shades. For each of the types five grades of intensity of hops/bitterness and 

three/four levels of alcohol content and degree of carbonisation can be chosen only. 

Therefore, alternative approaches need to be developed, which allow micro quantities 
like 20–30 litres, to be brewed without noticeable manual supervision of the brewing 

process. For this purpose, newly to be developed brewing equipment needs to be 

installed. This mainly covers the mechanical setup in a first step. 
The scheduling of a single brewing event will be organized by the smart factory on 

its own, potentially considering premium orders for quicker delivery. The smart 

production site itself will be completely automated with autonomous logistic 
infrastructure, secure full connectivity, and production data aware production cycles. 

This enables a fully remotely accessible real-time status monitoring and control of the 

production cycle. Any deviation, which can be captured by information technological 

means, will be detected. As the brewing site will be setup from scratch, early 
considerations of the latter will not lead to huge implementation efforts, like this would 

be the case for a retrofitting of an existing brewing site. 

Along with the production, additional services to the customer will be derived from 
the anyway highly automated production site. The customer will be part of the 

production process, meaning the customer will receive automated feedback on its current 

process status of his product. Very exemplarily for a specific individual beer the 

inclusion of the customer could deliver the following information: order received, 
brewing process started, 1st settle time for sugar rest in progress, beer in maturation 

status. The authors are aware, that there are manifolds of different brewing approaches. 

The given customer output relates to only one of those many possibilities. As well, this 
may include: information about continuous ethanolic fermentation/breakdown of the 

extract, temperature profile, live pictures from brewing process. 

The data provided to the customer will be accessible via a secured area on a web 
page or via a special app. Additionally, the order history along with personally to be 

added tasting notes of the customer tops the whole story of. The actual extend of usage 

may be activated on a payment model. 
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Summarized, the proposed approach may revolutionize the current view on 

brewing by allowing individualized brewing concepts, as a complete new setup of a 

brewery does not need to follow hardened process structures of established companies. 
First initiatives to implement an appropriate machinery are already under investigation 

at the University of Applied Sciences Upper Austria. 

The idea combines a traditional industrial branch with modern technologies and 
modern business models. Especially this fact puts this research in a charming light. In 

future extensions, the running production site may be used for interdisciplinary 

educational purposes as well. 
 

Advanced Technological Challenges 
The aforementioned setup covers the automation of idealized process parameters, 

which can be reliably predicted, straight forward put in operation, and ideally tracked 

and controlled. However, problems that are more sophisticated pop up once the 
customers are getting involved as human beings and variations of the used raw material 

are considered as well. Obviously, fluctuations of quality and properties of per definition 

equal raw materials influence the appearance of the final product significantly. Examples 
include: grain and hops are natural products, therefore, every year the actual quality may 

vary depending on the environmental conditions. Grain, and the resulting malt, may 

contain more or less or different kinds of stark. Hop may be more or less aromatic and 

may differ in alpha acid, important for the degree of bitterness. As well, various 
companies can perform the procedure of malting differently, resulting in different malts 

from the potentially same grain unintentionally. This may lead to variations in colour 

and taste using the same recipe. This is not a complete list of potential issues but shall 
just give a first impression on common problems. 

In current systems, a human brew master captures the raw material fluctuations. 

Applying his/her expertise and experience enables him/her to sustain product quality 
even in those conditions. In a highly automated production environment, also this 

brewing master needs to be digitalized, which marks the first extremely challenging field 

of research to be done. The task of gathering implicit knowledge from experts to 

automate certain processes is currently accomplished in several domains and often 
focusses on inspection and quality-preserving process tasks, i.e. OK vs. NOK checks 

(Puppe, 2012). For continuous production with small lot-sizes these approaches have to 

be extended to derive production, related parameters at the beginning of a production 
process (e.g. out of measurement data of raw materials). 

