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Abstract. Different fields of industry and in-service support widely use robots, mechatronic and 

robotic technology systems in their activities. This is related to growing functionalities that result 

from using more advanced control systems the development of which is based on available 

achievements in the technical measures of computing. Therefore, the subject of study in this 

article was movement of a robot manipulator in using a fuzzy logics and neural network, and the 
goal of the study was to develop methods for designing combined intelligent planning and control 

systems for robot-manipulator movement in static dynamic environments based on the combined 

use of fuzzy logic apparatus and artificial neural networks to reduce the possibility of robot-

manipulator's joints colliding into unknown obstacles located in its operating area. Based on this, 

the robot arm model has been developed after calculating in the article the missing parameters of 

the experimental robot manipulator in order to analyze the peculiarities of using the fuzzy logics 

device as well as the specifics and challenges of using neural network. As a result of the study 

performed in the article, significant data were obtained based on which a method was offered for 

an intelligent system for planning robot manipulator movement in static environment using a 

fuzzy blocks, which was characterized by the use of neural network corresponding each block, 

and localization of each solution to the task of planning robot manipulator movement in each 
specific situation, which enables to improve the accuracy and efficiency of movement planning. 

 

Key words: static environment, intelligent planning system, neural network, robot manipulator, 

fuzzy logic. 

 

INTRODUCTION 

 

The method of designing an intelligent real-time planning system for robot-
manipulator movement in an unknown static environment consisting of three stages of 

trajectory formation based on using the two fuzzy blocks of robot's each joint as well as 

the detailed classification model describing the locations of unknown obstacles in the 

operating area and the corresponding directions and types of movement in a form of 
multi-layer neural network perceptron allows for taking into account during each 

iteration the distance between the robot's joints and to the closest obstacles located on 

the right and on the left, and ensures the robot reaches the destination point. 
In practice, use of geometric methods is unnecessary when the shortest distance is 

measured by the use of sensors. At the same time, unknown obstacles can have any 

shape, and the manipulator's operating device is equipped with a certain number of infra-
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red distance sensor pairs separated one from another. Sensors are installed on the 

operating device in the places where it can have a contact with an obstacle. The density 

of distance sensors must ensure there are no ‘blind zones’ (Laurs & Priekulis, 2011; 
Osadcuks et al., 2014; Osadcuks & Pecka, 2016; Zhang, K. et al., 2016; Zhang, X. et al., 

2016; Li, 2018; Matějka et al., 2019). 

While calculating the shortest distances between manipulator's joints and the 
closest obstacles, only those obstacles which are within the sensory range of the distance 

sensors on the robot joints shall be taken into account. The shape of this range resembles 

a cylinder with its axis being the manipulator's joint, At the same time, the length of this 

range coincides with the length of the robot's joint, and the very range can be analysed 
as a simplified model of the environment scanned with the ultrasound distance sensors 

on both sides of each joint. Within the scope of computer simulations, readings of all the 

sensors comprise the known parameters of the function for calculating the shortest distance 
between each joint and the closest 

obstacle. It must be noted that analysis 

of this problem has not been included 

into the list of the main tasks of this 
dissertation research project (Sakai et 

al., 2002; Laurs & Priekulis, 2010; 

Yujie et al., 2010; Osadcuks, et al., 
2014; Zhang et al., 2016). 

The largest value in the range of 

the possible shortest distances between 
robot's each joint (joint number-one – 

d1max, joint number-two – d2max, joint 

number-three – d3max, joint number-

four – d4max, joint number-five – d5max, 
joint number-six – d6max) and the closest 

obstacles can be calculated by the use 

of a graphical analysis with the model 
presented in Fig. 1. At the same time, 

the following must be taken into account 

(Laurs & Priekulis, 2008; Zou, et al., 
2017; Ndawula et al., 2018; Zhou et al., 

2018; Valjaots et al., 2018; Nemeikšis & 

Osadčuks, 2019; Obasekore et al., 2019). 

 

 
 

Figure 1. Graphical model for determining the 

largest value in the range of the possible shortest 

distances between the robot's joints and the 
closest obstacles (Yung et al., 2019). 

 

; ; 

;  

; . 

Note that d1max, d2max, d3max, d4max, d5max and d6max are used to design the diagrams of 
fuzzy dependency functions as the largest range (dnmax) of the robot manipulator's n-link. 

 

MATERIALS AND METHODS 

 

A method was prepared for designing an intelligent planning system for robot 

manipulator real-time movement in an unknown static environment based on the process 
of processing information about the robot and and the surrounding static environment 
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consisting of tree stages. The use of the method was described using a model of six-joint 

robot manipulator (Fig. 2). 
 

 
 

Figure 2. Intelligent planning system for six-joint robot manipulator real-time movement in an 

unknown static environment. 

 
During the first stage, the final value of the distance between the robot's n-joint and 

an obstacle located in its operating zone (dno) based on the information obtained from 

distance sensors, using the arrangement of the unknown obstacles in the robot's operating 

zone and a model of classifying the directions and movements of the respective joints as 
well as types of neural network multilayer (NNM). 

