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Abstract. Cultivation condition have a large effect on efficiency of buckwheat. Drought, high 

temperatures and their fluctuations, salinity, oxygen deficit in the soil, ultraviolet radiation, and 

abnormal nutrient content in the soil are the most common reasons of decreasing productivity of 
plants. Suboptimal parameters of the cultivation technology can also cause abiotic stress. Plant 

can decrease its efficiency from 30% to 50% depend on stress conditions. Using bacterial cultures 

is one of the preventive approaches to overcoming the negative impact of stressors. 

Microorganisms produce biologically active substances that stimulate plant growth, increase their 

resistance to abiotic factors. They are growth regulators and long-acting anti-stressants as well. 

Malondialdehyde (MDA) is formed as a result of the oxidative degradation of polyunsaturated 

fatty acids. Fructans are polysaccharides that are derived from D-fructose residues found in higher 

plants, green algae and bacteria. Fructans are involved in the adaptation of plants to the action of 

abiotic stressors and are valuable nutrients. The effect of Azospirillum brasilense pre-sowing 

treatment of buckwheat seeds on physiological and biochemical processes of MDA and fructan 

content was researched. Seed treatment with Azospirillun brasilense reduced the content of MDA 

in Ukrayinka and Syn 3/02. Sofia and Olga had a low level of MDA, but seed treatment increase 
it. Seed treatment increased the efficiency of photosynthesis (Fv / Fm) in Syn 3/02 from 0.58 to 

0.72, in other varieties this effect was negligible. All cultivars have a strong relation between 

MDA and fructan content, that shows their participation in responses on cultivation conditions. 

Efficiency of photosynthesis in flowering–seed formation stage (BBCH 65–75) was close to 

maximum in field condition (0.70 ± 0.05) and seed treatment can increase it. 
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INTRODUCTION 
 

Limiting factor in buckwheat productivity is its demand for soil nutrients. 

Seed microbial preparation of buckwheat can improve plant productivity as a result 
of improved mineral nutrition and synthesis of organic compounds (Bhattacharyya & 

Jha, 2012; Bano et al., 2013). The concentration of phenolic compounds and antiradical 

activity in the plant depends on the stage of development. Itsnumber increases as the 
seeds germinate (Beitane et al., 2018), but then decreases. Additional sources of 
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antistressants are needed for improvement stress resistance during active vegetation. 

Azospirillum spp. can be associated with buckwheat root system, increase its 

productivity and increase the amount of antistressants (Tummaramatti et al., 2014; Singh 
et al., 2015). The accumulation of fructans is the basic strategy of plants to counteract 

the unfavorable factors. Seed treatment by Azospirillum brasilense increases fructan 

content but the level of sucrose in plants decreases (Bagheri & Jafari, 2012). Genotypes 
with high fructan accumulation in stress condition can decrease malondialdehyde in 

plant (He et al., 2015). Seed treatment with microbial preparations can lead to a decrease 

in MDA concentration in some plant species may have species and cultivar reaction 

(Taran et al., 2016). 
Malondialdehyde is a marker of the oxidative degradation of unsaturated fatty 

acids. However, the peroxide radical can also interact with neutral fatty acid molecules 

(Munne-Bosch & Pinto-Marijuan, 2016). Unsaturated fatty acids in membrane 
phospholipids can be oxidized in this way, but also free unsaturated fatty acids, residues 

of unsaturated fatty acids (Kumar & Ebel, 2016). The oxidation of unsaturated fatty acids 

is controlled by enzymes. The fact that the body has a normal physiological level 

(background) of malondialdehyde (MDA), diene conjugates (DC), other products of 
lipid peroxidation, indicates that there is a strict control of lipid oxidation by the entire 

hierarchical system of hierarchical regulation the DNA turn (You & Nam, 2014). The 

physiological role of oxidation reactions is to regulate the renewal and permeability of 
biological membrane lipids, the interaction of eicosanoids - mediators (local hormones) 

or signaling substances that play an important biological role in the organism (Zhang et 

al., 2016). Such important membrane processes as electron transfer in the respiratory 
chain, oxidative phosphorylation, methylation, hydroxylation of a number of 

endogenous and exogenous substrates by enzymatic systems of the endoplasmic 

reticulum, and, even, cell division, are accompanied by changes of the level of 

malondialdehyde (Huang et al., 2015). Malondialdehyde can modify proteins in cells 
and it leads to irreversible changes (Fenaille et al., 2002). 

