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Abstract. The aim of the study was to develop a new Al-based hybrid coagulant that was effective 

in removing wood biomass from the wastewater formed in water basins of plywood plants during 

hydrothermal treatment of birch wood. The organic-inorganic coagulant was prepared by 

interaction of high molecular polyethyleneimine (PEI) with the inorganic polyaluminium 

chloride-based composite coagulant (KHPAC) in aqueous medium. Owing to the hybrid nature, 

the developed coagulant could simultaneously perform both the coagulation and flocculation 

function. The influence of a hybrid coagulant composition, its dosage, pH and a temperature on 

the efficiency of wastewater biomass separation was investigated. The best coagulation-

flocculation efficiency was achieved with the hybrid coagulant having a mass ratio of 

PEI/KHPAC equal to 0.3–0.5 and at the optimal dosage of 70–80 mg L-1, reaching 97% yield of 

the total wood biomass and 60% yield of the lignin recovery. The efficient dosage of PEI and 
KHPAC in hybrid coagulant was about 1.4–1.8 and 1.7–2.2 times lower than if these 

coagulants/flocculants were used alone. As a result of the coagulation-flocculation process, wood 

biomass sludge is formed, which is a sufficiently large source of renewable organic matter, with 

the potential to obtain value-added products. The components of the biomass sludge were found 

to have surface activity and binder properties, as well as cation exchange capacity. Based on these 

properties, its ability to structure dusty soil particles with the formation of mechanically resistant 

soil aggregates was studied. 

 

Key words: al-based hybrid coagulant, coagulation/flocculation, soil structuring, woodworking 

wastewater. 

 

INTRODUCTION 

 

The production of veneer in Latvia and many countries of East Europe is 
accomplished by the hydrothermal treatment of hardwood in special open water basins 

for 16–18 h at a temperature of 40–60 °C. The formed wastewater contains very high 

concentrations of water-soluble wood extractives, hemicelluloses and lignin compounds. 
Lignin and its derivatives can form highly toxic compounds and are responsible for the 

high chemical oxygen demand (COD) (Ali & Sreekrishnan, 2001). Therefore, the 

effluent from the wood hydrothermal treatment basins needs to be treated before being 
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discharged. A part of the wood processing enterprises does not have centralized 

wastewater treatment plants, and the applied technologies provide only the wastewater 

dilution and discharge to sewerage networks. However, in order to gain maximum 
benefit according to Circular Bioeconomy, the production process should be planned as 

effectively as possible, striving for the development of environmentally friendly 

technologies, the residues of which are raw materials for another technology. It can be 
considered as the recovery of sustainable resources, reducing the impact on the 

environment, waste generation and management. It is a large enough source of 

renewable organic substances with the potential to obtain value added products on the 

basis of wood wastewater biomass. Wastewater treatment by-products are basically 
eliminated by the combustion method for energy production (Spinosa et al., 2011). As 

sludge contains a variety of nutrients for plants, so it is widely used in agriculture (39% 

of sewage sludge produced in the European Union) as fertilizer to improve growing 
conditions (Lazdina et al., 2011; Kumar et al., 2017; Zapałowska et al., 2020). The use 

of wastewater sludge in the production of sorbents (Lin et al., 2014; Brovkina et al., 

2020) and construction materials (Sales et al., 2011; Soucy et al., 2014) is also studied. 

Since the wood hydrothermal treatment wastewater biomass sludge contains large 
quantities of hemicellulose and lignin compounds, having surface activity and binder 

properties as well as cation exchange capacity, this biomass can have the potential use 

in soil structuring and dust road control. Worldwide, for unpaved road dust control, 
calcium and magnesium chlorides as well as synthetic polymer binders are widely used. 

However, they are relatively expensive, have the low weather resistance, and some of 

them are not environmentally friendly (Addo et al., 2004). At the same time, dust 
suppressors based on a wood polymer such as lignin are eco-sound and widely used 

(Dustex, Earthbind 100, Nodust, Road Loc), especially in North America. 

The most applied methods for removal of various suspended and colloidal 

pollutants from wastewater are coagulation and flocculation. High charges cations, such 
as Fe3+ or Al3+, are some of the most effective reagents for destabilizing the colloids. 

Therefore, polyvalent inorganic salts such as AlCl3, Al2(SO4)3, FeCl3, Fe2(SO4)3 are widely 

used as coagulants (Ahmad et al., 2008). Different cationic and anionic polyelectrolytes 
are widely used as flocculants in wastewater treatment (Gregory & Barany, 2011). 

