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Abstract. In the article, the authors examine the possibility of automatic localization of rice 
fungal infections using modern methods of computer vision. The authors consider a new approach 
based on the use of autoencoders - special neural network architectures. This approach makes it 
possible to detect areas on rice leaves affected by a particular disease. The authors demonstrate 
that the autoencoder can be trained to remove affected areas from the image. In some cases, this 
allows one to clearly highlight the affected area by comparing the resulting image with the 
original one. Therefore, modern architectures of convolutional autoencoders provide quite 
acceptable visual quality of detection. 
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INTRODUCTION 
 

According to the data of the Food and Agriculture Organization of the United 
Nations (FAO), diseases and pests destroy 20–40% of the world's agricultural crops 
(Food and Agriculture Organization of the United Nations, International Plant Protection 
Convention, 2017). We observe no less losses when growing rice, especially in the years 
of epiphytoties. At the same time, fungal diseases cause enormous economic damage. 
The most common rice diseases are: alternaria leaf spot (causative agent is Alternaria 
oryzae Har. Ital); helminthosporiosis (causative agent is Helmintosporium oryzae Br. de 
Haan); blast (causative agent is Pyricularia oryzae Cav.); fusarium, causing root rot 
(causative agent is Fusarium oxysporum). Rice blast, caused by a fungus, causes lesions 
to form on leaves, stems, peduncles, panicles, seeds, and even roots. The potential crop 
losses due to this disease are enormous. That is why it is considered the most dangerous 
of all (Zelensky, 2016). 

Farmers suffer significant financial losses every year due to fungal diseases. It is 
very important accurately and at an early stage to identify the symptoms of the disease 
in order to take the necessary measures to combat it in a timely manner. Symptoms of 
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fungal diseases often appear in the form of spots around the infected areas, so the initial 
detection of the disease is reduced to the analysis of these spots. At present, farmers 
mainly rely on their own experience, disease-identifying atlases or involve expert 
agronomists (Vimal et al., 2019). However, the identification is complicated by the fact 
that different diseases can have similar types of spots and vice versa, the same disease 
can manifest itself differently in different crops varieties and depending on growing 
conditions. Even nutritional deficiencies and pests can cause symptoms similar to those 
of some fungal rice diseases (Barbedo, 2016). 

Misidentification usually results in inappropriate, untimely and sometimes 
uncontrolled use of pesticides. Their use is harmful to the environment and negatively 
affects biodiversity, including insect, bird and fish populations, as well as soil, air and 
water quality (Gill & Garg, 2014; Knillmann & Liess, 2019). Pesticide use also poses 
significant risk to human health with both acute and chronic illnesses (Bassil et al., 2007; 
Kim et al., 2016). In turn, the laboratory pathogen identification is a laborious process 
that requires time-consuming cultivation of the pathogen. In any case, both of these 
methods require the participation of high-level professionals in the identification 
process, which is often inaccessible to small farms. Automatic identification of plant 
diseases based on image-processing methods solves the specified problems by 
automatically searching for diseases or helping both farmers and experts. 

The topic of intelligent processing of images of plants affected by various diseases 
is considered more and more often in scientific studies. The most common approach to 
the classification and segmentation of plant diseases, until recently, was an approach 
based on the application of classical machine learning algorithms (Huang, 2007; Tian et 
al., 2007; Zhao et al., 2007; Dong Pixia et al., 2013; Moshou et al., 2014; Jitesh et al., 
2016; Joshi et al., 2016; Ebrahimi et al., 2017; Pantazi et al., 2017; Vimal et al., 2019). 
The general approaches in these studies are similar. Firstly, images of the disease are 
obtained using cameras or scanners. Secondly, the spots of the disease are segmented 
from the background. Thirdly, features of colour, shape or texture are extracted. Finally, 
the disease is attributed to one of the groups using classification methods such as support 
vector machines, K-nearest neighbors, etc. 

The following authors (Baghel & Jain, 2016; Elangovan & Nalini, 2017; Gayathri 
Devi et al., 2018; Guiling Sun et al., 2018, Vithiya & Santhi, 2020) use methods such as 
SVM, Linear Regression to classify plant diseases, and unsupervised K-means to further 
isolate diseased areas. In (Vinoth Kumar & Jayasankar, 2018), linear iterative clustering 
and k-meaths unsupervised methods are used to improve the quality of segmentation. 

