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Abstract. The accelerated development of flower buds during the thaw in apricots and almonds 

during the ecodormancy period leads to significant damage to the flower elements during return 

frosts and loss of future crops. The aim of the research was to identify the mechanisms of delay 

in the rate of development of flower buds during the ecodormancy period, their relationship with 

the degree of frost resistance and the timing of flowering in apricots. The following indicators of 
flower buds were analyzed: the degree of exit from endodormancy, frost resistance at 

temperatures of -18 °C and -31 °C, the degree of morphological development of flower elements, 

the activity of α-amylases at temperatures of + 15 °C and + 60 °C, total content water, 

phenolcarboxylic acids, flavonoids and free proline. A significant positive correlation was 

revealed between the percentage of death of flower buds at a temperature of -18 °C and the 

percentage of buds emerging from endogenous dormancy (0.64*), the percentage of death of buds 

at a temperature of -31 °C and the degree of development of flower elements (0.70*), water 

content and the degree of development of flower elements (0.76**), amylase activity at +60 °C 

and amylase activity at +15 °C (0.76**), the content of phenolcarboxylic acids in the bark of 

shoots and flower buds (0.61*). For the first time, psychrophilic forms of α-amylases have been 

discovered in apricot flower buds. 
 

Key words: frost resistance of flower buds, psychrophilic α-amylase, thermal stability of  

α-amylases, α-amylase inhibitors, phenolic compounds. 

 

INTRODUCTION 

 

Winter hardiness of flower buds is the main problem of stone fruit crops in the 
northern hemisphere (Yablonskiy & Markovich, 1970a; Sholokhov & Savvina, 1975). 

The greatest winter hardiness of flower buds corresponds to the endodormancy period, 

as buds break from endodormancy their winter hardiness is also lost (Glozer, 2010). The 
mechanism of endodormancy has not yet been fully understood, but it is known that its 

duration depends on both the genotype (Olukolu, 2010) and the number of low positive 

temperatures in the autumn-winter period (Viti et al., 2010). There is also evidence that 
plant break endodormancy can be produced not only by low positive temperatures, but 
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also by respiration inhibitors (Walton et al., 2009; Hegazi, 2012; El Masri et al., 2018), 

producers of active oxygen radicals, or strong oxidants (Bailly et al., 2008; Sarath & 

Mitchell, 2008). Without break endodormancy, the plant is incapable of further 
development. This problem arises in hot countries, where, for some cultivars with  

long-term dormancy, there is a lack of low positive temperatures to exit endodormancy 

(Rouse et al., 2006). If a plant approaches the growing season with incomplete exit from 
dormancy, then it develops very slowly and, as a rule, drops flower buds (Alburquerque 

et al., 2003). During endodormancy, both hydrolytic and synthetic processes are blocked 

(Seif El-Yazal & Seif El-Yazal, 2013), no new gene products capable of breaking 

dormancy arise (Gumilevskaya & Azarkovich, 2007; Dogramaci et al., 2010), but 
allowed oxidative polymerization of reserve substances - carbohydrates (Cooke et al., 

2012; Fadon et al., 2018), fatty acids (Porta & Rocha-Sosa, 2002), phenolic compounds 

(Ji et al., 2015). After break endodormancy, hydrolytic processes are gradually activated. 
One of the first events in cells after break endodormancy is the hydrolysis of a very 

hydrophilic protein, dehydrin (Yamane et al., 2006). 

Hydrolysis of 1,3-β–glucan (callose) in the plasmodesmata and sieve tube 

(lat.tuboli cribrosi) of the vascular bundles, after break endodormancy, opens the way 
for tissue watering (Leubner-Metzger & Meins, 2001; Leubner-Metzger, 2003; Cilia & 

Jackson, 2004) and creating conditions for the activity of other hydrolases. Then starch 

(Fadon et al., 2018), oligosaccharides (Yablonskiy & Markovich, 1970), and lipids (Seif 
El-Yazal & Seif El-Yazal, 2013) are gradually hydrolyzed. In different apricot varieties, 

the endodormancy period can vary from 300 chill units for varieties - ‘А.1740’ and ‘Gold 

Kist’ (Bradley & Maurer, 2002; Olukolu et al., 2009), to 1,266 and 1,450 chill units for 
varieties - ‘Orangered’® and ‘Zard’ (Kostina, 1969; Guerriero et al., 2002). 