Currently, the research in the field of coagulation-flocculation process is focused on the 

development of more effective and less expensive hybrid composite materials, which are 
constituted of both inorganic and organic compounds, in view of their better performance 

compared to that of conventional inorganic-based coagulants, and their lower cost 

compared to organic-based flocculants (Lee et al., 2011). The hybrid composite materials 

are reported to be more efficient compared to conventional inorganic coagulants due to 
the synergism effect of two components in one composite material (Yang et al., 2004; 

Lee et al., 2012). Furthermore, the application of the inorganic-organic composite 

materials in the wastewater treatment required only one-unit operation in comparison 
with the bioperational system: at first, coagulation, then, flocculation (Lee et al., 2011). 

The aim of this study was to develop a new Al-based hybrid coagulant that is 

effective in removing biomass from the wastewater of wood hydrothermal treatment, 

formed during veneer production, and to study the efficiency of its composition, dosage, 
pH and a temperature on wastewater biomass separation and purification quality of the 

treated wastewater. The possibility of the separated biomass sludge to structure dusty 

soil was investigated. 
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MATERIALS AND METHODS 

Model system 
Taking into account the fact that the composition of the birch wood pre-treatment 

wastewater obtained in veneer production is inconstant, for the investigation of the 

coagulation/flocculation process, a model system of the wastewater with unambiguous 
and stable characteristics was chosen (Vitolina et al., 2014). The model wastewater 

(MW) was obtained by a hydrothermal treatment of birch sawdust performed with 0.01M 

NaOH at a hydromodulus of 1/50 (a mass ratio of the oven dry sawdust to water) and a 
temperature of 90 °C for 4 h. After the treatment, the obtained model solution was 

separated from the sawdust treated through a filtration. The main parameters of the MW 

are listed in the Table 1. 

 
Table 1. Parameters of model wastewater 

pH 
Biomass content,  

mg L-1 

Density,  

g cm-3 
COD,  

mgO L-1 

PI,  

mgO L-1 
Color, 

mg LPt-1 

9.0–9.1 1,400 ± 67 0.998 1,285 ± 30 320 ± 10 746 ± 19 

 
The defined elemental composition of the dried biomass was the following: 

37.75% С; 4.78% Н; 56.69% О; 0.30% N; 0.14% S, 0.34% of inorganic matter. The 

obtained results of the biomass fractionation showed that the content of the lignin and 
hemicelluloses fractions in the solid biomass corresponded to 13.5% and 75.2%, 

respectively, but other water-soluble products of the wood matrix destruction were 

11.3%. The main component of water-soluble hemicelluloses in the wastewater was 
xylan (Shulga et al., 2012). The zeta potential value of the hydrolysate close to - 30 mV 

testified the high stability and the enhanced content of charged functional groups in the 

biomass. With decreasing pH to 2.0, the Z potential value of the hydrolysate fell  

to - 10 mV, reflecting the decrease in the ionisation degree of the hydroxyl and carboxyl 
groups in the water-soluble lignin and hemicelluloses fragments. 

 

Coagulants/flocculants 

To select the most appropriate cationic polyelectrolyte for development  
of a new inorganic-organic coagulant, the efficiency of various commercial cationic  

A polyelectrolyte which showed the best biomass flocculation efficiency was 

selected as an organic component of the new hybrid coagulant. As an inorganic 
component, the previously developed Al-based inorganic composite coagulant 

polyelectrolytes as flocculants for 

wood biomass separation from the 

model wastewater was investigated. 
Three different cationic polyelectrolytes 

including polyethyleneimine (PEI), 

polydiallyldimethylammonium chloride 
(PDADMAC) and chitosan with different 

molecular weights were examined for 

estimation of the efficiency of biomass 

removal (Table 2). All polyelectrolytes 
were purchased from Sigma-Aldrich. 

 

Table 2. The polyelectrolytes used 

Polyelectrolytes Molecular weight (g mol-1) 

PDADMAC LMW 

PDADMAC MMW 

PDADMAC HMW 

Chitosan LMW 

Chitosan MMW 

Chitosan HMW 
PEI LMW 

PEI HMW 

100,000–200,000 

200,000–350,000  

400,000–500,000 

200,000 

350,000 

500,000 
1,300 

750,000 
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(KHPAC) based on polyaluminium chloride (PAC) and aluminium chloride (AlCl3) 

(Shulga et al., 2014) was used. Polyaluminium chloride (Polypacs-30) (30% Al2O3,  

80–85% basicity) was purchased from the Industrial Holding AMK-Group (Russia). A 
composition of the hybrid coagulant was represented as the mass ratio of a cationic 

polyelectrolyte to KHPAC that varies in the range of 0.15–1.0. All the used reagents 

were of analytical grade. 
 