In a recent paper (Jayanthi & Shashikumar, 2020), the segmentation problem was 
solved from the standpoint of classical computer vision using physical considerations 
like minimization of some energy function. The alternative active contour model (ACM) 
built in this paper was validated with various metrics such as Jaccard index, the Dice 
index, and the Hausdorff distance. As a result, in (Jayanthi & Shashikumar, 2020) the 
authors managed to get a fairly good model without involving any data-learning 
algorithms. 

The next step towards modeling the detection of plant diseases was the use of more 
progressive neural network methods of computer vision (Boulent et al., 2019). This 
approach has a number of advantages over both methods based on classical physical 
considerations. and over classical machine learning methods. First, one of the main 
features of convolutional neural networks is automatic feature extraction, whereas 
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classical machine learning methods require manual feature extraction from an image. 
Secondly, the quality of the model given by deep convolutional neural networks for 
image processing is usually significantly higher than in classical models. Finally, the 
recent modern neural network architectures are opening up new approaches to 
unsupervised segmentation of objects in the image. 

The approach we propose here develops a number of researches where deep 
convolutional neural networks are used to solve problems of classification of plant 
diseases. So, in (Pardede et al., 2018) convolutional autoencoders are used to replace 
handcrafted features with atomatic feature inference. The paper notes the importance of 
both the auto-generation of features itself and the unsupevised manner of this process, 
which is provided by the specifics of autoencoders. The authors validate their results 
using the features given by the autoencoder as input to the SVM model for classifying 
plant diseases. The authors (Pardede et al., 2018) also note an increase in the quality 
given by autoencoders with convolution layers compared to conventional deep 
autoencoders, which is quite natural for image processing tasks. 

In (Zilvan et al., 2019), autoencoders are also used to highlight signs of plant 
diseases and denoise. The authors note that with the help of a variational autoencoder, 
one can obtain even more informative features from the image. Further, as in the paper 
(Pardede, 2018), the signs automatically given by the encoder part of the autoencoder 
are used to classify plant diseases. The results (Zilvan et al., 2019) differ from those by 
(Pardede et al., 2018) due to the use of a more advanced autoencoder architecture, which 
allows, in particular, to achieve better denoise compared to conventional convolutional 
autoencoders. 

Other studies propose modern solutions and platforms for automated crop 
production that cover the most important parts of the production process on the farm and 
include disease detection and classification models (Hakojärvi et al., 2010), as well as 
solutions for remote visual examination of agriculture in real time (Komasilovs et al., 
2018). 

 
Proposal of this paper and its significance 
The aim of this paper is to propose a new approach to the problem of disease 

segmentation based on deep convolutional autoencoders, while using the autoencoder 
not as a regular feature extractor, as suggested in the above-mentioned papers, but as a 
closed unsupervised image processing system, which is able to highlight areas of plant 
disease damage automatically and without the participation of experts. 

The rest of the paper is constructed as follows. Section 2 thoroughly previews 
modern methods for plant disease identification based on neural network technologies. 
These methods refine and automate the conventional visual detection method used by 
plant pathologists to identify rice diseases. Then we overview main neural network 
architectures suitable for solving this problem. Section 3 provides the basic methodology 
and gives a brief description of the basic principles of convolutional neural networks and 
autoencoders used in this study. We list main advantages and prospects of the chosen 
approach. Section 4 describes the details of the autoencoder model used as well as image 
post-processing. Также приведено a description of the used image dataset, as well as 
details of the technical implementation of the used autoencoder model. We offer a 
description and discussion of the main results of the performed numerical experiments. 
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CURRENT METHODS FOR PLANT DISEASE DETECTION 
 
Preliminary visual analysis remains one of the most basic methods for detecting 

diseases in a variety of crops. Before sending samples to the laboratory, an experienced 
plant pathologist tries to establish the external symptoms of the disease, its degree of 
development and prevalence (Bidaux, 1978). This part of research is extremely 
important, and it is this stage that has enormous potential for automation up to the 
complete exclusion of human experts and their replacement with automated algorithms 
for determining the required defects on plants. 

The main tool for such automation at present is computer vision - a set of automatic 
and semi-automatic approaches based on intelligent image processing (Yao et al., 2009; 
Xiao et al., 2018). Until recently, here the so-called classical computer vision was widely 
used. At present it has given way to the modern one - based on neural network 
architectures (Zeiler & Fergus, 2014; Wang, 2017; Zhang, 2018; Too et al., 2018). 