Besides capturing the implicit knowledge from the brewing master, also the 

customers experience has to be involved. Customers are not professional in the field of 

consumption and therefore are limited in arguing using terminology and relevant 
parameters of the target field (in this case beer production). Consequently, customers 

typically use comparative terminology (e.g., should taste like …) or at least fuzzy 

linguistic terms (e.g., should be a bit bitter, should be very fruity) instead of hard 
parameters (e.g., IBU of 30 to uniquely define the bitterness of a beer). This is a well 

known fact within the food industry. The prove of customer satisfaction in this context 

is typically performed by a triangular test setup (Sinkinson, 2017; Gatchalian, 1999; 
TestTriangle, 2020; SSP, 2020). Traditionally, the translation of the customer voice and 

the food/beer production process is performed using manual polls and surveys processed 

by human beings. This, however, is inefficient and expensive (cost and time). Therefore, 
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another part of this research involves the development of a translational model of the 

customers’ demands towards food/beer production process terminology. 

The next step is the translation of the hard facts derived from the customer 
requirements into a recipe, which works as instruction for the automated food production 

process. Traditionally, a specialist of the individual field of food production performs 

this step. As the whole process shall be automated, again an artificial instance for recipe 
derivation needs to be implemented. This procedure is closely linked to the digitalization 

of the brew master as mentioned before, while at this point traditional deterministic 

measures can be applied, simplifying the problem. As typically the (typical, usual) 

parameters of the raw materials and their individual contribution towards the final 
product are known, this task is easy to a certain extent, as long as the customer demands 

are within known limits. If the latter cannot be assumed, creative artificial instances have 

to be developed, which deliver useful recipes fulfilling the customers’ demands 
autonomously. This is especially challenging and not yet well researched in the food 

production area. For better results, collective knowledge might be used, similar to the 

approach described above for the customer model. 

The final problem to be solved in the process chain is the validation of the product 
quality with respect to the customer preferences. This step may be considered a feedback 

loop to crosscheck the measured parameters of the resulting product along the initial 

customer needs. Traditionally, the brew master, e.g., performs manual testing. 
Meanwhile, significant advances can be observed in that field, e.g., powered by the 

measurement equipment of Anton Paar (Paar, 2020). A good show case can be found in 

the Anton Paar Sudhaus (Sudhaus, 2020). Still, there is a significant need for manual 
checking and interaction, which inhibits highly automated brewing cycles. For high 

automation levels, all of those checks hav to be performed by a sensor-algorithm 

combination again involving the digitalization of human senses (Berna et al., 2010; Ciui 

et al., 2018; Galstyan et al., 2018; Khan et al., 2018; Fraunhofer, 2020). Electric noses 
and tongues are known (Haugen, 2001; Gorska-Horczyczak et al., 2016; Palmiro et al., 

2017; Mohamed et al., 2018; Di Natale et al., 2000), while the processing of the data and 

the description of the perception is not trivial and not yet very well researched. As stated 
before, a mapping of the derived perception of the sensor-algorithm setup and the 

perception of the customer demands need to be performed. Additional difficulties are 

added to the objective nature of the sensor-algorithm setup perception versus the 
subjective nature of the customer perception description. Intelligent algorithms need to 

be integrated to automatically drive this part of the process. 

Overall, the described research approach seems simple on first sight: trigger an 

automated production process based on customer requirements. However, as discussed 
before, hardly predictable difficulties are introduced by the nature of the problem due to 

• Automatically to be considered and detected raw material quality fluctuations 

• Automatically to be considered and detected process irregularities 
• Transformation of human perception in hard production facts 

• Transformation of hard production facts towards human perception 

• Including cultural and local individual preferences and deviations of individual 

perception in the automation process. 
Sub-fields of the research are partially investigated, while for major parts no 

relevant research results are published yet. For instance, the Campus of Senses 

(Fraunhofer, 2020) deals with the decryption of human perception alongside modelling 
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this perception by processing data delivered by special sensors for human senses. It 

intends to digitally recreate human senses, especially the chemical senses of taste and 

smell. Research here is still at the very beginning. However, we believe our field of 
research based on this idea may be successful, as we do not need to exactly model human 

perception to match to the human brain, but to a less complex setup of machinery, the 

production equipment. Gathering results is very challenging, however, not impossible if 
drilling the problem down to its actual requirements. 