Fructans are polysaccharides that are derived from D-fructose residues found in 

higher plants, green algae and bacteria (Harding et al., 2017). Fructans are complex 
sugars that are important for the plant (Pollock et al., 2017). Fructans are distinguished 

by several main types: inulin, levan, neo-inulin and neo-levan (Le Roy et al., 2008). The 

synthesis of fructans from Sucrose involves at least two enzymes – sucrose:sucrose  
1-fructosyltransferase (1-SST) and fructan:fructan 1-fructosyltransferase (1-FFT) 

(Kanabus et al., 1991; Ritsema & Smeekens, 2003). 1-SST catalyzes the production of a 

Glc-Fru-Fru trisaccharide that can be extended with Fructose residues in various ways 

by 1-FFT (Kanabus et al., 1991). The amount of D-fructose residues depends on species 
of the plants and condition of vegetation (Hellwege et al., 1998). Degree of 

polymerization (DP) of fructans increases under stress conditions in response to a stress 

factor (Quezada et al., 2017). It should be noted that fructans have an extremely 
important nutritional value for humans. Consuming a balanced content of fructans of 

different types (oligofructose and short-chain fructo-oligosaccharides) can increase the 

body's immune responses and improve the body's overall homeostasis (Roberfroid, 

2004). 
Chlorophyll fluorescence is one of the most popular techniques in plant physiology 

because of the ease with which the user can gain detailed information on the state of 

photosystem II (PSII) at a relatively low cost. It has had a major role in understanding 
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the fundamental mechanisms of photosynthesis, the responses of plants to environmental 

change, genetic variation, and ecological diversity (Murchie & Lawson, 2013). The 

method consists in detecting chlorophyll fluorescence which occurs if illuminated by 
bright light plants will be adapted to the darkness, known as the Kautsky effect (Kautsky 

& Hirsch, 1931). Light energy is absorbed by chlorophyll molecules in the leaves can be 

used for one of three processes: the photochemical reaction, the excess energy is 
dissipated as heat or re-emitted as fluorescence. These three processes are competitive 

because the effectiveness of one leads to changes in the other two. Thus the change in 

intensity of chlorophyll fluorescence gives information on efficiency of flow 

photochemical reactions (Maxwell & Johnson, 2000). 
MDA and fructan content are markers of oxidative stress that occur under 

cultivation conditions. Determining of MDA level and fructan content in plants allows 

to establish cultivar responses to cultivation conditions in a specific region. Adverse 
conditions can affect the efficiency of biochemical processes of photosynthesis. 

Accumulation of antistressants in treated plants may increase resistance of 

photosynthesis systems to changing environmental conditions in the field. The reactions 

of different crops to seed treatment with Azospirillum brasilense are often described in 
the literature, but the evaluation of MDA, fructans and the induction of fluorescence of 

chlorophyll in buckwheat is poorly understood. 

 

MATERIALS AND METHODS 

 
Field studies were conducted in the Educational-Scientific Laboratory 

Demonstration Collection Field of Crops of the Department of Plant Science (Kyiv, 

Ukraine; 50º 22´ N, 30° 30  ́E). The investigation was performed in field conditions. The 

soil of the experimental field was grey forest light loam soil with 2.32–3.01% humus 
content in the arable soil layer, pHKOH − 5.8–6.1, hydrolyzed nitrogen − 62–83 mg, 

phosphorus − 75–120 mg, and potassium − 42–101 mg per 1 kg of soil. Cropping system 

is common to the northern forest-steppe of Ukraine. 
 

Climate conditions 

Field experiments were conducted in 2017–2018 (2 seasons). Daily average 

temperature in buckwheat vegetation in 2017 was 17.8 °C (average multi-annual 
+15.5 °C), but 2018 was hotter (19.4 °C) and dry. Air temperature in the first decade of 

May (sowing period) has varied over the years (13.6 °C in 2017, 16.9 °C in 2018). 

Temperature in first half of buckwheat vegetation (May-June) was abnormally in all 

region (Mazurenko et al., 2020), that could impact on its organogenesis and biochemistry 
processes. Summary precipitation in vegetation period was 146 mm in 2017 and 245 mm 

in 2018 (multi-annual 254 mm). Buckwheat fell into arid conditions with moisture 

deficiency in 2017. 
 