The neural network approach to the detection of plant diseases is based on a rather 
simple idea to bring the work of a computer with an image closer to how the human eye 
does it. The vision of humans and animals generally works as follows: when a person 
tries to classify an object in front of him, he sequentially focuses on separate parts of the 
object and compares them with the forms in his memory, and does this from smaller 
parts to larger ones. This process is mimicked by convolutional neural networks, which 
began with the revolutionary work of Y. LeCun et al. (1989). In subsequent works, these 
ideas were significantly developed and in the last decade, convolutional neural networks 
confidently hold the leadership both in the competition for image detection and in 
solving specific applied problems. The quality of classification that neural networks 
currently provide is quite comparable to that of a human, and in some cases even 
surpasses it. 

It is crucial to mention several neural network architectures, which were a kind of 
milestones in the history of the development of this approach and which are used in the 
present paper to detect the areas of rice fungal diseases. After LeCun et al. (1989) the 
next big breakthrough was AlexNet. It is notable for the fact that in 2012 it reached a 
test accuracy of 84.6% in the problem of classifying 1.2 M images into 1,000 different 
classes, which is a very impressive result (Alom, 2018). In 2013, He et al. (2016) 
significantly increased the computing power and changed the network architecture to a 
heavier one - VGG, while achieving the 92.7% test accuracy, which is already 
comparable with the visual acuity of a human eye. Further, the experts wondered whether 
it was possible to reduce the model without losing its quality. It turned out that using a 
more thought-out model, the amount of memory required for its storage can be reduced 
by more than 20 times, and the quality will even increase. In 2014, the GoogLeNet 
Inception model with 93.3% test accuracy was presented (He et al., 2016) and had only 
6M parameters, instead of 138M for VGG. Subsequent improvements, ResNet  
(He et al., 2016), SqueezeNet (Wu et al., 2016), and DenseNet (Gao Huang et al., 2018), 
improved test accuracy to 96.43%. 

Versatility, determined by the architecture, is the main advantage of the above-
mentioned models. They cannot be directly used to identify plant diseases, since they 
were trained for other tasks, but they can be re-trained for the required task by showing 
a sufficient number of examples - images of healthy and diseased plants. The larger the 
number of images presented to the model, the more accurate will be its predictions in the 
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future. Liu et al. (2009), Phadikar et al. (2013) point out that the stage of collecting a 
sufficient number of high-quality images is extremely important and in fact determines 
the success or failure of solving the problem of detecting diseases of various agricultural 
crops. So, for example, if the images are very noisy, made with insufficient / excessive 
lighting, then this will significantly degrade the overall quality of the final model. 

 
MATERIALS AND METHODS 

 
Autoencoders have a special place among modern neural network image processing 

models. They are specific types of neural networks, a pair of neural networks actually - 
encoder and decoder, interconnected by a thin bottleneck (Bank, 2020). 

The idea behind autoencoders is as follows (see Fig. 1): some image is fed to the 
input of the network, which is compressed by the first network - encoder into a vector of 
dimensions less than the dimension of the original image, giving it a dense 
representation. Further, this vector is fed to the input of the second network - decoder, 
which tries to decode it back into the original image. 

 

 
 

Figure 1. Autoencoder architecture: the input is a 224×224 image, which is encoded in the center 
with a 512-vector length. Then the resulting vector is decoded back into the image of the original 
size by a sequence of inverse operations. 

 
Thus, at the output, the original image is compared with itself. If the original image 

is similar enough to the output, this has a number of advantages at once. Firstly, it has a 
compression effect of some sort. If we are ready to neglect some loss of image quality, 
then we can easily replace the image with its dense representation - the vector that gives 
the encoder a part of the network at the output. Indeed, in this case, we can easily restore 
(with some accuracy) the original image by feeding it dense to the decoder input of the 
neural network autoencoder part. Secondly, we extract, in an encoded form, useful 
features that fully or partially characterize our image. In this case, we talk about data 
projections - the presentation of original images in a space of a lower dimension without 
significant loss of information reflected on them. If we are not faced with the task of 
directly interpreting these vectors of lower dimension, then they may well be used further 
in other models, for example, predicting a specific type of disease affecting a plant or 
lesion size. 
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Thirdly, autoencoders are often used to smooth out an image noise. Due to its 
specificity, the autoencoder memorizes in a dense representation the most essential 
features of each image fed to it, and noise is usually ignored. 