 

MATERIALS AND METHODS 

 
As described before, several technical challenges need to be mastered to implement 

the automated production approach described in the introduction. They might be 

categorized as mechanical, algorithmic, sensing technology, conceptual. Each of the 
categories are described in the following paragraphs. 

 

Mechanical Setup 

The basic mechanical setup for brewing equipment is well known. However, first, 
the equipment on the market is either large scale (500–2,000 + litres per brewing cycle) 

and semi-automated (Table 1) or it is small scale (20–50 litres) and basically non-

automated. In an optimum case, the temperature ramps and rest times can be 

programmed. One example of highly automated small scale brewing equipment is the 
Brumas BrauEule III (Brumas, 2020), another the Brewie+ (Newity 2020). However, 

significant manual tasks have to be performed. 

The main measures to take in this 
field are therefore as given in the 

following. A mechanical setup has to 

be developed, which allows including 
automation capability in the small-

scale equipment already present in 

large-scale systems (transformation by 

scaling). Furthermore, new mechanical 
automation setups have to be 

developed, where the individual choice 

of grain, yeast, and hop is automatically  

 

Table 1. Degree of supported automation for 

large scale brewing 

Supported Not supported 

temperature ramps remove spent grain 

grain adding 

water adding 

rest times 

whirlpool 

… 

check cloudiness of to 

be cleared wort 

removal of denaturized 

proteins after wort 

cooking 

… 
 

chosen from a given portfolio and added as ingredient at the right point in time 

according to the recipe (new individualization equipment). Especially, the latter 

mentioned is needed to allow for automation of individual products being an important 

pillar of the whole concept. 
 

Sensing Technology 

As mentioned in the previous section, some additional sensing technology needs to 

be included in the setup to allow for automation. Trivially, temperature sensors are 
needed to precisely and repeatedly enable defined sugar rests and temperature ramps 

given in the recipe. 

Apart from that, it is very important to detect the cloudiness of the wort during the 
lautering process. At this point, an optical sensor including image processing is foreseen 

to be installed. While in comparable situations, product quality control by optical sensors 
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is state of the art, for this specific task not many solutions can be found on the market 

(e.g., Mettler Toledo (Toledo 2020)). Additional sensors need to be considered for 

automatically measuring the alcohol and sugar concentration during the fermentation 
process. While the aforementioned is state of the art within the brewing industry, it is 

still challenging in the context of producing small batches of maximum 50 litres. This is 

important to forecast the perfect moment for bottling to achieve the right means of 
carbonisation. Finally, the individual colour scale of produced beer needs to be checked 

and aligned to the customer needs before shipping. A visual sensor including image 

processing again can perform this. 

Pushing the overall research complexity further lets us end up with more complex 
sensors and tasks, which are currently under investigation and not yet available to the 

open market. This relates to sensors imitating the human’s olfaction and degustation. 

Fraunhofer (2020) is currently performing research in that field in the context of the 
Campus of Senses. Enablers for this research is, e.g., the so called electronic nose 

(Di Natale et al., 2000; Haugen, 2001; Gorska-Horczyczak et al., 2016; Palmiro et al., 

2017; Mohamed et al., 2018), which allows to digitalize the aforementioned human 

perceptions. For sure, this part of the research will need some more time before reaching 
maturity, but is included already now in the consideration of the scope of this research 

approach. Once the technology is ripe, it will give great top-on benefit on the overall 

setup. 
 

