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Abstract. The goal of smart and precise horticulture is to increase yield and product quality by 
simultaneous reduction of pesticide application, thereby promoting the improvement of food 
security. The scope of this research is apple scab detection in the early stage of development using 
mobile phones and artificial intelligence based on convolutional neural network (CNN) 
applications. The research considers data acquisition and CNN training. Two datasets were 
collected - with images of scab infected fruits and leaves of an apple tree. However, data 
acquisition is a time-consuming process and scab appearance has a probability factor. Therefore, 
transfer learning is an appropriate training methodology. The goal of this research was to select 
the most suitable dataset for transfer learning for the apple scab detection domain and to evaluate 
the transfer learning impact comparing it with learning from scratch. The statistical analysis 
confirmed the positive effect of transfer learning on CNN performance with significance 
level 0.05. 
 
Key words: agriculture, artificial intelligence, deep learning, fungus, machine learning, Malus, 
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INTRODUCTION 
 

Fruit growing has high profitability and potential for growth to provide the market 
with diverse local foods, and it occupies an important niche in the overall structure of 
agriculture. Apples are among the most widely grown and economically important fruit 
species worldwide and in Baltics (Kaufmane et al., 2017). In turn, scab disease caused 
by the ascomycetous fungi Venturia inaequalis (Cooke) G. Winter is economically the 
most important disease worldwide for apples (Tiirmaa et al., 2006; Belete & Boyraz, 
2017). Currently, scab control heavily relies on fungicide applications. Due to 
environmental and food safety concerns, high adaptation ability of pathogens to applied 
fungicides as well as cost-effectiveness requirements, the need for changes in growing 
strategies have been highlighted during the last decade by apple scab research 
community and society. In cases where the use of pesticides can not be avoided, their 
applications should be more precise, more targeted and reduced substantially. One way 
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to solve it is smart farming and precision horticulture that can greatly increase the 
effectiveness of pesticide applications and use them more selectively. In practice, smart 
farming and precision horticulture typically rely heavily on new technologies and 
digitalization, including early identification of diseases by image acquisition, 
recognition and severity analysis (Pujari et al., 2015). 

With a goal to develop CNN model for embedded devices, which is possible to 
recognize apple scab in the early stage, our project group collected two datasets of 
images with a detected apple scab. Both datasets are accessible in Kaggle repository 
under CC BY-NC-ND 4.0 license: AppleScabFDs (Web, 2021a) and AppleScabLDs 
(Web, 2021b). However, the collected datasets are imbalanced and are not sufficiently 
large. Meanwhile, CNN accuracy strongly depends on the size and quality of datasets 
(Soekhoe et al., 2016). One approach to overcome this problem is to use transfer 
learning. The learning techniques, which can learn from small datasets, are formally 
called few-shot learning (FSL). And there is a variety of FSL learning approaches that 
can be organized into four main categories: metalearning, metric learning, data 
augmentation, and transfer learning (Afifi et al., 2020). According to Weiss et al. (2016): 
‘The subject of transfer learning is a well-researched area as evidenced by more than 700 
academic papers addressing the topic in the last 5 years’. Analyzing transfer learning 
impact using ImageNet datasets, Kornblith et al. (2019) found that, when networks are 
used as fixed feature extractors or fine-tuned, there is a strong correlation between 
ImageNet accuracy and transfer accuracy (r = 0.99 and 0.96, respectively). However, 
Ngiam et al. (2018) identify other important features for transfer learning - it is the usage 
of close categories. Cui et al. (2018) mention about the importance of domain similarity 
too and propose the methodology, which can be applied to measure a distance between 
datasets. 

Generalizing, it is important to select an appropriate transfer learning dataset to 
train CNN for apple scab detection based on the collected AppleScabFDs and 
AppleScabLDs datasets. The methodology of Cui et al. (2018) can be applied for this 
task. However, according to the Cui et al. (2018), this methodology does not guarantee 
the optimal selection of the dataset for transfer learning, but they experimentally prove 
that this simple strategy works well in practice using different architectures of neural 
networks. Therefore, the accuracy of CNN model still must be tested. For example, 
AlexNet architecture can be applied as a benchmark to measure dataset similarity that 
will be additionally interesting, because it is a tradition to compare accuracy results using 
this architecture among deep learning scholars. Meanwhile, a feature extractor pretrained 
on ImageNet can be applied for measurement of domain similarity, as it is de-facto 
standard dataset for machine learning. However, it must be removed from source 
datasets for experiment clearance to avoid some possible feature extractor preferences. 