Ian Goodfellow and his co-authors (Goodfellow et al., 2016) used for the first time 
the above-mentioned concepts for conventional fully-connected neural networks in noise 
suppression tasks. Further, it was noticed that these ideas can be transferred without 
changes to convolutional neural networks, which use the convolution operation to switch 
between layers instead of all neurons of the previous layer. Convolution acts on the 
original image and subsequent layers of the neural network as a learning filter. 
Mathematically, it can be represented as 

conv(ὼ) = ύijὼ , ,
,

 (1) 

where x is the original image, or the output of any inner layer of the network, w are the 
weights of the kernel that defines the convolution, and the summation does not apply to 
all indices, but only to some ‘window’ from 0 to 2a on the first index and from 0 to 2b 
on the second (Murphy, 2013; Goodfellow et al., 2016). The physical meaning of such 
an operation is that it acts as a filter that simplifies the original image and allows to select 
all the necessary details in it. This is exactly what convolutional neural networks do in 
the course of their training - they adjust the weights of all such filters so that the final 
result matches the initial data as much as possible. The combination of these ideas 
yielded convolutional deep autoencoders, which are now widely used for intelligent 
image processing. One can find more information regarding convolutional neural 
networks in the classic books by (Murphy, 2013 and Goodfellow et al., 2016). 

All the above-mentioned features of autoencoders are widely used in our study and 
help to get an acceptable quality of segmentation. We demonstrate that the autoencoder 
can be trained in such a way that it will remove the disease lesions from the original 
image. Thus, comparing the image at the output of the model with that supplied to the 
input, in a number of cases it is possible to quite clearly automatically localize the focus 
of the plant lesion by a fungal disease. 

Finally, it is worth noting the importance of post-processing of the results of neural 
networks in a number of tasks. For example, in the well-known real-time object detection 
problem (Redmon et al., 2016), this happens for a number of reasons. Firstly, the chosen 
neural network may have too few parameters, and we may not want to complicate it, 
striving for its simplicity and lightness. Secondly, data post-processing after the 
operation of an algorithm can be dictated by the very nature of the problem, for example, 
the physics of the process. In this study, we’ve noticed that preprocessing in the form of 
overlaying additional color filters has a positive effect on the final quality of 
segmentation of plant diseases. In accordance with the general methodology for 
adjusting the parameters of models in machine learning, we configure the parameters of 
additional filters on lazy data sampling, thus avoiding their adjustment to the current data 
and increasing the generalizing ability of the model. 

In this study, we use a dataset by Huy Do (2019) to train our models. It contains 
about 3,500 photographs of both healthy rice leaves and those affected by three types of 
diseases - hispa, brown spot and leaf blast. The images in this dataset are of sufficient 
quality for the use of computer vision; they are practically free of extraneous noise and 
other shooting defects. 
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Augmentations were applied to the input data in order to increase the generalizing 
ability of the model. Augmentations are various distortions and transformations such as 
rotations by small angles, reflections near the coordinate axes and addition of a little 
noise. This increased both the overall quality of the model and the confidence of its 
predictions. 

 
MODEL DESCRIPTION AND TRAINING 

 
The operation of the convolutional autoencoder used in the present study is 

schematically shown in Fig. 1. The original image is fed to the input of the first 
convolutional layer, which, using the convolution operation, transforms it into a new 
tensor that is half the size along the axes, but with greater depth. Then this operation is 
repeated, each time giving tensors of smaller and smaller resolution, until a  
one-dimensional vector is obtained in the very middle. This vector serves as a coded 
representation of the original image. The resulting vector is then converted into an image 
by means of inverse operations. Layer labels in Fig. 1. mean their dimensions - height, 
width and depth. These numbers, like the number of layers, may be different for other 
architectures, but the general concept remains the same. 

In this paper, we considered the standard autoencoder model - Convolutional 
Autoencoder. It is less heavyweight than its advanced version - Deep Variational 
Autoencoder (Vahdat, 2020). Convolutional Autoencoder is a multilayer convolutional 
encoder and a convolutional decoder symmetric to it. From a number of possible 
architectures, we experimentally chose the following: 

Encoder: 
conv2d(3, 16, 8×8) → conv2d(16, 32, 8×8) → conv2d(32, 64, 8×8) →  
conv2d(64, 128, 8×8) → conv2d(128, 256, 8×8) → conv2d(256, 512, 7×7) 
Decoder: 
conv_t2d(256, 512, 7×7) → conv_t2d(128, 256, 8×8) → conv_t2d(64, 128, 8×8) →  
conv_t2d(32, 64, 8×8) → conv_t2d(16, 32, 8×8) → conv_t2donv2d(3, 16, 8×8) 
Here conv2d (i, o, wxw) is a 

convolution layer with kernel of size 
wxw, which inputs a block of data of 
depth i and outputs a block of depth o; 
conv_t2d is a symmetric convolutional 
layer giving the inverse operations to 
conv2d. Between all convolutional 
units are ReLU activated units 
commonly used in image analysis 
tasks. The number of parameters of 
this model is 18.4M. 