Coagulation/flocculation experiment 
The coagulation process was carried out in a jar by mixing the equal volumes of 

the MW and a coagulant/flocculant solutions and stirring the obtained suspension with 
a magnetic stirring bar at 200 rpm for 1 min, followed by slow mixing at 40 rpm for 

2 min. A coagulant/flocculant dosage was added to the MW solution in the range of  

10–140 mg L-1. The Experiments were conducted at pH values ranging from 3 to 10 by 

addition of HCl or NaOH and in the temperature range of 13–60 °С using a thermostat. 
The flocs formed were allowed to settle for 120 min. After sedimentation and filtration 

MW samples were taken for analysis. Each experiment was carried out three times. The 

results are presented as mean values. The effectiveness of the coagulant/flocculant was 
measured based on the removal of total wastewater biomass and one of the wood 

components - lignin that contributes to color pollution in wastewater and removing 

lignin-containing substances is comparatively difficult. The residual concentration of the 

biomass and water-soluble lignin and lignin substances was defined by measuring the 
obtained filtrate’s optical density at 490 and 280 nm using the previously obtained 

correlation curves for the biomass and lignin. Color and chemical oxygen demand 

(COD) was measured according to the ISO 7887:1994 and ISO 6060:1989, respectively. 
The coagulation/flocculation efficiency was determined, comparing the initial 

parameters of the model solution with the parameters obtained for the filtrate after 

coagulation/flocculation, using the following formula (Eq. 1): 

i f

i

C - C
removal (%) = 100

C

 
 

 
, (1) 

where Ci and Cf are initial and final concentrations of wood biomass, water-soluble lignin 
and lignin substances, chemical oxygen demand and color. Sludge volume index (SVI) 

was calculated by dividing the settleability (settled sludge volume after 30 minutes) by 

the suspended solids concentration. The zeta potential and particle size measurements 
were obtained by using Malvern Zetasizer Nano Series model SZ machine. 

 

Soil structuring experiment 

Soil structuring experiments were conducted using a dusty sand/clay model soil 
with a clay fraction content varied from 0–70%. Clay for this study was taken from 

Lielauces quarternary clay deposit (Latvia), but sand was taken from Baltic Sea cost. 

The average chemical composition and the average particle size distribution of the used 
clay and sand soil are given in Table 3 and Table 4, respectively. 

 

Table 3. Average chemical composition of clay (%) 

SiO2 Al2O3 Fe2O3 TiO2 CaO MgO CO2 K2O Na2O SO3 

45.47 12.27 5.34 0.67 11.60 4.87 11.22 4.04 0.52 < 0.1 
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Table 4. Average particle size distribution of sand and clay (%) 

Sample > 0.25 mm 0.25–0.05 mm 0.05–0.01 mm < 0.01 mm 

Sand 

Clay 

3.1 

2.3 

93.7 

9.6 

0.3 

26.3 

3.0 

63.4 

 
In the work, the model soil particles less than 0.25 mm were used. The soil 

aggregates (> 0.25 mm) were obtained by manual mixing the soil with 1.0–5.0 g dL-1 

biomass water suspensions during 3 minutes. The used wood biomass had a gel form 

with content of a dry matter about 10% and was obtained by centrifugation of the 
precipitated biomass sludge at 6,000 rpm during 20 min without its followed drying. The 

water suspensions with the defined biomass concentration were prepared by intensive 

mixing the biomass gel with water at 100 rpm for 10 min using a mechanical mixer. The 
content of the biomass in the soil samples varied from 0.2% to 0.8% on their dry matter. 

The fractional composition of the dried structured soil was determined by dry sieving, 

using a set of sieves (AS200 Retsch). Each experiment was carried out three times. The 

results are presented as mean values. 
 