During the second stage, the value of the initial step of the robot's n-joint movement 

( which is the output of the fuzzy block number-one (FB1) with its input being 

the former values of changes in n-joint movement angle ( ), also the difference 
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between the n-joint target ( ) and current ( ) configurations (

). At the same time, the initial condition for system functioning is 

. 
During the third stage of the method in question, the final value of the output of the 

manipulator's n-joint fuzzy block number-two (FB2) - change in the movement angle - 

is determined based on the result parameters from the stage one and two ( ), 

when in a new iteration (i+1), the movement angle is determined as 

. Inputs to the FB2 are  and . Internal feedback implemented 

in this system allows for calculation of  depending on the  value, which 

helps to avoid robot collusion with an unknown obstacle and reach the final destination. 
 

Designing a neural network for simulation of classifications 

Designing a neural network for simulation of classifications of possible situations 

related to manipulator's movement starts from definition thereof. Classifications of such  

situations consists of systematization of 
unknown obstacles in the operating 

zone and the respective directions and 

types of robot's movement in each 
iteration. 

The classification of unknown 

static obstacles suggested in the present 
thesis for six-joint manipulator consists 

of 16 possible situation variants with 

obstacles located on the right, on the left 

and both on the right and on the left  
with respect to each joint of the robot.  

 

 
 

Figure 3. Classification of the closest obstacle 

arrangement in the operating zone of the robot 
manipulator. 

Classification of manipulator's joint movement directions and types also has 16 possible 

options depending on the nature of movement: multi-step movement to the left; multi-
step movement to the right; one step to the left and one step to the right. 

Thus, a detailed table of classifications contains 16 items describing the positions 

of the possible manipulator movement in the operating zone and the related decision to 
be made during each iteration during the process of planning. Detailed outputs of the 

classification table model are the acceptable final distances between the joints of the 

robot and the closest obstacles on the left and on the right. 

Fig. 3 presents classification of the possible arrangement of obstacles. The circles 
to the left and to the right of the manipulator's joint indicate obstacles located at the 

shortest distance, whereas a single circle can both represent a single obstacle as well as 

a set of obstacles. 
The simulation of the classification of obstacle arrangement in the robot 

manipulator's operating area can be pictured as follows: 

1.  – no closest obstacle present to the right of the n-joint; 

2.  – no closest obstacle present to the left of the n-joint; 

3.  – an obstacle is present at the shortest distance to the right of the n-joint; 

4. 1 – an obstacle is present at the shortest distance to the left of the n-joint. 
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Fig. 4 shows the classification of 

robot manipulator's directions and types 

of movement, where dashed arrows 
mark separate steps to the right or to the 

left, and solid lines mark multi-step 

movement to the right or to the left, 
respectively. 

Simulation of the directions and 

types of robot movement: 

1.  – n-joint multi-step 
movement; 

2.  – n-joint multi-step 

movement; 

 

 
 

Figure 4. Classification of robot manipulator 

movement directions and types. 

3.  – one step of the n-joint to the left; 

4.  – one step of the n-joint to the right. 

In total, the model of a detailed classification consists of 16 possible variants. Table 1  

explain the functioning of a detailed 

classification model, where , , 

, movement directions of 

the manipulator's n-joint. 

It should be noted that  is 
the largest value of the distance 

between the n-joint and an obstacle 

from the fuzzy range;  – actual 
distance between the n-joint and the 

closest obstacle on the left;  – 

actual distance between the j-joint and 

the closest obstacle on the right; OSR 
– one step to the right, OSL – one step 

to the left, that are calculated as the 

final difference between the target and 
actual configurations. 

The designed structure of a neural 

network with the encoding and 
decoding blocks, where the values of 

the encoded outputs , , , , 

,  are used to determine the values  

 

Table 1. Classification of the locations of 
obstacles and the directions and types of the 

related robot-manipulator movements in the 

operating area 

No. DƟn DnR DnL Dno 

1.  0 0 0  
2.  0 0 1  
3.  0 1 0  
4.  0 1 1  
5.  1 0 0  
6.  1 0 1  
7.  1 1 0  
8.  1 1 1  
9.  2 0 0 OSL 

10.  2 0 1 OSL 

11.  2 1 0 OSL 

12.  2 1 1 OSL 

13.  3 0 0 OSR 

14.  3 0 1 OSR 

15.  3 1 0 OSR 

16.  3 1 1 OSR 
 

of the final distances between the manipulator's joints and obstacles. In turn, , , , 

, ,  are the wanted final distances – inputs to the fuzzy structure. 

The neural network consists of two hidden layers and one output layer. The first 

hidden layer consists of forty neurons, the second consists of twenty five neurons, while 
the output layer consists of two neurons. The suggested structure of neural network was 

trained by backpropagation. 

Detailed classification model based on neural network consists of three stages. 

During the first stage, manipulator's movements are transformed into codes according to 

the following classification variants: , , , , , , , , , 
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, , . , , , , , . An encoding unit was developed to 

implement this process. 