The goal of our research is to select the most suitable dataset for transfer learning 
for the apple scab detection domain and to evaluate the transfer learning impact 
comparing it with learning from scratch. 

The objectives of research: 
– to collect the natural images of apple scab; 
– to measure domain distance among datasets; 
– to evaluate transfer learning impact on CNN accuracy. 
The analysis of training results showed that transfer learning positively impacts 

CNN performance. The difference among the neural network models was statistically 
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confirmed by Mann-Whitney-Wilcoxon test with significance level 0.05. iFood251X 
provided the best accuracy improvement compared with another datasets applied in the 
experiment: CIFAR-10, CIFAR-100 and PlantVillage. 

 
LITERATURE REVIEW 

 
Lately, plant pathogen detection is a topical theme of research direction related to 

convolutional neural network (CNN) application in smart farming and horticulture. 
There can be mentioned that many modern researches, which are completed under smart 
farming trend, traditionally they are directed to develop a solution to identify specific 
pathogens of some plant or based on open datasets like PlantVillage. For example, 
Adhikari et al. (2018), Rangarajan et al. (2018) and Salih et al. (2020) presented solutions 
for tomato disease detection, which were based on CNN application. Meanwhile, Afifi 
et al. (2021) and Esgario et al. (2020) used deep learning for coffee pathogen detection, 
but Muhammad et al. (2021) - for disease of Aloe vera. 

Describing the detection of apple pathogens, Liu et al. (2018) applied AlexNet for 
detection of following apple pathogens: mosaic virus, brown spot, rust and Alternaria 
leaf spot. Baranwal et al. (2019) applied augmentation and LeNet-5 architecture design 
for apple subgroup classification extracted from PlantVillage dataset.  

Considering the object of research - transfer learning, the related experiments, when 
transfer learning was applied for apple scab detection, were already completed. For 
example, Yan et al. (2020) and Khan et al. (2020) experimented with VGG and AlexNet 
architectures pretrained on ImageNet. May be Afifi et al. (2021) experiments are not 
directly related to apple scab monitoring, but they provide comprehensive study of FSL 
techniques based on PlantVillage dataset. 

Touching on the topic of embedded devices. Petrellis, N. (2017) provided review 
of existing solutions, as well as, proposed own mobile application based on spectral 
analysis. However, Picon et al. (2019) proposed early identification application of three 
relevant European endemic wheat diseases. 

Other active research direction is IoT application in the food industry. For example, 
Nasir et al. (2020) and Xenakis et al. (2020) proposed CNN solutions for IoT to detect 
plant diseases. 

The current limitations of deep learning related to plant disease diagnostic are 
discussed in review of Arsenovic et al. (2019), where authors mention the limitation that 
currently available datasets do not contain images gathered and labeled from real-life 
situations. A more wide review of challenges is provided by Hasan et al. (2020), who 
underline the importance of new datasets with natural images and CNN solutions with 
smaller computation time for embedded solutions. That depicts the importance and 
originality of the current research, which considered dataset collection with natural 
images to develop an embedded CNN solution for mobile applications. 

 
MATERIALS AND METHODS 

 
The collection of digital images were carried out in different locations of Latvia 

(Fig. 1). Digital images with characteristic scab symptoms on leaves and fruits were 
collected from the Institute of Horticulture (LatHort) apple collection (Krimūnu parish, 
Dobeles district, two locations: 56.612338, 23.305949; 56.610936, 23.298447), 
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commercial orchard (Skaistkalnes parish, Vecumnieku district 56.3652416, 
24.6025912), and home gardens (Valgundes parish: 56.695785, 23.718894; Ozolnieku 
parish: 56.684399, 23.834508; Sējas parish: 57.285628, 24.479879). Data collection was 
done during the apple growing season, from the beginning of June 2020, when the first 
signs of apple scab infection began to appear on the leaves, until the end of September 
2020, when both leaves and fruits showed other signs of damage preventing 
distinguishing from apple scab and were at the end of the growing season. 

 

 
 

Figure 1. Locations of image acquisition for datasets AppleScabDLs and AppleScabDFs. 
 
The collection of digital images was carried out using two types of devices with 

different camera resolutions - smartphone cameras (12 MP, 13 MP, 48 MP) and a digital 
compact camera (10 MP). 

Apple leaves and fruits were photographed at different development stages and 
with different signs of damage. 