RESULTS AND DISCUSSION 
 

Biomass removal by coagulation-flocculation 

Using the cationic polyelectrolytes (Table 2) with different molecular weight, the 

efficiency of biomass removal from the birch wood hydrothermal treatment model 
wastewater was studied to select the most efficient cationic polymer for the development 

of a new hybrid composite coagulant. It is known that water-soluble low-molecular 

weight lignins and hemicelluloses interact with cationic polyelectrolytes in aqueous 

medium mainly via the electrostatic mechanism (Ström & Stenius, 1981; Shulga et al., 
2002; Mocchiutti et al., 2016). As a result of the electrostatic interaction between the 

cationic polyelectrolytes and the biomass components, polyelectrolyte complexes (PEC) 

(Li & Pelton, 1992; Shulga et al., 2009) are formed (Fig. 1). The formation of insoluble 
PEC occurs at the stoichiometric mass ratio of the interacted components. If the applied 

dosage of the cationic polyelectrolyte is less or greater than the effective dosage, 

corresponded the stoichiometric mass ratio of the polyelectrolyte and 
hemicelluloses/lignin, wastewater biomass does not flocculate due to the formation of 

water-soluble non-stoichiometric PEC particles. 

The results of the flocculation experiments with PDADMAC showed that the 

optimal pH range for the efficient biomass removal was pH 7–8 with an optimal dosage 
of 50 mg L-1, at which the total biomass and lignin removal reached 1,288 mg L-1 or 92% 

and 171 mg L-1 or 55%, respectively. It was determined that the molecular weight of 

PDADMAC practically did not affect its efficiency. The biomass removal efficiency of 
PDADMAC with a molecular weight of 200,000–350,000 g mol-1 was only 1.5% better 

than that for PDADMACLMW and PDADMACHMW. 

Compared to PDADMAC, chitosan is a more pH-sensitive polymer and works 

effectively only in acidic conditions due to the presence of amino groups. It is known 
that 96–97% of its amino groups are protonated at pH 5, while only 7–10% of amino 

groups are protonated at pH 7.5 (Van Haute et al., 2015). The protonation also results in 

a change in the structure of the chitosan molecule from a compact in weak alkaline 
medium to elongated conformation as a result of the electrostatic repulsion between the 
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polymeric chains. It was found that the optimal conditions for the formation of stable 

biomass flocs in the case of chitosan were the following: the pH values varied from 4 to 

5 at the optimal dosage of 35 mg L-1. The total biomass yield was of 1,285 mg L-1 or 
92%, but lignin recovery was closed to 126 mg L-1 or 41%. In the case of chitosan, a 

molecular weight effect on flocculation efficiency is observed. At the same optimal 

dosage and pH, chitosan with medium and low molecular weight shows on average 3% 
better biomass removal efficiency and 11–13% increase in lignin removal compared to 

high molecular weight chitosan samples. 
 

 
 

Figure 1. Simplified possible electrostatic interaction pathway between PEI and the main 

biomass components (lignin and xylan) in the formation polyelectrolyte complexes. 

 
PEI like chitosan is a pH-sensitive polymer which acts as a proton sponge in acidic 

conditions. The pH medium also affects the PEI structure that has an impact on the 

interaction with the wastewater biomass components. At basic medium PEI molecules 

are weakly protonated and have a highly coiled structure, while at acidic conditions the 
molecules chains are highly protonated and elongated (Choudhurya & Roy, 2013). Our 

results showed that the optimal conditions for PEI with low molecular weight for the 

flocculation of the model wastewater were the following: the dosage of 14–20 mg L-1 
and pH 4–5. To achieve the best biomass and lignin removal efficiency with the  

high-molecular weight PEI a larger dosage was required. The defined optimal PEIHMW 

dosage was 25–35 mg L-1 at pH 6. At the defined optimal conditions PEIHMW shows 4% 

higher biomass and 11% better lignin removal efficiency than PEILMW. 
Table 5 shows that the total biomass removal efficiency does not differ significantly 

for all the polyelectrolytes and achieves 91–93%. At the same time, there are significant 

differences in the lignin extraction efficiency. Chitosan is the worst flocculant for water-
soluble lignin and lignin-containing substances. Its efficiency is by 16–18% lower than 

for PDADMAC and PEI and directly correlates with the MW color reduction. An 

important coagulation/flocculation parameter is pH. Using PEI, as compared to 
PDADMAC, in the flocculation process it is not necessary to use alkali to ensure the 
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desired pH; also рН fits in the permissible pH value range for wastewater prior to its 

discharge to the sewerage network or for reuse. The optimal pH values of the biomass 

flocculation with PEI lied within the optimal pH range of coagulation with Al-based 
coagulants (Brovkina et al., 2020), which was important for the development of a new 

other Al-based salts (Brovkina et al., 2020), was chosen as an inorganic component of 
the composite. The composite coagulant PEI-KHPAC in the polymer colloidal complex 

form is formed due to the donor-acceptor interaction between the uncharged nitrogen 

atoms in imine groups and aluminium ions. Taking into account the hydration shell 

around the aluminium ions, the complex is stabilized with hydrogen bonds (Vitolina, 
2018). Owing to the hybrid nature, comprising an organic flocculant and an inorganic 

coagulant, the obtained hybrid coagulant should simultaneously perform both coagulation 

and flocculation function. This could increase the biomass removal efficiency and 
simultaneously reduce the optimal dosage relative to PEI and KHPAC, if they act separately. 