Algorithmic Tasks 

The algorithmic tasks, which have to be performed for sure, are closely related to 

the sensing devices. As it is the case with the sensor environment, some of the algorithms 
to be put in field application are state of the art and pure development work. This includes 

algorithms for temperature ramp implementations, mechanical manipulation tasks and 

any algorithm related to timing constraints. Those will not be covered in detail here. 
Subsequently, there are algorithmic tasks to be performed, which are known to be 

manageable, however, need some training sequence of algorithms and transformation 

actions from related areas. This includes, e.g., image processing for cloudiness 

classification of cleared wort and colour determination of the wort. Furthermore, 
deriving optimal time-temperature curves for perfect fermentation of the product 

involving alcohol and rest sugar concentration sensors needs to be considered, but is 

state of the art. 
When it comes to algorithms translating the human perception into a specific recipe 

including individual actions, the story is a different one. This is also valid to say for 

algorithms towards a digitalization of the brew master, involving a quality and status 

check of all raw materials and a cross check of the final product to the customer 
perception and wishes. The latter involves a third problem to be tackled, which involves 

the transformation of the digital perception of the electronic nose towards the customer 

(human) perception – what is needed to validate the product quality w.r.t. the desired 
result. This part will be the challenging one, which, however, is crucial to make the 

overall process highly automated. On top of this approach, geographical details about 

the individual human perception need to be considered as well. As described before, the 
same type of food and beer will trigger different naming conventions, perception levels, 

and preferences in different geographical locations. If there is, e.g., a region, where the 

mostly sold beer type tends to be ‘fruity’, then a slightly bitter beer might be described 
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as ‘bitter’, while the same beer in a different region might be considered as ‘slightly 

bitter’. Including this, algorithms being capable of data analysis and using the 

intelligence of swarms (in this case distributed beer consumers) needs to be deal with as 
well. Concerning the more advanced algorithm application, we identified the following 

topics of deeper interest. 

- Human Perception to Hard Fact Conversion 

- Hard Fact to Recipe Conversion 

- Hard Fact to Human Perception Conversion 

- Swarm Intelligence Inclusion 

Methodologies we have in mind to solve the problems are deep learning algorithms, 
fuzzy logic, or variability modelling. Today deep learning methods are broadly accepted 

for various problems, especially machine vision or voice recognition tasks. A general 

problem applying machine learning to real world problems is to gather enough valid 

training data. Therefore, often simulation models as well as statistical data is used to 
train models. Current research approaches focus on deriving taste and flavour out of 

online votings in recipe databases and food & nutrition webpages (Teng et al., 2012). 

For the proposed approach of individual food production, i.e. individual beer 
brewing, it is currently hardly possible to gather enough training data to derive accurate 

recipes out of interviews or surveys from human people. Therefore, we would focus on 

Fuzzy logic which seems to be an adequate algorithmic approach, as it maps linguistic 
terms and variables (to be understood very well) into crisp output variables. Those 

variables represent the direct hard fact output, which can be used to derive the individual 

recipe. Input parameters might be: beer colour (light, medium, dark), alcohol 

concentration in %, fruitiness (low, medium, high), bitterness (low, medium, high). 
Fuzzy output variables might be: weight of hop of specific type (little, some, much), 

melanoidin malt for colouring (little, some, much). The crisp hard fact output produced 

by the algorithm may be: take 13 g of a specific hop and 359 g of melanoidin malt in 
your recipe. Fuzzy inputs and fuzzy outputs are merged by to be developed rules, 

achieving a deterministic control loop. The advantage is: the definition of input variables 

is intuitive for the customer while the hard fact output allows direct translation to a 

specific recipe. The developed rules will then be transformed into a feature model which 
enables a deterministic mapping of customer features to production assets such as 

different ingredients. Feature Models are originally used in the field of software 

engineering to model dependencies between different artefacts (i.e., Functions, 
Documentation, and Requirements (Kang et al., 1990)). Generally using feature models 

enables the creation of complete product family and a corresponding decision tree, which 

will be prompted to customer on the webpage during the configuration process (similar 
to online car configurators). This approach may also be adoptable to production assets 

as required for individual food production. 