The collection of images was carried out in field conditions, in orchards. Apple 
leaves and fruits were photographed as separate objects. The images were taken at three 
different stages of the day - in the morning (9:00–10:00), around noon (12:00–14:00), as 
well as in the evening (16:00–17:00) to provide a variety of natural light conditions. The 
images were also taken on both sunny days and overcast days to provide different types 
of light (soft light and hard light). 

The leaves and fruits were framed so that they occupied the image area as much as 
possible and were in the center of the image, and the focal point was on the object. The 
object may have had other leaves or fruits in the background. The same object was 
photographed from multiple viewpoints. 

For each subject, leaf or fruits, the signs of apple scab expression caused by 
V. inaequalis had been documented by imaging. Images of apple leaves and fruits 
without visual damage and with visual noise like drops of water, insects, shadows, 
mechanical or biological damage were obtained in parallel with sick leaves and fruits. 

The resulting images were manually reviewed and grouped into two datasets called 
AppleScabFDs (images with apple fruits) and AppleScabLDs (images with apple leaves). 
Where in turn the images of leaves and fruits were grouped into two data subsets - images 
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with scab symptoms and images without scab symptoms. The examples of dataset photos 
are provided in Fig. 2. 

 

a)  b)  c)  d)  
 

Figure 2. Photo examples from collected datasets: a) healthy apple fruit; b) apple fruit infected 
by scab; c) healthy apple leaf; d) leaf infected by apple scab. 

 
The experiment consists of five stages (the activity diagram of the experiment is 

provided in Fig. 3): 
1) Measurement of distance between image datasets is completed considering the 

methodology described in the scientific article of Cui et al. (2018). 
2) AlexNet model is trained using transfer learning methodology, where the fine-

tuning approach is applied for retraining CNN with a new dataset. 
3) Investigation of CNN accuracy is completed. Training accuracy, validation 

accuracy and Cohen Kappa are measured. 
4) Statistical analysis were performed to identify transfer learning impact neural 

network accuracy. 
5) The relationship between EMD and obtained accuracy is analyzed using line 

diagrams. 
 

 
 
Figure 3. Activity diagram of experiment. 

 
Cui et al. (2018) methodology is based on Earth Mover’s Distance and feature 

extractor application, for example, CNN trained on a large dataset like ImageNet. 
If S is the source dataset, but T – the target dataset, then each category can be 

represented as ܵ = ,௜ݏ)} ௜)}௜ୀଵݓ
௠  and ܶ = ,௝ݐ)} ௝)}௝ୀଵݓ

௡ , where si is the i-th category of 
dataset S, but weight ݓ௜ are normalized numbers of images in datasets (1): 

∑ ௜ݓ = ∑ ௝ݓ = 1. (1) 

Using feature extractor, each image can be transformed into feature vectors g(si) 
and g(tj) respectively. To calculate the distance between two categories, the mean vectors 
of each category is applied (2): 
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݀௜,௝ = ฮ݃̅(ݏ௜) −  ฮ. (2)(௝ݐ)̅݃

Cui et al. (2018) propose Euclidean metric to calculate distance ݀௜,௝ as the cost of 
flow from category i to j. Then linear programming algorithms are applied to search 
optimal flow ௜݂,௝. In results, the Earth Mover’s Distance is calculated using Eq. 3: 

݀(ܵ, ܶ) = ,ܵ)ܦܯܧ ܶ) =
∑ ௙೔,ೕ

೘,೙
೔సభ,ೕసభ ∙ௗ೔,ೕ

∑ ௙೔,ೕ
೘,೙
೔సభ,ೕసభ

. (3) 

Considering domain similarity, Cui et al. (2018) propose next equition (4): 

,ܵ)݉݅ݏ ܶ) = ݁ିఊ∙ௗ(ௌ,்), (4) 

where the coefficient ߛ = 0.001. 
Python 3.6, Keras and Jupyter Notebook were applied to write scripts for 

experiments to measure Earth Mover’s distances between datasets and to train 
convolutional neural networks. The experiment was completed using computers 
equipped with NVIDIA GTX 1050 and RTX 2070. 

Three destination datasets are investigated in the experiment: two our datasets 
(AppleScabFDs and AppleScabLDs) and Fruits360 dataset with 3 categories (‘apples’, 
‘pears’ and ‘others’), which will be abbreviated as Fruits360-3. Fruits360-3 dataset is 

The domain similarity was calculated by the Earth Mover’s distance (EMD) and 
the method described in the article of Cui et al. (2018) measuring EMD using 
MobileNetV2 CNN trained on ImageNet dataset as a feature extractor. Therefore, 
ImageNet is not included in the comparison, because it is applied by the feature extractor 
- as benchmark. 