The coagulation-flocculation process with the developed hybrid coagulant can be 

described as the adsorption of hemicelluloses and lignin fragments on the PEI-KHPAC 
particle surface as a result of the neutralization of biomass surface polar groups (–ОН 

formed. 

The treatment effect of the model wastewater with PEI-KHPAC, prepared with the 
different mass ratio of PEI to KHPAC, at pH 6 is shown in Fig. 2. The obtained results 

show that PEI-KHPAC is characterised by the highest efficiency when the ratio of PEI 

hybrid composite coagulant. 

Based on the comparison of 

obtained results (Table 5), high 
molecular weight PEI, which 

showed the best flocculation 

ability among the studied 
polyelectrolytes, was selected as 

an organic component of the new 

hybrid composite coagulant. The 

polyaluminium-based composite 
coagulant - KHPAC, shown 

higher coagulation ability than 

 

Table 5. Efficiency of the investigated cationic 

polymers at optimal parameters 

Parameters 
PDADM
AC 

Chitosan PEI 

Molecular weight medium medium high 

Optimal dosage, mg L-1 50 35 35 

Optimal pH 8 5 6 

Biomass, mg 1,288 1,285 1,309 

Lignin, mg 171 126 175 

Color removal, % 88.6 85.2 91.4 

COD removal, % 39.2 41.9 44.0 
 

and –СООН) and PEI-KHPAC 

positively charged surface 

amino groups, followed by  
the aggregation of biomass 

coagulated particles, owing to the 

‘bridge formation’ mechanism. 

The bridging mechanism can be 
explained by the presence of 

loops and tail in the PEI chains, 

included in the formation of the 
PEI-KHPAC, and, when another 

biomass molecule (with free 

absorption centers) comes across 

these ‘defects’, binding takes 
place and the biomass flocs are  

 

 

Figure 2. Total biomass and lignin removal efficiency

as a function of composite mass ratio of PEI/KHPAC; 

pH 6, dosage-100 mg L-1, 20 °C. 
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to KHPAC changes in the range of 0.3–0.5. Herewith, the removal rates of the biomass 

and lignin reached 1,364 mg L-1 and 194–201 mg L-1, respectively. 

the important factors affecting the coagulation-flocculation efficiency. The coagulation-
flocculation performance of PEI-KHPAC was studied in the pH range of 5–8. Fig. 4 

shows that the amount of the separated biomass increases by increasing the pH from 5 

to 6 and further decreases in neutral and alkaline media. PEI-KHPAC demonstrates the 

best efficiency of the lignin extraction at pH 6–7. Based on the obtained results, it was 
concluded that pH 6 is the optimal medium for the treatment of MW with PEI-KHPAC. 

 

 

 

 
 

Figure 4. Total biomass and lignin removal efficiency with PEI-KHPAC as a function pH and 

temperature; composite mass ratio 0.5, dosage-100 mg L-1. 

 

Since the coagulation-flocculation process is sensitive to temperature changes 
(Sahu & Chaudhari, 2013), the comparative efficiency of PEI-KHPAC in the 

temperature range of 13–60 °C was investigated. According to Fig. 4, the drop of 

temperature below 20 °C practically does not affect the biomass yield values at pH 6, 

but, with increasing pH more than 6, the efficiency of the treatment with PEI-KHPAC 
sufficiently decreases. The growth of the temperature up to 40 and 60 °C worsens the 

efficiency of the coagulation-flocculation process that can be explained by the 

dependence of dissociation degrees of the hemicelluloses/lignin components of the wood 
biomass on a temperature. It is seen (Fig. 4) that the best yield of lignin is at 13 °C, which 
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Fig. 3 shows average particle 

diameter and zeta potentials for the 
nanoparticles of PEI-KHPAC and its 

components - PEI and KHPAC in 

water solutions. Compared with the 
case of KHPAC and PEI, the 

nanoparticles of PEI-KHPAC are 

characterized by a higher zeta 
potential and a greater average particle 

diameter, which indicates the 

formation of new coagulant particles 

as a result of the interaction of PEI 
and polyvalent aluminium ions. 