Modern apricot varieties, in a temperate climate zone, lack endodormancy for the 

entire frosty period, which reduces their winter hardiness. In Central Russia, the 

maximum duration of endodormancy (up to the 1st–2nd decade of February) in such 
apricot varieties as: ‘Zavodskoy No. 1’, ‘Saratov ruby’® (Golubev et al., 2020), 

‘Manitoba 604’ (Licznar–Małańczuk & Sosna, 2005), but even their rest is not enough 

for resistance to thaws. Most of the varieties of Central Russia come out of dormancy by 
mid-January. After the endodormancy is over, the sum of positive temperatures (Razavi 

et al., 2011) and the maximum values of thaw temperatures are of greatest importance 

for the development of flower buds. In the more southern regions of the country, where 
there are many thaws in the second half of winter and the ambient temperature can reach 

+15 – +20 °C, internal factors that restrain the rapid development of flower buds are of 

particular importance. Studies show that the rate of development of flower buds during 

the ecodormancy period and their winter hardiness depend on the sensitivity of the 
genotype to the photoperiod (Stirling et al., 2002; Avdeev, 2014), the time of 

differentiation of flower buds (Tuz, 1960; Nemeth et al., 2008), the rate of development 

elements of the flower (Yablonskiy, 1970), the intensity of the breakdown of 
carbohydrates, indirectly indicating the activity of hydrolytic enzymes (Yablonskiy & 

Markovich, 1970; Seif El-Yazal & Seif El-Yazal, 2013), the content of phenolic 

inhibitors (Morozova, 1970; Korableva, 1974; Nenko et al., 2018; Paliy et al., 2018), 

sensitivity to thaw temperatures (Genkel & Oknina, 1964), biosynthesis of stress 
proteins (Levit et al., 1990). During the ecodormancy period, flower buds develop 

especially rapidly in almonds (Amygdalus communis L.) (Prudencio et al., 2020) and 

apricots (Prunus Armeniaca L.) (Tuz, 1960). Our research is aimed at identifying the 
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mechanisms of delaying the rate of development of flower buds during the ecodormancy 

period, their relationship with the degree of frost resistance and flowering periods, as 

well as the classification of apricot genotypes according to the mechanisms of protection 
against premature awakening of flower buds, which will help combine several 

resistances in the created variety and prevent them death from recurrent frosts. 

 

MATERIALS AND METHODS 

 

The material for the research was a collection of apricot varieties and hybrid forms 

(h.f.) of the private breeding nursery Golubevs, Saratov (Table 1). 
 

Table 1. Characteristics of the studied samples 

 
The analyzed plants grow in one area, without differences in microrelief, soil 

fertility and microclimate. Breeding forms - ‘Zavodskoy No. 1’, ‘LXVI-09-1’, ‘VII-05-1’, 

‘Saratov ruby’ ®, ‘Generous’, ‘P. sibirica No. 1’ grow on their roots, genotypes - 
‘7589’, ‘Late blooming EM’, ‘Manitoba 604’, ‘Zhigulevsky souvenir’, ‘Gonsi Magiyar 

kaiszi’ are grafted onto the same seminal rootstocks of apricot, the eastern plum 

‘Svetlana’ is grafted onto a seedling home plum (Prunus domestica). Samples were taken 
from the southeastern side from the middle part of the crown, simultaneously for all 

analyzes (except for determining the release of flower buds from dormancy) from the 

same trees at the age of 12 years. 

The winter hardiness of fruit buds was determined in mid-February (February 16, 
2020) (the third component of winter hardiness is frost resistance during thaws), after 

holding for 24 hours at temperatures of -18 °C or -31 °C (rapid cooling) and the 3rd days 

at a temperature of +25 °С. The winter hardiness of fruit buds was analyzed in 2 
replicates, 100 buds each. The number of dead buds was counted on longitudinal sections 

under an MBS-10 binocular microscope and expressed as a percentage of the total 

number of buds. 
The stages of morphophysiological development of apricot flower buds were 

studied under an MBS-10 binocular microscope with a Levenhuk M300 BASE 

Microscope digital camera. The degree of development of flower elements was assessed 

using 12 photographs of longitudinal sections of flower buds of each cultivar for each 
sampling date (12/18/2019, 01/22/2020, 02/16/2020). The delay or acceleration of 

Genotype  Origin 
Delayed or acceleration

flowering 

‘Zavodskoy No. 1’ local form very late, +3 days 
‘LXVI–09–1’ ‘XV-03-1’ x ‘Late blooming №4’ very late, +3 days 

‘7589’  P. brigantiaca х P. armeniaca ‘Makhtobi’ very late, +3 days 

Plum ‘Svetlana’ unknown very late, +3 days 

‘VII–05–1’ Plum ‘Svetlana’ x apricot h.f. ‘Original’ very late, +3 days 

‘Late blooming EM’ local form very late, +3 days 

‘Saratov ruby’ ® sibirian h.f. ‘Handsome’ x h.f. ‘Pharaon’ middle (23.04.2020) 