AlexNet architecture is a benchmark to compare deep learning results. Additionally, 
AlexNet architecture was selected due to its weak classification results in our previous 
experiment (Kodors et al., 2020). Therefore, the transfer learning impact can be more 
easily detected. The AlexNet model of previous research (Kodors et al., 2020) is applied 
in the experiment to obtain comparable data (Fig. 5). 
 

selected due to our previous 
experiment (Kodors et al., 2020). 
This data provides the possibility to 
compare the previous results of 
learning from scratch with the 
results of transfer learning. Next, 
five source datasets were selected 
for transfer learning: Fruits-360 
(Mureşan & Oltean, 2018), CIFAR-10 
(Krizhevsky, 2009), CIFAR-100 
(Krizhevsky, 2009), iFood251X 
(Kaur et al., 2019) and PlantVillage 
(Hughes & Salathé, 2015). Some 
examples of images are provided in 
Fig. 4 to make a more intuitive 
understanding of the dataset content. 

 

 
 
Figure 4. Image examples of datasets. 
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Figure 5. Structure of AlexNet model applied in the experiment. 
 
The Mann-Whitney-Wilcoxon test with significance level 0.05 is applied to 

identify differences among the models trained on Fruits360-3, obtained during this 
experiment and in the previous our experiment (Kodors et al., 2020). The relationship 
between EMD and the obtained neural network accuracy, as well as, the most appropriate 
dataset for pretraining are analyzed using line diagrams constructed by the approach 
presented in the article of Cui et al. (2018). 

 
RESULTS AND DISCUSSION 

 
Two datasets with images of apple scab symptoms were collected (Fig. 2). One 

dataset contains examples of scab symptoms on leaves, another - on apple fruits. From 
the perspective of artificial intelligence engineering, it must be mentioned that both 
datasets are imbalanced (see Fig. 6), because it strongly impacts CNN training results. 

 

 
 

Figure 6. Proportion of the number of cases in different classes. 
 
All calculated EMDs across the domains are presented in Table 1. iFood251X 

dataset showed the closest EMDs to all destination datasets of experiment. Meanwhile, 
CIFAR10 is the furthest from the collected scab datasets, AppleScabFDs and 
AppleScabLDs. It must be noted that CIFAR10 and CIFAR100 have simple content 
images including apples and pears, but PlantVillage has images of healthy and infected 
leaves, however, they are not natural images and photographed in laboratory conditions. 
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At the same time, iFood251X contains natural images with complex content. Therefore, 
the closeness of iFood251X can be explained by the wealth of feature vocabulary. It 
means that datasets with inatural images are not effective for CNN pretraining, which 
will analyze natural images. 

 
Table 1. Earth mover's distance between datasets 

Datasets 
Destination 
Fruits360-3 AppleScabFDs AppleScabLDs 

So
ur

ce
 CIFAR10 0.79308 0.80581 0.79781 

CIFAR100 0.80161 0.81133 0.80229 
iFood251X 1 0.80865 0.85017 0.83711 
PlantVillage 0.78553 0.82449 0.83655 

1 Source dataset, which is the closest to all destination datasets. 
 

The Mann-Whitney-Wilcoxon test was completed to identify statistically reliable 
differences between training from scratch and transfer learning. Fruits360-3 dataset was 
selected for comparison. The calculated probability values (p-values) are provided in 
Table 2. 
 
Table 2. Results of Mann-Whitney-Wilcoxon test (p-values) 

From Scratch Internal TL CIFAR10 CIFAR100 iFood251X PlantVillage 
1.00000 0.00912 0.00221 0.00221 0.00221 0.00459 

 
However, average accuracies are depicted in the box diagram (see Fig. 7). Thus, it 

is important to mention that internal transfer learning provided performance 
improvement, when CNN was initially trained on the original Fruits360 dataset with 120 
classes and then retrained on the same dataset with 3 classes (Fruits360-3). These results 
agree with Ngiam, et al. (2018) conclusions that features learned on coarse -grained 

explain better results of CIFAR-100, because it contains apple and pear images. 
Meanwhile, PlantVillage provided the smallest EMD and decreased CNN accuracy. 
Authors of EMD method mention that this greedy way of selection has no guarantee on 
the optimality of the selected subset in terms of domain similarity, but this simple 

classes do not provide significant 
benefits transferred to fine-
grained datasets, but transfer 
learning using close categories is 
preferable than usage of entire 
dataset (Barman et al., 2019). At 
the same time, CIFAR and 
iFood251X provided significant 
improvements. However, CIFAR-
100 dataset was better than 
iFood251X despite the higher 
EMD. According to Ngiam et al. 
(2018), transfer learning using 
close categories is preferable than 
usage of the entire dataset that can 

 

 
Figure 7. Fruits360-3 trained using different 
approaches. 
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strategy works well in practice (Cui et al., 2018). Therefore, maybe it does not guarantee 
the optimality of the selected subset, but it can be an effective method to choose datasets 
for experiments with transfer learning. 