We used the PyTorch v1.6.0 
framework to train the model. It is 
widely used due to its simplicity  
and functionality. Nevertheless, the 
architecture of the used autoencoder 
described above is quite simple, and  
it can be easily repeated on any other 

 
 

 
 

Figure 2. The process of training the 
autoencoder. 
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framework, for example TensorFlow, Caffe etc. The neural network was trained  
on a stationary computer with the following configuration: Core i7 / GTX 1660, GPU - 
GTX 1080 4 Gb. 

It took about 120 epochs (approximately 6 hours of counting on the above-
mentioned hardware configuration) for the model quality to reach its maximum level 
(Fig. 2). In the process of training, the error function experiences characteristic 
fluctuations due to the fact that the neural network uses minibatches for its training, but 
in general the error level drops. Generally, in regression problems, the values of the error 
function have no direct interpretation, in contrast to the usual percentage of accuracy in 
classification problems. In our case, one can also only observe the drop in the values of 
loss-function and watch when it reaches a certain plateau. After that, it is necessary to 
evaluate the quality of the model in general. 

After training the model, the results given to it were subtracted from the original 
ones, and then they were subjected to additional post-processing, that is the application 
imposition of filters by colors and brightness for a clearer detection of the area affected 
by the disease. We identified the most optimal thresholds for color channels to identify 
the affected areas: 

|red - rh| < rt, |green - gh| < gt, |blue - bh| < bt. (2) 

Here rh = 0.14, gh = 0.29, bh = 0, rt = 0.1, gt = 0.1, bt = 0.08. The problem of selecting such 
external parameters of the model, also called hyperparameters, often arises in machine 
learning, since almost all algorithms have such. It is crucial to select them not on the  

The resulting image is visually close to the original (this is the main idea of the 
autoencoder training), but some details are missing. After subtracting the resulting image 
from the original, we apply the above-described special color filters and get the final 
result - an image in which fine noise has been removed and areas of plant damage are 
clearly visible. 

training or test set. Otherwise, the 
effect of overfitting may occur, 
when the model adjusts well to the 
training set, but then works poorly 
on new data. It is better to adjust 
hyperparameters on a sample that is 
specially postponed in advance and 
is not used in training and testing. In 
our case, these values were selected 
on a deferred sample in the amount 
of 10% of the training sample. 

Thus, the final pipeline of 
image processing can be represented 
as follows (see Fig. 3). Primarily, a 
224×224 image is fed to the input of 
the previously trained autoencoder. 
This autoencoder, as described 
above, first converts this image into 
an encoded vector-512 and then 
expands it back to its original size.  

 

 
 
Figure 3. The final model for highlighting the 
affected plant areas. 



582 

RESULTS AND DISCUSSION 
 
Here we are not interested in the classification of plants by types of diseases, but in 

the presence or absence of such a disease in general. This task is easier, since it is not 
required to additionally train the neural network to distinguish plant diseases among 
themselves. However, it is solved here together with the task of determining the most 
affected area, which is already much more difficult. What may be obvious to a 
phytopathologist can be challenging for a computer. 

As mentioned above, autoencoders have a number of interesting features that 
distinguish them from other neural networks. Thus, they allow, by compressing the data 
obtained from the image, to eliminate minor things that are insignificant for a given 
dataset. Moreover, if the lesion on the leaf is not too large, the autoencoder can, after 
proper training, ‘erase it’ from the original image. After comparing the original image 
with the obtained one, it is quite easy to clearly distinguish the affected area. It is 
noteworthy that the described image processing scheme is possible (and even preferable) 
precisely at the early stages of the development of the disease. This increases the value 
and potential benefits of the proposed approach. 

The above image processing scheme (Fig. 3) contributes in a number of cases to 
clearly segment the image with a diseased plant, highlighting the areas of disease lesion 

In this case, the autoencoder removes them from the image most accurately, taking them 
for insignificant noise, thereby increasing the possibility of detection of these areas after 
subtracting the resulting image from the original one. Thus, the method is particularly 
applicable for plant diseases detection at an early stage of vegetation. 