‘Manitoba 604’ ‘Scout’ х ‘MeClure’ early-middle, -0.5 days 

‘Zhigulevsky souvenir’ unknown early, -1 day 

‘Gonsi Magyar kajszi’  ‘Magyar Kajszi’ clone early, -1 day 

‘Generous’ h. f. ‘Pharaoh’ x h.f. of Baikalov very early, -2 days 

‘P. sibirica No. 1’  unknown superearly, -3 days 
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flowering was assessed visually by the difference in the dates of mass flowering (more 

than 80% of open flowers) in the studied genotypes in comparison with the apricot 

cultivar ‘Saratov Ruby’® with an average flowering period (04/23/2020). 
The degree of interruption of dormancy of flower buds in the studied genotypes 

was determined by the percentage of flowers capable of blooming after 15 days on cut 

branches placed in water at +25 °C, guided by Richardson’s method (Richardson et al. 
1974). For analysis, three branches of each variety were cut off (01/22/2020) with at least 

120–150 flower buds each. The water was changed every 3 days. All flower buds capable 

of developing into a flower to the white bud stage were classified as dormancy breaking. 

The α-amylase activity was determined using 3,5-dinitrosalicylic acid (DNSA) 
(Miller, 1959). The flower buds stored at -20 °C were ground in a porcelain mortar with the 

addition of quartz sand. The extract for analysis was obtained as follows: 0.5 g of crushed 

flower buds were added with 5 mL of phosphate buffer (pH 6.8), and then incubated for 
1 hour at 4 °C with constant shaking. Then the samples were centrifuged at 10,000 rpm 

for 10 minutes. Further, all parameters were determined in the supernatant fluid. 

The calibration graph was built for maltose, in triplicate. 

Substrate for fermentolysis: 15 mL of phosphate buffer (pH 6.8) and 5 mL of 0.9% 
sodium chloride solution were heated to 80–90 °C, a suspension consisting of soluble 

starch 0.5 g and 20 mL of distilled water was added, boiled for 1.5–2 minutes, brought 

to 50 mL, and then cooled. 
Enzymatic hydrolysis was carried out as follows: 1 mL of the extract (supernatant) 

was incubated with 1 mL of the substrate at 60 °C for 120 minutes or at 15 °C for 

24 hours. To determine the amylase activity, 0.1 mL of the enzyme mixture was taken, 
0.3 mL of 3,5-dinitrosalicylic acid reagent was added to it and incubated for 10 minutes 

at 100 °C in a water bath. Then 3 mL of distilled water cooled to +4 °C was added. 

The optical density (D) of the colored solution was determined on a 

spectrophotometer Model - 752N 190–960 nm (China) at a wavelength of 530 nm. 
Calculation of α-amylase activity was performed using a calibration curve. The  

a-amylase activity was expressed in mg of maltose released per minute per 100 mg wet 

weight of the sample. The determination was carried out in three biological and three 
analytical replicates. 

Phenolic compounds were extracted three times from the bark of annual apricot 

shoots or flower buds with 70% ethanol at 80 °C in a flask with a reflux condenser. The 
extraction was carried out as follows: 300 mg of plant material dried at 110 °C (flower 

buds or bark of annual shoots) was poured for the first time with 10 mL of 70% ethanol 

and heated in a water bath (80 °C) for 30 minutes. It was re-extracted with 10 mL of 

70% ethanol under the same conditions for 20 minutes. The third time was extracted 
with 5 mL of 70% ethanol for 10 min. The extracted material and extracts were 

combined, transferred quantitatively to centrifuge tubes, and centrifuged at 6,000 rpm 

for 10 minutes. The supernatant was made up to 25 mL with 70% ethanol. 
The study was carried out in 3 biological and 3 analytical replicates. The aliquot 

for analysis was 0.2 mL. 

The total content of phenolcarboxylic acids was determined by the method developed 

for plant raw materials (Petukhova & Mirovich, 2019), spectrophotometrically at a 
wavelength of 325 nm. For the quantitative determination of flavonoids, we used the 

method (Methods for assessing..., 2012), based on the ability of flavonoids to form a 

stable complex with a citrate-boric reagent with an absorption maximum at 420 nm. 
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The content of flavonoids and phenolcarboxylic acids (PCA) in flower buds or bark 

of annual shoots on February 16, 2020 in apricot, plum, and plum-apricot hybrids was 

expressed in mg per 1 g of dry weight. The calibration graph for determining the 
concentration of phenolcarboxylic acids was built using gallic acid, and for flavonoids, 

using quercetin. 

Thin layer chromatography of flavonoids was carried out in an upward flow of solvents 
toluene - acetone - formic acid at a ratio of 40: 30: 6 or on an OPTLC ‘Chrompress-25’ 

instrument using plates for HPTLC / OPTLC Silica Gel Pre-coated Aluminum Sheets. 