Cultivation and sampling 

Cultivar sensitivity to pre-sowing treatment with Azospirillum brasilense was 

established in 2-factore field experiment. First factor was 5 buckwheat (Fagopyrum 
esculentum Moench.) cultivars. There was Sofia, Olga, Ukrayinka, Antariya, Syn 3/02 

varieties observed. Second factor of the cultivation of buckwheat included seed 

treatment with Azospirillum brasilense, norm 1 L t-1 seed (Az. br.) and control (without 
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Azospirillum brasilense, Wt). Pre-sowing treatment of seeds with strain of bacteria 

Azospirillum brasilense (1 mL contained 2×109 colony forming units (cfu) bacteria of 

the genus Azospirillum) was performed. 
The experiment was established in 4 replications. The size of elementary plots was 

36 m2 (24 m2 to harvesting). Tillage system included disking after preceding crop 

harvesting (winter wheat) and ploughing on 18–20 cm in autumn. Disking for moisture 

saving was carried out in early spring and pre-sowing cultivation to a depth of 3–4 cm 
was conducted before sowing. P45K30 (superphosphate, 18% P; potassium chloride, 

60% K) was applied before ploughing in autumn and N30 (ammonium nitrate) before 

sowing. Buckwheat was sown with 15–cm inter-row spacing with rate 400 grains per 
square meter. Sowing time (1st decade of May) depended on soil temperature (optimum 

10–12 °C). Pesticides did not apply. Buckwheat was harvested when 65–75 % seeds was 

brown. 
Leaf samples for MDA and fructan analyses are taken from the middle tier. Samples 

was weighed (100 mg), homogenized with the addition of phosphate buffer (pH 7.4, 

1 mL) and centrifuged for 15 minutes at 15,000 rpm. The required aliquot was selected 

to determine the MDA and polyfructan content. 
 

Analysis of the level of accumulation of malondialdehyde 

Activity of enzymes of the antioxidant protection system in the plants was 

determined by the level of malondialdehyde (MDA). A lipid peroxidation test is based 
on the concentration of a colour complex formed as a result of the reaction of 

malondialdehyde (MDA) with two molecules of thiobarbituric acid (TBA) (Vladimirov 

& Archakov 1972). Supernatant was obtained after centrifugation. 300 μL of the 
supernatant mixed with 900 μL of 5% three chloroacetic acid and 300 μL of 0.8% 

thiobarbituric acid. This mixture was incubated a half an hour (90 °C). Optical density 

was determined at a wavelength of 532 nm on a SF-26 spectrophotometer. 
 

Fructan content sampling 

The content of polyfructans was determined by the ability of ketotsugars to stain in 

acid with resorcinol. 100 μL of the extract (supernatant) was mixed with 100 μL of 0.1% 

alcohol solution of resorcinol and 100 μL of concentrated HCI. Mixture boiled 
10 minutes (80 °С) for observing purple colour. Optical density was measured on an 

Eppendorf biofotometr plus at 550 nm. 

The concentration of polyfructans was determined according to the calibration 
graph (calibration reactions with resorcinol fructose solutions; concentration of 0.62, 

1.25 2.5 and 5 mg mL-1). Measurements were made in three replications. 
 

Chlorophyll fluorescence sampling 
Samples for induction of chlorophyll fluorescence were taken from the middle tier. 

Leaves were placed in moistened paper and kept without access to light for 15 minutes 

(dark adaptation) Then, the fixed part of the leaf is irradiated with light of wavelength 
470 ± 15 nm. Under the influence of light the chlorophyll fluorescence is excited. 

Fluorescence signal is isolated with red filter and enters on the photo detector 

(wavelength 670 nm) which converts it into an electrical signal and amplified. An 

electrical signal sensor device is displayed and then stored and transferred to a computer 
for further analysis. The intensity of the induction of chlorophyll fluorescence (IFH) was 
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determined using a portable fluorometer ‘Floratest’ (Romanov et al., 2007). Fast and 

slow phase of chlorophyll fluorescence was determined for 3 min. Several physiological 

indices on the IFH curve were identified. There are minimal level fluorescence (Fo), 
maximum fluorescence (Fm), photochemical activity of FS II(Fv/Fo), potential quantum 

efficiency of photosynthesis (Fv/Fm) and index vitality (Fm/Fst). 
 