During the second stage, the encoded parameters get into the multilayer perceptron 
of the multilayer network. And finally, during the third stage, the outputs of the neural 

network are decoded (decoding unit) into the final values of the distances between robot 

joints and obstacles. Later, these values are used as inputs into a fuzzy structure with the 

decision-making process implemented within the limits of functioning thereof. 
 

Designing a modified fuzzy movement planning system as a component of an 

intelligent planning system 
 

 

 

 
 

Figure 5. Dependence functions of FB2 inputs and outputs of a robot manipulator's n-joint. 
 

The structure of a manipulator's real-time movement modified fuzzy planning 

system presented in the Fig. 2. In this system, the first fuzzy block (FB1) of the robot 

manipulator's n-joint is used to determine the  value. 
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As a result of using in the planning system a detailed classification model 

functioning on a basis of three-layer neural network the number of inputs to FB2 for the 

n-joint has reduced. Therefore, the structures of FB2 for the n-joint are identical. 

FB2 of the n-joint, have two inputs – movement step initial value  and 

the output of the decoding unit . Output from is . The dependence 

functions thereof are presented in Fig. 4. 

The system of fuzzy basic rules used for FB1 and FB2 of the n-joint is presented in 
Table 1, which have been designed by the robot manipulator real-time movement in an 

unknown static environment fuzzy planning system FB2 (n-joint) (Fig. 5). 

 

RESULTS AND DISCUSSION 

 

N-joint robot manipulator 
described in Fig. 1 was also selected 

for computer simulation of an 

intelligent planning system for real-

time movement in an unknown 
environment. 

During test one, manipulator 

was moving from start point A 
configuration to target configuration 

point B (Fig. 6). After 2263 software 

iteration (set time 5.4637 s) error for 

 was equal to 0.000°. No swinging 

movements in the area of target point 

were observed. This was obtained 

thanks to the functioning of the 
detailed classification model based on 

neural network. 

Fig. 7 presents results of the test 
two when the robot was moving from 

the starting configuration point A to 

target configuration point B. Planning 

error related to the robot's joint , , 

 and  reaching target 

configuration after 2180 software 

iterations (set time 5.686 s), was equal 
to 0.000°. Moreover, no swinging 

movements were observed in the area 

of target configuration. It must be 

noted that there were no error of 

and  as movement of the joint 

number one and two was successfully 

interrupted before potential collision 

 

 
 

Figure 6. Results of the first test of an intelligent 
planning system for two-joint robot manipulator 

real-time movement in an unknown static 

environment. 

 

 
 

Figure 7. Results of the second test of an 
intelligent planning system for two-joint robot 

manipulator real-time movement in an unknown 

static environment. 

to an obstacle. In this way, the manipulator reached the final configuration. 
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Figs 8, 9, 10, 11, 12 and 13 presents the diagrams of test parameters, including , 

, , , , , , , , . It must be noted that the testing conditions 

provided for a situation where a robot's joint starts moving between two obstacles on the 
right and on the left at a short distance from one another. 

 

 
 

 
 

 
 

 

Figure 8. Parameters of the intelligent system test one results. 
 

  

  

  
 

Figure 9. Parameters of the intelligent system test one results. 
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Figure 10. Parameters of the intelligent system test one results. 

 

 

 
 

  

  

 

Figure 11. Parameters of the intelligent system test two results. 
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Figure 12. Parameters of the intelligent system test two results. 
 

  

 

Figure 13. Parameters of the intelligent system test one results. 

 

CONCLUSIONS 

 
Neural network as a component of the intelligent planning system is used to 

simulate the 16 designed classifications of unknown obstacle arrangement in the 

operating zone as well as the 16 related classifications of the directions and types of 
movement of the two joints of the robot manipulator (the detailed classification table 

consists of 16 items). 



1378 

A method was suggested of designing an intelligent real-time planning system for 

robot manipulator's movement in an unknown static environment based on the process 

of processing information about the robot and the surrounding environment consisting 
of three stages with the purpose to provide a safe trajectory. During the first stage, the 

final values of the distances between the manipulator's joints and the obstacles located 

in the operating zone are determined based on the classification model describing the 
arrangement of the unknown obstacles in the robot's operating zone and the respective 

directions and types of robot manipulator's movement. During the second stage, the 

values of a preliminary movement step of the robot's n-joint are calculated using the first 

fuzzy block of the corresponding joint. During the third stage, which is entered after 
completion of the first two stages, the second fuzzy block of the n-joint is used to 

calculate the final values of its movement angles. This method used for robot 

manipulators with any degree of freedom allows the following: 
• taking into account during each iteration the values of the shortest distance 

between the robot's joints and the closest obstacles on the right and on the left; 

• reducing the number of input parameters during the second stage of the fuzzy 

planning system; 

• successfully avoid collision of the robot with the unknown static obstacles, and 

reach the target point without any oscillatory movements in the target point area with 
zero planning error. 
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