The proline content in flower buds was determined by colorimetric or 

spectrophotometric methods at λ 530 nm, in glass cuvettes, using a ninhydrin reagent 
and sulfosalicylic acid (Bates et al., 1973). The concentration of proline in the samples 

was expressed in mg per 1 g of dry weight of the sample. Proline was determined in 

3 biological and 5 analytical replicates. The weighed amount was 200 mg. 
The water content in flower buds was determined by the gravimetric method, after 

drying to constant weight in a thermostat at 110 °C. For the analysis, a sample of 1 g of 

plant material was taken in 3 replicates. 

All experimental data were processed statistically using the AGROS program, 
version 2.09. 

 
RESULTS AND DISCUSSION 

 
Freezing of apricot branches with flower buds in mid-February during a thaw at a 

temperature of -18 °C showed the distribution of genotypes according to the degree of 

damage, from 8.20% to 91.07% (Table 2). 
 

Table 2. The degree of frost resistance of flower buds, their release from dormancy and the 

timing of flowering 

 

Genotype 

Percent death at 

temperature, as of 
16.02.2020 

Percent of flower  

buds recovery from 
dormancy  

on 01/22/2020 

Degree of 

develop-ment 
of flower 

elements 

Water 

content in 
flower 

buds (%) -18 °C -31 °C 

‘Zavodskoy No. 1’ 8.20 100.00 8.77 6 52.12 

‘LXVI–09–1’  9.06 100.00 10.68 5 53.93 

‘7589’ 12.05 97.78 14.48 2 44.30 

Plum ‘Svetlana’ 15.19 46.00 41.88 1 48.46 

‘VII–05–1’  20.01 95.18 33.62 3 48.37 

‘Late blooming EM’ 25.00 99.00 49.61 4 46.73 

‘Saratov ruby’ ®  30.11 97.02 49.15 4 47.72 

‘Manitoba 604’  34.50 100.00 83.36 6 55.81 

‘Zhigulevsky souvenir’ 19.17 100.00 69.52 5 54.03 

‘Gonci Magyar Kajszi’  74.54 100.00 54.64 6 52.07 
‘Generous’  91.07 100.00 89.09 6 55.54 

‘P. sibirica No. 1’ 19.61 100.00 67.75 6 51.11 

LSD 0.05 17.672 7.033 21.244  2.513 
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There is a tendency to an increase in the death of flower buds with an increase in 

the percentage of their exit from endodormancy (Correlation coefficient 0.64*). The 

available feature correlations are shown in Table 3. 

In our study, all genotypes could be divided into 6 groups according to the degree 

of development of flower elements (Table 2, Fig. 1). The first degree of development of 
flower elements was characterized by small, poorly formed anthers with a high degree 

of transparency, a small transparent pistil, transparent petals, and the presence of free 

space in the bud. From the first to the sixth degree, there was an increase in the size of 
the bud as a whole and all the elements of the flower, the formation of their typical 

structure, a decrease in transparency and free space. The sixth degree of bud 

development was characterized by well-formed all structural elements of the flower with 
large, opaque anthers, a large pistil with a rounded basal part and a formed stigma. 

A particularly strong lag in the morphophysiological development of flower buds 

was observed in the eastern plum ‘Svetlana’ and a distant hybrid ‘7589’ of the alpine 

plum and apricot (P. brigantiaca x P. armeniaca ‘Makhtobi’). It is known from the 
literature that the degree of winter hardiness of flower buds depends on the stage of 

morphophysiological development; the more advanced the morphophysiological stage 

of flower bud, the lower its hardiness (Sholokhov & Savvina, 1975). Flower buds of 
varieties and hybrids created on the basis of Siberian genotypes (‘Manitoba 604’, 

‘Generous’, ‘P. sibirica No. 1’) are characterized by an accelerated rate of 

morphophysiological development of flower buds (5 и 6 degree of development of 

flower elements). Flower buds after emerging from endogenous dormancy, in order to 
maintain viability at critical temperatures (in our case, -31 °C), require additional 

protective mechanisms aimed at curbing the development of floral elements and the 

accumulation of water content in the buds. The very low correlation coefficient between 
the percentage of flower bud deaths at -31 °C and the percentage of awakened flower 

buds (0.1) indicates that not all late flowering genotypes have mechanisms to inhibit the 

rapid rate of bud development during the ecodormancy period. When flower buds are 
exposed to a critically low temperature of -31 °C during the ecodormancy period, it is 

not the degree of dormancy or even the flowering period of the genotype that comes to 

the fore, but the stage of morphophysiological development of flower buds (correlation 

The Table 2 shows that in all very 
late flowering genotypes, the death of 

buds at -18 °C does not exceed 25%, 

whereas in early (‘Gonsi Magyar 
kaiszi’) and very early (‘Generous’) 

flowering genotypes, death can reach 

74.54 and 91.07%, respectively. Late 
blooming genotypes differed quite 

strongly in the percentage of flower 

buds coming out of dormancy - from 

8.77% to 49.61%. Late flowering 
genotypes differed even more in the 

degree of development of flower 

elements. Fig. 1 shows the degree of 
development of floral elements in the 

most contrasting genotypes. 