Pardede and co-authors (Pardede et al., 2018) use a deep convolutional autoencoder 
similar to our architecture (see Fig. 1 above and Fig. 2 in (Pardede et al., 2018)). 
However, we are not trying to use an autoencoder to get only hidden features from 
images. In this study, we investigate a slightly more advanced problem of disease 
segmentation, where we are no longer concerned with the central layer of the 
autoencoder, which, in fact, reveals hidden signs. We show that an autoencoder can be 
useful in general, and not just as a feature extractor. This approach allows us to interpret 

on it Fig. 4 shows a typical example of 
brown spot rice as well as the result of 
processing it with our algorithm. 
Obviously, the inclusion of a neural 
network autoencoder along with 
conventional filters in the image 
processing pipeline, makes it possible 
to clearly detect the area of plant 
damaged by a harmful fungus. 

According to our estimates, the 
proposed model makes it possible to 
automatically visualize diseased areas 
on rice leaves in 40–50% of cases. We 
consider it to be a fairly good result. 
Moreover, the described method is 
perfect in the early stages of infection, 
when the affected areas are still small. 

 

 
Figure 4. Highlighting of the affected plant 
areas (black). 
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the problem of the segmentation of plant diseases in a completely unsupervised manner, 
without using hidden features directly. 

In contrast to the study (Zilvan et al., 2019), where a variational autoencoder is also 
used to obtain features and subsequent classification, we use a simpler deep 
convolutional autoencoder architecture. Here we specifically focus on lighter 
architectures that can be used effectively on mobile devices if needed. 

Heavier architectures require more complex solutions for implementation in 
production, for example, a dedicated computing server and constant access to the 
Internet. Our solution is designed to significantly simplify the work of phytopathologists 
in identifying rice diseases and detecting specific areas of plant damage. 

 
CONCLUSIONS 

 
In this paper, we propose a new approach to the problem of segmentation of  

plant diseases based on the deep convolutional autoencoder model. In this case, the 
autoencoder does not work like a regular feature extractor, as suggested in the  
above-mentioned papers, but as a closed unsupervised image processing system, which 
is able to highlight areas of plant disease damage automatically not involving qualified 
phytopathologists. The complete pipeline of image processing also includes the use of 
specially selected color filters that improve the final quality of the model without the use 
of heavier architectures such as variational autoencoders. The authors show that training 
of such models is quite possible without the involvement of serious computing power. 
The final proposed solution, due to its lightness, may well be used on mobile devices 
when computing resources are limited. 

 
ACKNOWLEDGEMENTS. This study was supported by the Kuban Science Foundation 
No. MFI-20.1/75. 
 

REFERENCES 
 
Alom, M.Z., Taha, T., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, S., Esesn, B., Awwal, A. 

& Asari, V.K. 2018. The History Began from AlexNet: A Comprehensive Survey on Deep 
Learning Approaches. arXiv:1803.01164 

Baghel, J. & Jain, P. 2016. K-Means Segmentation Method for Automatic Leaf Disease 
Detection. Int. Journal of Engineering Research and Application 16(3), pp. 83–86. 

Bank, D., Koenigstein, N. & Giryes, R. 2020. Autoencoders. arXiv: 2003.05991 
Barbedo, J.G.A. 2016. A review on the main challenges in automatic plant disease identification 

based on visible range images. Biosystems Engineering 144, 52–60. 
doi: 10.1016/j.biosystemseng.2016.01.017 

Bassil, K., Vakil, C., Sanborn, M., Cole, D., Kaur, J. & Kerr, K. 2007. Cancer health effects of 
pesticides: systematic review. Can. Fam. Physician 53, 1704–1711. 

Bidaux, J.M. 1978. Screening for horizontal resistance to rice blast (Pyricularia oryzae) in Africa. 
In: Buddenhagen I.W., Persley G.J. (Eds.). Rice in Africa. London: Acad. Press, pp.159–174. 

Boulent, J., Foucher, S., Théau, J. & Pierre-Luc St-Charles. 2019. Convolutional Neural 
Networks for the Automatic Identification of Plant Diseases. Front. Plant Sci., 23 July 2019 
| https://doi.org/10.3389/fpls.2019.00941 

Dong, P. & Wang, X. 2013. Recognition of Greenhouse Сucumber Disease Based on Image 
Processing Technology. Open J. of Applied Sci. 3, 27–31. doi: 10.4236/ojapps.2013.31B006 



584 

Ebrahimi, M.A., Khoshtaghaza, M.H., Minaei, S. & Jamshidi, B. 2017. Vision-based pest 
detection based on SVM classification method. Comput. Electron. Agric. 137, 52–58. 
https://doi.org/10.1016/j.compag.2017.03.016 

Elangovan, K. & Nalini, S. 2017. Plant Disease Classification Using Image Segmentation and SVM 
Techniques. International Journal of Computational Intelligence Research 13, 1821–1828. 