Statistical analysis  
Statistical analysis of the data was made using program Statistica 6.0 (StatSoft 

I.N.C.). Probability of the difference between the arithmetic mean of indicators was 

established using Student’s test. The differences are considered to be significant at a 
value P  ≤  0.05. 

 

RESULTS AND DISCUSSION 

 

MDA and fructan content in buckwheat 

Buckwheat cultivars had different sensitivity to environmental conditions. Level of 

MDA was different in different cultivars (Fig. 1). MDA level above 0.3 μM g-1 of crude 
mass was formed by cultivars Ukrainka, Antaria and Syn 3/02. It should be noted that 

bacterial treatment did not have effect on the overall level of MDA in Antaria and Syn 

3/02, but MDA level decreased in Ukrainka. 

Sofia and Olga accumulated significantly less MDA. Sofia without treatment 
accumulated the least MDA, but Azospirillum brasilense treatment increased it. Olga 

also had this tendency, but the average MDA level was higher. 
 

 
 

Figure 1. MDA levels a during grow up of buckwheat depending on the variant of the pre-sowing 

treatment of seeds: Wt – treatment with sterile water; Az. br. – treated with Azospirillum 

brasilense. 

 
Fukami et al. (2018) showed that inoculation with Azospirillum brasilense 

decreases MDA content in roots but increase it in leaves. Tummaramatti et al. (2014) 

noted that Azospirillum spp. have a positive effect on growth processes, which is 
manifested in the increase of dry and wet weight of plants. However, their resistance to 

abiotic stress may be reduced with improved nutrition. 
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Tolerant genotypes under normal conditions have a much lower MDA content than 

sensitive ones. Certain genotypes do not change the level of MDA in stressful conditions 

(He et al., 2015). 
The content of polyfructans in plants of one species is approximately constant. 

Changing their concentration may indicate stress or counteract it (Fig. 2). Сontent of 

fructans with or without treatment did not make a significant difference in Ukrainian and 
Olga. Fructan content was reduced by Azospirillum brasilense treatment in Syn 3/02 but 

exceeded the other cultivars. Significant increase in fructan content by treatment was 

observed in Sofia and Olga. 
 

 
 

Figure 2. Fructan content of buckwheat depending on the variant of the pre-sowing treatment of 

seeds: Wt – treatment with sterile water; Az. br. – treated with Azospirillum brasilense. 

 
On the other hand, improving nutrition can have a positive effect on the synthesis 

of metabolites that can counteract stress and bind ROS. The principle of counteracting 

oxidative stress is based on the properties of fructans react with peroxidases to form 
fructan radicals and water (Van den Ende & Valluru, 2008; Bolouri‐Moghaddam et al., 

2010). Fructans can also be a signaling mechanism of stress in plant cells (Van den Ende 

and El-Esawe, 2014). Сontent of fructans in sensitive varieties can be significantly 

reduced, and in resistant it increases. High fructan content does not always characterize 
genotype tolerance (Nemati et al., 2018). 

MDA accumulation has a strong 

relationship (Table 1) with fructan content 
in plant. Increasing the fructan content 

with increasing levels of MDA may 

indicate adaptive properties of cultivar to 

environmental conditions. Sensitive to 
Azospirillum spp. cultivars increase the 

level of polysaccharides have a higher 

resistance to oxidative stress. 

 

Table 1. Correlation between fructan content 

and MDA level 

Cultivar Untreated Treated 

Sofia 0.69 0.92 
Olga 0.90 0.83 

Ukrainka 0.89 0.87 

Antariya 0.99 0.87 

Syn 3/02 0.94 0.81 

All correlation significant at P ≤  0.01. 

 

Chlorophyll fluorescence of buckwheat leaves 

Efficiency of photosynthesis was dependent on Azospirillum brasilense treatment 
and manifested differently in different cultivars (Table 2). 
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Table 2. Indicators of photosynthesis activity 

Treatment Cultivar Fo, r.u. Fm, r.u. Fv/Fo Fv/Fm Fm/Fst 

Without 

treatment 

Sofia 488 ± 41 1,733 ± 134 2.55 ± 0.02 0.70 ± 0.01 3.16 ± 0.09 

Olga 475 ± 12 1,557 ± 89 2.28 ± 0.15 0.68 ± 0.03 3.17 ± 0.12 
Ukrayinka 408 ± 10 1,403 ± 53 2.44 ± 0.06 0.70 ± 0.01 3.13 ± 0.04 