 
Table 3. Correlation analysis between frost 

resistance and some other characteristics of 

flower buds 

Correlation coefficient matrix 

 1 2  3 4 5 

1 1.00     

2 0.20 1.00    
3 0.64* 0.10 1.00   

4 0.43 0.70* 0.41 1.00  

5 0.41 0.27 0.50 0.76** 1.00 

* Significant at 5% level; ** Significant at 1% level; 

1 – percent death of flower buds at -18 °C; 
2 – percent death of flower buds at -31 °C; 
3 – percentage of awakened buds; 4 – degree of 
development of flower elements; 5 – Water content 
in flower buds, %. 
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coefficient 0.70*) and the water content in cells. In very late flowering genotypes 

‘Zavodskoy No. 1’and ‘LXVI-09-1’) with the lowest percentage of buds coming out of 

dormancy (8.77 and 10.68%, respectively), but with more advanced stages of 
development of floral elements (6 and 5, respectively), at extremely low temperatures  

(-31 °C), the death of flower buds was 100%. The highest (statistically significant) frost 

resistance (death of only 46%) was shown by the oriental plum variety ‘Svetlana’, in 
which the average percentage of recovery from dormancy of flower buds (41.88%), but 

the greatest lag in the development of the structural elements of the flower 

(underdeveloped anthers, unformed stigma pistil; see Table 2 and Fig. 1). The total water 

content in the buds of more than 50% was critical for all genotypes, regardless of the 
timing of flowering. 

 
Variety, hybrid,  
shape 

Flower buds morphology on: Degree of development 
of flower elements 12/18/2019 01/22/2020 02/16/2020 

Plum ‘Svetlana’ 

  
 

 

1 

‘7589’ 

  
 

 

2 

‘VII–05–1’  

  
 

 

3 

‘Late blooming EM’  

  
 

 

4 

‘LXVI–09–1’ 

  
 

 

5 

‘Manitoba 604’ 

 

  
 

 

6 

 

Figure 1. The degree of development of floral elements in the most contrasting genotypes at 

different periods of rest. 
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The correlation between the degree of development of flower elements and water 

content is statistically significant and amounts to 0.76** at the 1% significance level. All 

genotypes with earlier flowering than the apricot variety ‘Saratov Ruby’ had a more 
developed morphophysiological stage of flower buds (well-formed, opaque, anthers; 

pistil with a rounded base and a formed stigma), increased water content (more than 

50%) and 100% flower buds death after exposure to temperatures of -31 °C. It is possible 
that active protection mechanisms are more important at critical temperatures, for 

example, osmoprotectors (Arora et al., 1996; Arora R. 1996; Liu et al., 2007; Szabados 

& Savoure, 2009; Chen et al., 2012), antifreeze proteins (Griffith et al., 1992; Yeh et al., 

2000; Griffith et al., 2005; Provesi et al., 2016), cold shock proteins (Perras & Sarhan, 
1989; Gong et al., 2002; Nakaminami et al., 2009; Takahashi et al., 2013) and 

chaperones (Samuel et al., 2000; Karlson & Imai, 2003; Piszczek et al., 2005; Shimosaka 

& Ozawa, 2015). 
So, studies have shown that a delay in the stage of morphophysiological 

development of flower buds is an essential adaptive mechanism in increasing winter 

hardiness. 

To identify the reasons for the accelerated rate of development of apricot flower 
buds during the ecodormancy, the activity of α-amylase, as one of the thermolabile 

enzymes, was studied. Consider the existing prerequisites for such research. During the 

endodormancy period, the maximum accumulation of starch was found in flower buds 
(Fadon et al., 2018), and as it emerges from dormancy, its amount decreases. The enzyme 

hydrolyzing native starch is α-amylase (Manners, 1974). An important role of α-amylase 

in plant life is that, with the participation of this enzyme, such a storage organic matter 
as starch is converted from a non-transportable form into transport sugars, heading to 

growth points. Other amylolytic enzymes are also involved in the degradation of starch, 

but the contribution of α-amylase is to initiate this process. Only α-amylase is able to 

break down intact starch granules (Manners, 1974). Apricot, in contrast to plum, is 
considered a ‘starchy’ breed, that is, in its tissues, part of the starch accumulated in the 

autumn period remains throughout the entire endodormancy period (Bosieva & 

Nartikoeva, 2014). In addition, an increase in amylase activity largely characterizes the 
intensity of the processes of ‘physiological swelling’ associated with the accumulation 

of osmotically active substances (Obrucheva & Antipova, 1997). Some researchers 

(Carginale et al., 2004) associate damage to flower buds in apricot during thaws with the 
presence of its own temperature threshold in each genotype - the threshold of sensitivity 

to positive temperatures. When warming, varieties with a low temperature threshold 

react quickly, initiating biochemical reactions leading to the hydrolysis of reserve 

nutrients and the formation of substances that promote growth. Cultivars with a high 
temperature threshold require more heat to initiate similar reactions. There is evidence 

(Wagner et al. 2017) that the developmental processes of the male gametophyte in plants 

blooming in winter and early spring are able to adapt to low temperatures during 
evolution. 