Food and Agriculture Organization of the United Nation International Plant Protection Convention. 
2017. Plant Health and Food Security. Pamphlet I7829EN/1/09.17 (accessed April 04, 2019). 

Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian, Q. Weinberger 2018. Densely 
Connected Convolutional Networks. arXiv: 1608.06993 

Gayathri Devi, Neelamegam, P. & Srinivasan, A. 2018. Plant Leaf Disease Detection using K 
means Segmentation. Int. Journal of Pure and Applied Mathematics 119(15), 3477–3483. 

Gill, H. & Garg, H. 2014. Pesticides: environmental impacts and management strategies in 
Pesticides- Toxic Effects. eds S. Solenski and M.L. Larramenday (Rijeka: InTech), pp. 188–230. 

Goodfellow, I., Bengio, Y. & Courville, A. 2016. Deep Learning, MIT Press, 800 pp. 
Hakojärvi, M., Hautala, M., Ahokas, J., Oksanen, T., Maksimow, T., Aspiala, A. & Visala, A. 2010. 

Platform for simulation of automated crop production. Agronomy Research 8(1), 797–806. 
He, K., Xiangyu, Z., Shaoqing, R. & Jian, S. 2016. Deep Residual Learning for Image 

Recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),  
770–778. arXiv:1512.03385. doi:10.1109/CVPR.2016.90 

Huang, K.Y. 2007. Application of artificial neural network for detecting Phalaenopsis seedling 
diseases using color and texture features. Comput. Electron. Agric. 57(1), 3–11. 
doi: 10.1016/j.compag.2007.01.015 

Huy Do. 2019. Rice Diseases Image Dataset: An image dataset for rice and its diseases from: 
https://www.kaggle.com/minhhuy2810/rice-diseases-image-dataset 

Jitesh, P.S., Harshadkumar, B.P. & Vipul, K.D. 2016. A survey on detection and classification of 
rice plant diseases. In current trends in Advanced Computing (ICCTAC), IEEE 
International Conference, pp. 1–8. doi: 10.1109/ICCTAC.2016.7567333 

Jayanthi, M.G. & Shashikumar, D.R. 2020. Leaf Disease Segmentation From Agricultural 
Images via Hybridization of Active Contour Model and OFA. J. Intell. Syst. 29(1), 35–52. 

Joshi, A.A. & Jadhav, B.D., 2016. Monitoring and controlling rice diseases using image processing 
techniques. Int. Conference on Computing, Analytics and Security Trends (CAST), pp. 471–476. 

Kim, K.H., Kabir, E. & Ara Jahan, S. 2016. Exposure to pesticides and the associated human 
health effects. Sci. Tot. Environ. 575, 525–535. doi: 10.1016/j.scitotenv.2016.09.009 

Knillmann, S. & Liess, M. 2019. Pesticide Effects on Stream Ecosystems. Cham: Springer 
International Publishing, pp. 211–214. 

Komasilovs, V., Zacepins, A., Kviesis, A. & Nasirahmadi, A. & Sturm, B. 2018. Solution for 
remote real-time visual expertise of agricultural objects. Agronomy Research 16(2),  
464–473. doi: https://doi.org/10.15159/AR.18.050 

Kumar, V. & Jayasankar, T. 2019. An identification of crop disease using image segmentation. 
IJPSR, Vol. 10(3), 1054–1064. 

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W. & Jackel, L.D. 
1989. Backpropagation Applied to Handwritten Zip Code Recognition. Neural 
Computation 1(4), 541–551. doi:10.1162/neco.1989.1.4.541 

Liu, L.B. & Zhou, G.M. 2009. Identification method of rice leaf blast using multilayer perception 
neural network. Transactions of the Chinese Society of Agricultural Engineering25(S2). 
doi: 10.3969/j.issn.1002-6819.2009.z2.041 

Moshou, D., Pantazi, X.-E., Kateris, D. & Gravalos, I., 2014. Water stress detection based on 
optical multisensor fusion with a least squares support vector machine classifier. Biosyst. 
Eng. 117, 15–22. 

Murphy, K. 2013. Machine Learning: A Probabilistic Perspective, MIT Press, 1072 pp. 