Antariya 427 ± 20 1,733 ± 98 3.06 ± 0.06 0.75 ± 0.01 2.98 ± 0.17 

Syn 3/02 454 ± 46 1,334 ± 26 1.94 ± 0.14 0.58 ± 0.04 3.73 ± 0.11 

Azospirillum 

brasilense 

Sofia 439 ± 18 1,387 ± 76 2.16 ± 0.16 0.71 ± 0.02 3.21 ± 0.1 

Olga 446 ± 23 1,573 ± 66 2.53 ± 0.08 0.72 ± 0.01 3.31 ± 0.12 

Ukrayinka 346 ± 32 1,077 ± 128 2.11 ± 0.07 0.69 ± 0.02 2.89 ± 0.17 

Antariya 421 ± 2 1,312 ± 112 2.11 ± 0.16 0.66 ± 0.04 3.08 ± 0.12 

Syn 3/02 336 ± 4 1,205 ± 10 2.59 ± 0.04 0.72 ± 0.01 2.90 ± 0.05 

Fo – minimal level fluorescence; Fm – maximum fluorescence; Fv/Fo – photochemical activity of FS II; 
Fv/Fm – potential quantum efficiency of photosynthesis; Fm/Fst – index vitality; r.u. – relative units. 

 

Minimal level fluorescence (Fo) ranged from 336 to 488 relative units in observed 

samples. This indicator characterizes the amount of excitation energy that is lost during 

migration on the pigment matrix. Сoncentration of clotophyllles that are not bonded to 
the reaction centers (RCs) are also relevant to this indicator. Treated plants have a lesser 

energy loss in compare with without treatment. Higher difference between treated and 

untreated variants was observed in Syn 3/02 (26%) and Ukrayinka (15%). Sofia, Antariya 

and Olga decreased his Fo parameter, but they did not have significant difference. 
Maximum fluorescence level (Fm) shows the fluorescence intensity of chlorophyll 

at the ‘closed’ reaction centers of FS II, when all electron acceptor QA (a bound quinone) 

are restored and unable to receive electrons from the RC. Seed treatment Azospirillum 
brasilense reduced Fm by 20–24% in Sofia, Ukrayinka and Antaria. Other cultivars 

reduced Fm without significant difference. 

Largest difference (indicator Fv/Fo) between treated and untreated variants was 
observed in Syn 3/02. Increase in photosynthetic activity of photosystem II was observed 

in cultivar Olga, but it has a lesser improvement. Other cultivars have the highest Fv/Fo 

for untreated variants and decreased this parameter for Azospirillum brasilense treatment. 

Lazar (1999) indicated that Fv/Fm reaches 0.82 under optimal conditions. There 
was Fv/Fm from 0.66 to 0.75 relative units in researched cultivars. It may indicate the 

effect of stress factor on plants. Improvement of photosynthetic activity of buckwheat 

plants was observed in Olga (+3%) and Syn 3/02(+9%) for treatment. Antaria had the 
highest Fv/Fm without treatment, but reduced it in treated variant. Bagheri & Jafari (2012) 

have indicated that seed treatment by Azospirillum brasilense reduces the negative 

effects in the activity of the photosynthetic apparatus and decreases reduction of Fv/Fm. 

Fm/Fst indicator varied quite strongly in Olga and Syn 3/02 in treated and untreated 
variants. Fm/Fst characterizes the efficiency of the dark phase of photosynthesis, it can 

be noted that in plants treated with bacteria of the genus Azospirillum brasilense although 

there was an improvement of this process on 2–5%. 
 

CONCLUSIONS 

 
MDA levels and fructan content are important indicators of the relationship of 

plants to the environment. Azospirillum spp. treatment stimulates a lot of processes in 

plant, but effect on accumulation of antistressants was different in buckwheat cultivars. 
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According to MDA level, it can be noted that Olga and Sofia have a better oxidative 

resistance than other cultivars. High fructan content in Sofia indicates high potential for 

tolerance in different field conditions. 
Pre-sowing seed treatment of Azospirillum brasilense causes an increase in the 

efficiency of functioning of the photosynthetic apparatus of buckwheat plants. Features 

of its action depend on varietal characteristics of plants. Positive influence on all stages 
of photosynthesis was noted in Olga variety. In other varieties, this effect was not 

manifested by all the parameters studied. This issue needs further study. 
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