To study the activity of α-amylase at contrasting temperatures, genotypes of all 

flowering periods were selected - from super early to very late, different sensitivity to 

thaws and frost resistance of flower buds. The experiments were carried out on 9 apricot 
genotypes, 2 apricot-plum hybrids and one oriental plum variety (Table 4). Amylase 

activity was tested at 2 temperatures - +60 °C and + 15 °C, and the enzymatic lysis at 

60 °C was carried out for 120 minutes, and at 15 °C - during the day. 
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Table 4. Activity of α-amylase, (mg of maltose released per minute per 100 mg of wet weight of 

the sample), content of flavonoids (mg per 1 g of dry buds), the content of phenol carboxylic 

acids (PCA) (mg per 1 g of dry buds) and proline (mg per 1 g wet weight of flower buds) in 

February buds (16.02.2020) apricot, plum and plum-apricot hybrids 

Genotype 

α-amylase activity  

in flower buds, at 

Flavonoid 

content in 

flower buds 

Content of PCA Proline 

content in 

flower buds 
in the  

shoot bark 

in flower 

buds 60 °C 15 °C 

‘Zavodskoy No. 1’ 0.71 0.02 34.56 6.82 11.87 1.05 

LXVI–09–1 0.87 0.76 41.92 7.28 12.91 1.25 

‘7589’ 1.38 0.09 2.57 11.85 16.39 1.46 

Plum Svetlana 0.37 0.15 41.99 9.54 12.68 1.21 

VII–05–1  1.05 0.17 26.17 6.91 13.01 1.06 

‘Late blooming EM’ 2.39 0.19 38.20 9.51 12.79 2.01 

‘Saratov ruby’®  1.19 0.26 35.23 7.58 9.68 0.68 

‘Manitoba 604’  0.80 0.84 37.76 9.23 12.79 0.70 

‘Zhigulevsky souvenir’ 0.74 0.03 10.01 7.25 9.43 1.12 

‘Gonsi Magyar kaiszi ‘  0.74 0.06 39.49 5.90 10.63 1.12 
‘Generous’  1.48 0.90 32.79 7.73 9.23 1.21 

P. sibirica no 1 4.04 2.22 5.53 7.98 7.5 0.93 

LSD 0.05 0.637 0.092  3.320 0.619 1.039 0.063 

 

Studies have shown that genotypes rapidly awakening in the thaw, with an 

advanced stage of morphophysiological development of flower buds (‘Manitoba 604’, 

‘Generous’, ‘P. sibirica No. 1’), created on the basis of Siberian forms, have α-amylase 
activity at low temperatures (15 °C) was several times higher than in genotypes with 

delayed development of flower buds (‘Saratov Ruby’, ‘Svetlana’ plum, ‘VII-05-1’, ‘Late 

blooming EM’) (Fig. 2). 
 

 
 

Figure 2. The activity of α-amylase (the amount of formed maltose (mg) per minute per 

100 mg of raw buds) at different temperatures. 
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The graph shows that genotypes created with the participation of Siberian forms 

(‘P. sibirica No. 1’, ‘Generous’, ‘Manitoba 604’) have increased α-amylase activity both 

at high incubation temperatures (60 °C) and at low temperatures (15 °C). From which it 
can be concluded that in the genotypes ‘P. sibirica No. 1’, ‘Manitoba 604’ and’ 

Generous’ hydrolytic enzyme α-amylase is more adapted to low temperatures and is able 

to start working already in thaws, which entails hydrolysis of starch, saturation of tissues 
with water, more intensive development of flower buds and, as a result, a decrease in 

their frost resistance. It is known from the literature (Gianese et al., 2001; D’Amico et 

al., 2001; D’Amico et al., 2002) that is sufficient a point mutation in the structural gene 

of α-amylase, leading to the replacement of only one amino acid in protein molecule so 
that this enzyme becomes cold-resistant and begins to work at lower temperatures. With 

the Siberian forms of apricot, similar mutations apparently occurred and psychrophilic 

isoforms of α-amylases were formed. After exposure to low-temperature refrigeration  
(-31 °C) on flower buds of genotypes with high amylase activity at + 15 °C - 

‘P. sibirica No. 1’ (2.22 mg min-1 per 100 mg wet weight), ‘Manitoba 604’ (0.84), 