585 

Pantazi, X.E., Tamouridou, A.A., Alexandridis, T.K., Lagopodi, A.L., Kontouris, G. & 
Moshou, D. 2017. Detection of Silybum marianum infection with Microbotryum silybum 
using VNIR field spectroscopy. Comput. Electron. Agric. 137, 130–137. 
https://doi.org/10.1016/j.compag.2017.03.017 

Pardede, H., Endang, S., Rika, S. & Zilvan, V. 2018. Unsupervised Convolutional Autoencoder-
Based Feature Learning for Automatic Detection of Plant Diseases. Int.Conf. on Computer, 
Control, Informatics and its Applications, pp. 158–162. doi: 10.1109/IC3INA.2018.8629518 

Phadikar, S., Sil, J. & Das, A.K. 2013. Rice diseases classification using feature selection and 
rule generation techniques. Computers and Electronics in Agriculture 90, 76–85. 
https://doi.org/10.1016/j.compag.2012.11.001 

Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. 2016. You Only Look Once: Unified,  
Real-Time Object Detection. ArXiv 1506.02640 

Sun, G., Jia, X. & Geng, T. 2018. Plant Diseases Recognition Based on Image Processing 
Technology. Journal of Electrical and Computer Engineering 1, 1–7. 

Tian, Y.W., Li, T.L., Li, C.H., Piao, Z.L., Sun, G.K. & Wang, B. 2007. Method for recognition 
of grape disease based on support vector machine. CSAE, 23(6), 175–180. 

Too, E.C., Yujian, L., Njuki, S. & Yingchun, L. 2018. A comparative study of fine-tuning deep 
learning models for plant disease identification. Comput. Electron. Agric. 161, 272–279. 
doi: 10.1016/j.compag.2018.03.032 

Vahdat, A. & Kautz, J. 2020. NVAE: A Deep Hierarchical Variational Autoencoder. 
arXiv: 2007.03898 

Vithiya, G. & Santhi, P. 2020. Analysis Of Plant Leaf Disease Using Segmentation Methodology. 
International Journal of Advanced Science and Technology 29(12), 411–415. 

Vimal, K.S., Shrivastava, M.K., Pradhan, S.M. & Mahesh, P.T. 2019. Rice plant disease classification 
using transfer learning of deep convolutional neural network. The International Archives of 
the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume  
XLII-3/W6, New Delhi, India. doi: 10.5194/isprs-archives-XLII-3-W6-631-2019 

Wang, G., Sun, Y. & Wang, J. 2017. Automatic image-based plant disease severity estimation 
using deep learning. Comput. Intell. Neurosci. 2017:2917536. doi: 10.1155/2017/2917536 

Wu, B., Wan, A., Iandola, F., Jin, Peter, H. & Keutzer, K. 2016. SqueezeDet: Unified, Small, 
Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for 
Autonomous Driving. ArXiv:1612.01051 

Xiao, M., Ma, Y., Feng, Z., Deng, Z., Hou, S., Shu, L. & Lu, Z. 2018. Rice blast recognition 
based on principal component analysis and neural Network. Computers and Electronics in 
Agriculture 154, 482–490. doi: https://doi.org/10.1016/j.compag.2018.08.028 

Yao, Q., Guan, Z., Zhou, Y., Tang, J., Hu, Y. & Yang, B. 2009. Application of support vector 
machine for detecting rice diseases using shape and color texture features. In: International 
Conference on Engineering Computation. doi: 10.1109/ICEC.2009.73 

Zelensky, G.L. 2016. Battle against rice blast by creating resistant varieties. Monograph. 
Krasnodar: KubGAU. 92 pp. 

Zhao, Y.X., Wang, K.R., Bai, Z.Y., Li, S.K., Xie, R.Z. & Gao, S.J. 2007. Bayesian classifier method 
on maize leaf disease identifying based images. Comput. Engin. Applic. 43(5), 193–195. 

Zeiler, M.D. & Fergus, R. 2014. Visualizing and understanding convolutional networks. arXiv 
1311.2901. doi: 10.1007/978-3-319-10590-1_53 

Zhang, K., Wu, Q., Liu, A. & Meng, X. 2018. Can deep learning identify tomato leaf disease? 
Adv. Multimedia, Volume 2018, article ID 6710865. doi: 10.1155/2018/6710865 

Zilvan, V, Ramdan, A, Suryawati, E., Kusumo, R., Krisnandi, D. & Pardede, H. 2019. Denoising 
Convolutional Variational Autoencoders-Based Feature Learning for Automatic Detection 
of Plant Diseases. 3rd International Conference on Informatics and Computational 
Sciences (ICICoS)spp. 1–6. doi:10.1109/ICICoS48119.2019.8982494 