The constructed line diagrams (Figs 8–10), which depict the relationship between 
EMD and neural network accuracy, showed that performance of the models trained on 
balanced dataset Fruits360-3 was improved using transfer learning. These results 
coincide with the investigations of Cui et al. (2018). However, imbalanced datasets, 
AppleScabFDs and AppleScabLDs, must be analysed independently, because they 
provide other shapes of performance lines. 

 

 
 

Figure 8. Relationship among EMD, transfer learning and training accuracy: horizontal lines - 
from scratch. 

 

 
 

Figure 9. Relationship among EMD, transfer learning and validation accuracy: horizontal 
lines - from scratch. 

 
AppleScabFDs and AppleScabLDs datasets obtained different performance results 

among themselves. Based on Cohen Kappa analysis and comparing it with training from 
scratch (see Fig. 10), transfer learning provided a stronger impact on the smallest  
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dataset - AppleScabFDs (see Fig. 5), it can be explained by Weiss et al., 2016, and 
Barman et al., 2019, investigations, that transfer learning provides a strong positive 
impact on small dataset. It must be mentioned, that the performance lines are like the 
trends of lines provided in the article of Cui et al. (2018). Meanwhile, the systematic 
study of Buda et al. (2018) showed that the effect of class imbalance on classification 
performance is detrimental and recommend the application of oversampling to solve a 
problem with imbalanced datasets. However, Wang et al. (2014) showed that 
oversampling can call overfitting. AppleScabLDs is strongly imbalanced and large, 
therefore it provides such a dramatic effect on transfer learning comparing with training 
from scratch. 
 

 
 

Figure 10. Relationship among EMD, transfer learning and Cohen Kappa: horizontal 
lines - from scratch. 
 

CIFAR100 sufficiently well improved the classification accuracy for Fruits360-3 
dataset comparing with the closest dataset - iFood251X (see Table 1 and Figs 7–10), 
because they contained similar images. For the same reason, PlantVillage improved 
recognition accuracy for AppleScabLDs (see Figs 9–10). These results provide the 
similar conclusion to Huh et al. (2016) - subclasses which share a common visual 
structure allow the CNN to learn features that are more generalizable. 
 

CONCLUSIONS 
 

The resulting images were manually reviewed and grouped into two datasets called 
AppleScabFDs (images with apple fruits) and AppleScabLDs (images with apple leaves). 
Where in turn the images of leaves and fruits were grouped into two data subsets - images 
with scab symptoms and images without scab symptoms. Collected datasets are 
accessible in Kaggle repository (Web, 2021a, 2001b). It should be mentioned that both 
datasets are imbalanced (Fig. 6), that prevents CNN to get high accuracy. 

The experiment showed that transfer learning positively affects CNN accuracy. 
However, it is important to measure Earth Mover’s distance selecting dataset for 
pretraining, since an inappropriate dataset can otherwise provide a negative effect. 
Additionally, it is important to select datasets with similar categories considering data 
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collection and usage principles. Therefore, if there are plans for the use of neural 
networks in natural conditions, source datasets must be collected in natural conditions 
too. As well as, the size of the dataset plays an essential role: transfer learning strongly 
improves the results of small imbalanced dataset, but a large imbalanced dataset is 
slowly compensated by transfer learning and may be the training from scratch is more 
effective for it. 

Obtained results showed that the most important task for further data collection is 
to improve the datasets, AppleScabFDs and AppleScabLDs, by collecting more photos 
for minimal classes. The dataset should be more balanced and the image acquisition 
process should be monitored in a way to collect an equal number of images of all classes, 
since the plant disease experts are more concentrated during data collection on anomalies 
and manifestations of diseases than intact parts of plants. Comparing the results with 
related researches, it can be concluded: if the problem with imbalanced data is solved, 
the application accuracy will be obtained. 
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