The pH of wastewater is one of  

 

 

Figure 3. Zeta potential and average particle 

diameter of PEI-KHPAC and its components; 

composite mass ratio 0.5. 
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is consistent with the fact that at lower temperatures the ionisation of the phenolic 

hydroxyl groups is favourable (Norgren & Lindström, 2000). 

The efficiency of the biomass and lignin removal with PEI-KHPAC, having various 
mass ratio of PEI to KHPAC equal to 0.3 and 0.5, respectively, in comparison with 

KHPAC was studied at pH 6 by varying the coagulants dosage (Fig. 5). 

maximal value at 100 mg L-1 for PEI-KHPAC composition of 0.5 and 120 mg L-1 for the 

composition of 0.3, reaching a 201–203 mg L-1 lignin yield or 65%. 
Fig. 6 shows the changes in the MW absorption over time as a function of  

PEI-KHPAC dosage. The initial MW absorption increases with the increase of  

PEI-KHPAC dosage, reaching a maximal value at a dosage of 110 mg L-1. As follows 
from the Fig. 6, the sedimentation process of the formed flocs is practically realized 

within 30 minutes at PEI-KHPAC dosage range of 40–100 mg L-1 and is accompanied 

by the formation of the dense sludge at the bottom of the cylinders (Fig. 6, a). The 
obtained filtrates of the treated model wastewater were visually transparent in colour at 

the optimal applied dosages. The performed analysis of the sizes of the formed flocs 

showed that, after 30 min of the coagulation-flocculation process, their diameter varied 

It is shown that the hybrid 

coagulant is characterised by a 
higher yield both the biomass and 

lignin than the inorganic coagulant 

at the same dosages. A similar trend 
of the dependence of the biomass 

and lignin yield on the applied 

dosage is observed for both 

compositions of PEI-KHPAC, 
namely, the biomass and lignin 

removal increases to a maximum 

value and then decreases with the 
dosage growing. This is consistent 

with the fact that a certain dosage of 

the coagulant PEI-KHPAC is 

needed to provide the stoichiometric 
mass ratio of the coagulant to the 

hemicelluloses/ lignin components 

in the model wastewater. According 
to Fig. 5, with increasing PEI-

KHPAC dosage from 40 to 70 mg L-1, 

the biomass yield increases, 
reaching 1,353–1,358 mg L-1 or 

97%. The effect of further increasing 

the dosage on the removed biomass 

quantity is not pronounced, and 
already at a dosage > 100 mg L-1 the 

coagulant efficiency decreases. In 

the case of lignin, the removal 
efficiency increases linearly with the 

coagulant dosage and achieves the 

 

 
 

 
 

 
 

 
 
Figure 5. Total biomass and lignin removal 

efficiency of the coagulants as a function of dosage; 

pH 6, 20 °C. 
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in the range of 1,114–1,242 nm. At the same time, the sizes of the flocs formed with  

PEI and KHPAC applied separately were significantly lower, i.e. 664–842 nm and  

331–499 nm, respectively. 
 

 
 

Figure 6. MW absorption (490 nm) changes during coagulation-flocculation process as a 

function of time and PEI-KHPAC dosage; composite mass ratio - 0.5, pH 6, 20 °C. 

 

 
 

Figure 6a. Settlement of flocs during the coagulation-flocculation process after 30 min using 

PEI-KHPAC with various applied dosages; composite mass ratio 0.5, pH 6. 

 

The zeta potential profiles for the MW after coagulation with PEI-KHPAC and 

KHPAC as the function of a dosage at pH 6 are presented in Fig. 7. 
 

 
 

Figure 7. Zeta potential profiles for the MW at pH 6 after coagulation with PEI-KHPAC and 

KHPAC as a function of coagulant dosage. 
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According to Pefferkorm (2006), if the charge neutralization is the only path for 

coagulation, the zeta potential should be in excellent correlation with the coagulant 

dosage, and the optimal efficiency is achieved when zeta potential is close to zero. It can 
be seen that the zeta potential changes correlate very well with the applied coagulants 

dosages. There is a linear correlation (R > 0.97) between the filtrate zeta potential and 

the applied dosages of PEI-KHPAC with a mass ratio of 0.3 and 0.5. This indicates that 
the formation of the flocs mostly occurs according to the charge neutralization 

mechanism, because the maximal yield of the wood biomass is reached when the zeta 

potential of the treated MW is close to zero. It can be seen (Fig. 7) that, for the both 

compositions of PEI-KHPAC, the negative values of a zeta potential for the filtrates, 
formed after the MW treatment, exceed zero at the applied dosages more than  