‘Generous’ (0.90), ‘LXVI - 09-1’ (0.76) mortality was 100%, and in genotypes with low 

enzyme activity - plum ‘Svetlana’ (0.15), VII-05-1 (0.17), ‘Saratov Ruby’ (0.26), 
mortality was 46%, 95.18% and 97.02%, respectively. Thus, the temperature sensitivity 

of α-amylase is an important indicator in the characterization of the genotype - the 

physiological activity of its flower buds during the thaw. Measurement of α-amylase 
activity at different temperatures can serve as a kind of marker, with the help of which 

it will be possible to isolate genotypes that are least sensitive to thaws and have the 

highest winter hardiness flower buds. 
Based on the literature data (Sholokhov & Savvina, 1975) that varieties with the 

same rate of morphogenesis when crossing do not always give the same picture of 

inheritance of this trait in the offspring, it can be concluded that there are several 

mechanisms of restraining the development of flower buds. Phenolic compounds may 
be one of the factors regulating the rate of morphogenesis. The maximum accumulation 

of phenolic compounds in the scales of flower buds is observed in the autumn-winter 

period, and at the time of blooming, their number is minimal (Zhang et al., 2020). 
Phenolic compounds are powerful antioxidants and inhibitors, both in plants and in other 

organisms. The group of phenolic compounds is not homogeneous in their biological 

action, some of them are Indoleacetic acid (IAA) oxidase inhibitors (phenolcarboxylic 
acids: vanillic acid, ferulic acid; flavonoids: luteolin, quercetin, etc.), the other part, on 

the contrary, are IAA oxidase stimulants (phenolcarboxylic acids: p-coumaric acid, p-

hydroxybenzoic acid; flavonoids: apigenin, kaempferol, etc.) (Volynets, 2013). A 

number of articles (Wang et al., 2010; Chen et al., 2013; Li et al., 2014; Yuan et al., 
2014) showed the inhibitory activity of phenolic compounds, primarily flavonoids, on 

α-amylases and α-glycosidases human. We assume that the premature awakening of 

flower buds depends on hydrolytic enzymes - α-amylases, α-glycosidases,  
β-glucosidases, 1,3-β–glucanases. The presence of inhibitors of these enzymes in flower 

buds or bark of annual shoots will increase the winter hardiness of genotypes. So, when 

studying the effect of biologically active substances on the activity of alpha-amylase and 

frost resistance of winter wheat (Atimoshoae & Titika, 1990), it turned out that substances 
that reduce the level of enzyme activity during the period of hardening of plants increase 

their frost resistance. A more significant decline in alpha-amylase activity corresponds 

to a higher frost resistance. 



1497 

We studied two groups of phenolic compounds - phenol carboxylic acids (PCA) 

and flavonoids, in flower buds (in mid-February) and bark (in late October) in apricot, 

plum and their hybrids. Studies have shown (Table 4) that the greatest amount of PCA 
in the bark of annual shoots accumulates in the genotypes with the latest flowering - 

hybrid ‘P. brigantiaca x P. armeniaca Makhtobi ‘(11.85 mg g-1 dry weight of bark), 

‘Late blooming EM’ (9.51), Plum ‘Svetlana’ (9.54). The ‘Manitoba 604’ cultivar 
(9.23 mg) has a slightly lower, but rather high PCA content in bark, which, although it 

does not have a flowering delay, showed restrained amylase activity at 60 °C. The 

highest content of PCA in flower buds is observed in late flowering genotypes: ‘Late 

blooming EM’ (18.36 mg g-1 d.w.), ‘P. brigantiaca x P. armeniaca Makhtobi 
‘(16.39 mg),’ VII-05-1 ‘(13.01 mg),’ Late blooming LXVI-09-1 ‘(12.91 mg), early 

flowering forms showed a significantly lower content - ‘P. sibirica No. 1’ (7.5 mg), 

‘Generous’ (9.23 mg), that is, the same trend has remained. A positive correlation 
(0.61*) was found between the PCA content in bark and flower buds (Table 5). 

 
Table 5. Correlation analysis of flower buds α-amylase activity and its potential inhibitors 

Correlation coefficient matrix 

 1 2 3 4 5 6 7 8 

1 1.00        

2 0.20 1.00       

3 -0.03 0.30 1.00      

4 0.09 0.19 0.76** 1.00     

5 0.25 -0.27 -0.48 -0.28 1.00    

6 -0.31 -0.28 0.15 -0.01 -0.31 1.00   

7 -0.40 -0.18 -0.41 -0.52 0.08 0.61* 1.00  

8 -0.07 -0.05 0.17 -0.28 0.00 0.39 0.41 1.00 

* Significant at 5% level; ** Significant at 1% level; 1 – % death of flower buds at -18 °С; 2 – % death of 
flower buds at -31 °С; 3 – amylase activity at 60 °С; 4 – amylase activity at 15 °С; 5 – flavonoids in flower 
buds; 6 – PCA in the bark of shoots; 7 – PCA in flower buds; 8 – proline in flower buds. 