This sounds promising to the authors of this paper and therefore will be one scope 

of future research. 
Optionally, additional information about the local preferences may be included. 

Knowing the location of the customer allows to sharpen the interpretation of his personal 

perception. This fact is important for the overall satisfaction of the customer need and 
needs to be included into the model. The model might be considered being a cognitive 

sensor deriving own (potentially, e.g., geographically varying) conclusions based on 



996 

distributed swarm knowledge and adequate data analysis methodologies. Those are in 

general well known from social network business cases and can be adopted to the current 

need within this project. 
 

Conceptual Tasks 

The conceptual task involves social interaction with the customer. Gamification is 

a crucial essence, if the overall approach shall turn to be successful. Gamification can be 
understood as using game typical elements in a non-game-typical context, e.g., to 

motivate customers towards purchasing a product. Various approaches are used in the 

field, which mainly are based on creating some interaction base between the customer 
and the manufacturer. The customer shall experience some feeling of being entertained 

while getting involved in the product or being part of the product itself. That way, the 

frontiers between the actual (mainly physical) product and a virtual product 

(entertainment, service) disappear. In our context, this includes involving the consumer 
as observing person in the production process. Along with the (technical, deterministic) 

individualization processes, an additional ingredient comes into the game. The customer 

knows at each point during the production what the current status of his personal product 
is. This leads to more identification with the customer justifying are higher sales price 

from the customers’ point of view. Therefore, both the costumers’ individual choice of 

his personal product making and the involvement in the whole production process 

enables the customer to identify himself with the product he is going to purchase and 
therefore delivers a unique selling proposition. 

 

RESULTS AND DISCUSSION 
 

The main research work done so far is an analysis of the target market, the current 

technological state of the art of related fields, and identification of critical pieces in the 
overall puzzle of issues to be solved. 

The outcome is, that the overall concept to be implemented needs to be covered in 

a heavily multi-disciplinary environment, involving social aspects, economical aspects, 

sensor and algorithm integration and development along with research in that field, 
mechanical development, and finally geographical information matching. 

This list demonstrates the complexity of the overall project. The initial research 

described in this paper allows to justify on (none – little – highly) critical issues which 
need to be targeted. 

As highly critical issues we have identified the multi-stage interface between 

customer wishes, customer wish articulation and transformation towards hard digital 

facts, validation of the real output product towards the initial customer wishes, and 
detection and treatment of natural raw material fluctuation. 

The main outcome of the analysis is, that one important, critical, but worth to be 

investigated field is the digitalization of the brew master. This is, as typically the human 
brew master is able to translate the customer perception into successful recipes including 

a validation of the latter by tasting events. In addition, the determination of common 

perception of specific beers is done in the food industry by installing tasting polls with 
humans. It will be challenging, but still news braking to automate this process. 

Along with the successful implementation of the investigated and anticipated field, 

final results of the applied research to be taken out next will help to introduce significant 
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changes in the field of food technology. For this reason, further investigation and 

involvement in this field is promising. 

Next steps to be undertaken are to identify both problematic or challenging and in 
parallel easy to solve tasks. Those may be aligned accordingly in one research and 

development track and one basic research track. There are for sure more tasks, which 

can be solved easily but need time and humans as resources, then there are challenging 
tasks. This conclusion can be taken by reviewing the listed issues in the previous chapter. 

Still, the less challenging task will need more time to be investigated, therefore the dual 

split sound reasonable. 

To cover the field of challenging tasks, currently a research-funding proposal is 
under investigation. 

 

CONCLUSIONS 
 

In this paper we presented our results of state of the art analysis for a beer brewing 

process, which allows to automate the production of individual customer chosen 

products. We identified and described specific bottlenecks. The first investigation 
demonstrates the complexity of the planned project on the one hand, while it discovered 

the most critical puzzle pieces to focus on as well. Further steps include a deeper analysis 

of the latter mentioned. 
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