70–80 mg L-1. With the further increasing the dosage of the coagulant, the zeta potential 

of the filtrates increases, but the biomass removal efficiency no longer grows 
significantly, which can point to the composite coagulant dosage excess. In turn, for 

KHPAC, in the range of 30–130 mg L-1 of the applied dosage, the filtrate zeta potential 

In accordance with the data in Table 6, the yield of the biomass and lignin using 

the hybrid coagulant at the optimal dosage is higher by 4.1% and 14.3% compared with 

KHPAC, who’s the optimal dosage is by 25–43% higher than that in the case of the 
hybrid coagulant. It is known that residual aluminium concentration in wastewater is a 

very important parameter from health perspectives and should be carefully considered, 

when an aluminium coagulant is applied in the water treatment. Since the aluminium salt 
content in the hybrid coagulant is 1.7–2.2 times lower than in KHPAC, the concentration 

of residual aluminium in the filtrate is essentially decreased. The performed study 

showed that the concentration of residual aluminium ions in the filtrates of the MW 

treated with the hybrid coagulant was 2–2.5 times lower than that in the filtrates after the 
treatment with KHPAC. Higher rates of the biomass and lignin yield when treating the 

MW with the hybrid coagulant lead to the increase in such important indicators of 

wastewater treatment as color removal and COD removal in comparison with those for 
the inorganic coagulant. The developed coagulant PEI-KHPAC is characterized also by 

a good sedimentation kinetic, which is confirmed by the sludge volume index (SVI) 

values. For PEI-KHPAC, this index is lower than 100 mL g-1, which is an important 
parameter from the technological point of view. It is known that when adding aluminium 

salt coagulant, a pH value of the treated wastewater decreases, and its decrease depends 

on the initial pH value of the wastewater. In this study, we have found that by adding the 

still remains negative, which 

indicates that the complete 
neutralization of biomass particles 

has not yet occurred. 

Table 6 shows a comparison 

of the optimal parameters (dosage, 
pH) and efficiency (biomass  

and lignin yield, the color of  

treated MW, COD, etc.) of the 
coagulation-flocculation process at 

20 °C using the KHPAC and the 

hybrid coagulant PEI-KHPAC with 
two compositions. 

 

Table 6. Efficiency of coagulants at optimal 

parameters 

Parameters KHPAC 
PEI-

KHPAC0.3 

PEI-

KHPAC0.5 

Optimal 100 80 70 
Optimal pH 6 6 6 

Biomass, mg 1,304 1358 1,353 
Lignin, mg 161 184 183 
Color removal, % 85.4 89.8 89.3 
COD removal, % 46.7 49.7 47.8 

Aluminium 
ions, mg L-1 

0.063 0.032 0.025 
SVI, mL g-1 107 74 74 
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optimal KHPAC dosage to the MW, a pH value of the MW decreases from pH 9 to pH 4. 

In order to achieve the optimal coagulation pH 6, it was necessary to add sodium 

hydroxide to the MW. In turn, by using the optimal dosages of PEI-KHPAC, the pH 
values of MW varied in the range of 6.0–6.5, which already was the optimal value for 

the coagulation/flocculation process. Such a manner, it is not necessary to add alkali to 

achieve the required pH that is a substantial advantage from the reagent-saving, cost and 
technology viewpoint. 
 

Use of biomass sludge in soil structuring 

Since the surface of the precipitated biomass contains both completely hydrophobic 
regions, which are formed as a result of the interaction of the biomass components with 

the PEI-KHPAC hybrid coagulant, and free functional groups (carboxyl-, hydroxyl-, 

amino-), which are located in the coagulate segments (e.g., tails, loops), the separated 

biomass particles have to exhibit binding properties. Taking into account a possible 
application of the separated biomass, its ability to structure dusty soil particles with the 

formation mechanically resistant soil aggregates was studied. It was supposed that the 

wastewater biomass can adsorb on the sandy soil particles due to physicochemical 
interactions, including Van der Waals forces and hydrogen bonds between Si-OH groups 

of the soil and the biomass particles’ carboxyl-, hydroxyl- and amino groups, locating in 

the biomass coagulate segments. With the increase of the clay particles content in the 

model soil composition, besides hydrogen bonds and Van der Waals forces, the 
contribution of the hydrophobic interaction between the biomass and the soil particles 

should increase. 