 

Since each genotype has its own set of PCA, which can act in different directions, 

it is difficult to find the dependence of the α-amylase activity on the total PCA. 
Correlation analysis still showed, albeit a small (mathematically insignificant) negative 

relationship between the total PCA content in flower buds and α-amylase activity both 

at 60 °C (-0.41) and at 15 °C (-0.52). The component analysis of phenol carboxylic acids 
should provide more convincing data. A similar pattern was observed in the total content 

of flavonoids. The highest content of flavonoids was found in late blooming genotypes 

- ‘Svetlana’ plum (41.99 mg g-1 of dry weight of buds), ‘LXVI-09-1’ (41.92) and ‘Late 

blooming EM’ (38.20). In early flowering forms, for example, ‘P. sibirica No. 1’, the 
content of flavonoids was only 5.53 mg g-1 of dry weight of buds, in another early 

flowering variety ‘Zhigulyovskiy souvenir’ there were 10.01 mg of them. It is interesting 

to trace the relationship between the sum of flavonoids and the activity of α-amylase. 
There is a slight inverse relationship (correlation coefficient -0.48) between the α-

amylase activity and the accumulation of flavonoids: the more there are, the lower the 

α-amylase activity for most genotypes. It should also be noted that not all flavonoids and 
their glycosides inhibit α-amylases with the same potency (Wang et al., 2010; Chen et 

al., 2013; Li et al., 2014; Yuan et al., 2014). 
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Preliminary data from chromatographic analysis of flavonoids on silica gel plates 

show that the number of components in different genotypes varies from 2 to 10. For the 

time being, 3 flavonoids have been identified - rutin, naringenin and quercetin. Research 
in this direction continues. 

The next line of research is to test the role of free proline in the delay of flowering 

and the formation of frost resistance of stone fruit buds. There are data in the literature 
on osmoregulation and competitive inhibition of hydrolases by L-proline - in the struggle 

for free water (Kiyosue et al., 1996; Nakashima et al., 1998). The analysis showed that 

the highest proline concentrations in mid-February accumulated flower buds of late 

flowering genotypes - ‘Late blooming EM’ (2.01 mg g-1 flower buds wet weight) and 
‘P. brigantiaca x P. armeniaca Makhtobi ‘(1.46), and the smallest ones are ‘Saratov 

ruby’ (0.68), ‘Manitoba 604’ (0.70) and P. sibirica No.1 (0.93). There is a weak 

(insignificant) inverse dependence of the α-amylase activity on the accumulation of free 
proline - the more the hydrophilic amino acid itself, the lower the enzyme activity 

(correlation coefficient -0.28). 

Multiple mechanisms of flowering delay and protection from low temperatures 

complicate the understanding of the role of one or another component, but 
comprehensive studies will make it possible to isolate genotypes with one mechanism 

or another, combine them in one genotype, and create flower buds with high winter 

hardiness. For breeding purposes, the most valuable genotypes should combine a low 
dormancy rate of flower buds, low free water content, low α-amylase activity during 

thaws, and high accumulation of proline and flavonoids. Out of the studied samples, only 

2 genotypes correspond to these characteristics - ‘Svetlana’ plum and ‘Late blooming 
EM’ apricot, which will be used in further breeding work. 

 

CONCLUSIONS 

 
The study showed the complex nature of the formation of not only the winter 

hardiness trait of apricot flower buds, but also the timing of flowering of genotypes. All 

studied genotypes were characterized by the flowering period, the degree of recovery 
from dormancy, the rate of morphogenesis of flower buds, their frost resistance, cold 

resistance of α-amylases, the accumulation of phenol carboxylic acids, flavonoids and 

proline, and water content. 
As a result of this study, the following genotypes valuable for breeding were 

identified that showed the least flower buds death at -18 °C: ‘Zavodskoy No. 1’ (8.2%), 

‘LXVI–09–1’ (9.06%), ‘P. brigantiaca x P. armeniaca Makhtobi’ (12.05%), ‘Svetlana’ 

plum (15.19%), ‘VII-05-1’ (20.01%). The genotype with the highest winter hardiness of 
flower buds at a critical temperature of -18 °C was revealed - ‘Svetlana’ plum. 

Correlations were revealed between the frost resistance of apricot flower buds at a 

temperature of -18 °C and the percentage of buds break from endodormancy (0.64*), the 
percentage of flower buds death at a temperature of -31 °C and the degree of 

development of flower elements (0.70*), water content and the degree of development 

of flower elements (0.76**). 

For the first time, psychrophilic forms of α-amylases were found in apricot flower 
buds. Genotypes with adaptation of α-amylases to low temperatures - P. sibirica No. 1’ 

and ‘Generous’, ‘Manitoba 604’, ‘LXVI-09-1’ are needed for further comparative 

studies. 
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