The precipitated biomass was used after the centrifugation in a wet state (a moisture 
content is 93%), without its drying. The biomass suspensions with a defined 

concentration were obtained by diluting the biomass with water and actively mixing 

them with the mechanical mixer during for 10 min. As dusty soil samples, a sandy soil 
and a model sand/clay soil with the clay content from 30% to 70% and the soil particles 

aggregates in the fractional composition increases from 10% to 50%. The growth of the 
amount of the soil aggregates is also accompanied by their sizes enhancement. It can be 

seen that the main fraction (more than 50%) in the aggregated sandy soil part is a 

medium-sized one with a diameter of 1–3 mm, which essentially grows with increasing 
the biomass content from 0.2% to 0.8%. 

< 0.25 mm were used. 

An important parameter 

that shows effectiveness of the 
application of the structure 

forming agent is a fractional 

composition of the treated soil. 

The fractional composition of 
the sandy soil treated with the 

biomass suspensions as a function 

of the content of biomass is 
given in Fig. 8. 

It can be seen that, with 

increasing the content of the 

biomass, the amount of the soil  

 

 
 

Figure 8. Fractional composition of the treated sandy 

soil as a function of the content of biomass sludge. 
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The structuring the model sand/clay soil shows that, with increasing the clay 

content in the soil, the soil aggregate amount remarkably increases and shifts to a higher 

amount in the model sand/clay soil grows to 57–85% with increasing the content of the 
clay from 30% to 70%. 
 

     
 

Figure 10. Model soil before (a) and after (b) structuring with precipitated wastewater biomass, 

clay content 70%, biomass concentration 0.8%. 

 

For the comparative assessment of the wastewater biomass capacity to structure 

soil, softwood lignosuphonates (LS), a wood chemical processing by-product, which is 
widely used as a dust suppressor for control unpaved road (Addo et al., 2004), were 

selected. LS were characterised by the following empirical formula of the phenyl-

propane chain: C9H6.89O2.57(OCH3)0.71 (SO3)0.35(OHph)0.68(CO)0.36. The average weight 
molecular mass of LS calculated from its viscosimetric data in 0.1 M NaCl was equal to 

28,000 g mol-1. According to Fig. 11, when treating the soil with the biomass suspension, 

the total soil aggregate content is equal to 50% of the soil mass, while using the LS, the 

amount of the aggregates is higher and accounts for 70% of the soil mass. However, the 
comparison of the fractional compositions of the both treated soil samples shows that  

 

 

content of the large soil species 

(Fig. 9). Using the model soil 
with 70% clay content, the 

amount of the aggregates 

achieves 98% of the soil mass at 
the 0.8% biomass content 

(Fig. 10) and that is 48% higher 

than the total aggregate mass in 
the treated sandy soil at the same 

biomass content. Compared  

with the treated sandy soil, where 

the amount of the large soil 
aggregates (> 3 mm) represents 

38% of all aggregates formed, this 

 

 
 

Figure 9. Fractional composition of the treated sand 

soil as a function of the clay content in the soil, 

biomass concentration 0.8%. 
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the separated biomass is capable of forming aggregates of a larger diameter than LS at 

the same content in the soil. Aggregated part of the soil samples structured with LS are 

 

CONCLUSIONS 
 

This study successfully proved the effectiveness of the developed hybrid coagulant, 

formed as a result of the interaction between high molecular PEI and the polyaluminium-

based composite coagulant (KHPAC), in separation of the wood biomass from the model 
solution, simulating wastewater of a woodworking enterprise. It is concluded that the 

properties of the new coagulant and its coagulation-flocculation efficiency may vary, 

changing its composition in a narrow range. Using the model wastewater, it was found 
that the best coagulation-flocculation efficiency is observed for the hybrid coagulant 

with a mass ratio (PEI/KHPAC) of 0.3–0.5 at the optimal dosage of 70–80 mg L-1 and 

pH 6. At these parameters, the yield of the total wood biomass and lignin reaches 97% 
and 60%, respectively, color and COD removal close to 90% and 50%, respectively. The 

efficient dosage of PEI and KHPAC in hybrid coagulant is about 1.4–1.8 and 1.7–2.2 

times lower than if coagulants/flocculants are used alone, but the content of the residual 

aluminium ions in the model wastewater filtrate is 2–2.5 times lower than that for the 
KHPAC coagulant. 

The results of soil structuring experiments show that the separated wastewater 

biomass is capable of structuring dusty soil and to form soil aggregates. With increasing 
the clay content in the soil composition, the total aggregates’ content in the soil 

essentially grows, wherein the amount of fine aggregates fraction decreases and the 

amount of the coarse aggregates fraction enhances. 
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