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Abstract. Single wall carbon nanotube is one of the promising forms of carbon nanocomposite. 
Due to its high strength and stiffness, carbon nanotube is potentially used in various nanoscale 
structures. In this paper, dynamic behaviour of single wall carbon nanotube partially embedded 
into elastic soil medium is modelled by the Euler-Bernoulli beam theory and nonlocal theory of 
elasticity. Analytical solution technique is employed to solve these governing differential 
equations of nanotube. Analysing the effects of temperature, nonlocal parameter, coefficients of 
elastic medium on dynamic behaviour of nanotube are our main concern. The results reveal that 
the effects of temperature, nonlocal parameter and coefficients of elastic medium are very 
significant on the natural frequency of nanotube. 
 
Key words: carbon nanotube, partially embedded, elastic soil medium, temperature effect, exact 
solution technique. 
 

INTRODUCTION 
 

Carbon nanotube is very promising and effective element that has been used for 
developing high-performance composites. The main advantages of the carbon nanotube 
are its high chemical stability as well as its strong mechanical properties. In this paper, 
thermal effects on the dynamic behaviour of nanotube embedded into the soil (Haldar & 
Basu, 2013; Zhao et al., 2016; Zhang et al., 2018; Elhuni & Basu, 2019; Falope et al., 
2020) or elastic medium are investigated. Soil can be considered as an elastic foundation. 
Basically, Winkler’s model is used to simulate the soil foundation. According to 
Winkler’s model, foundation is demonstrated by a series of discrete infinitesimal and 
mutually independent, closely spaced, linearly elastic lateral springs which provide 
resistance in direct proportion to its deflection. This model is very simple and popular 
among researchers. However, this model is unable to include the soil cohesive force or 
shear force. That is why Winkler’s model is not sufficient for evaluating the mechanical 
behaviour of soil. To overcome the limitation of Winkler’s model, Pasternak proposed 
two parameters model which included the transverse shear deformation. The advantages 
of this model are considering compressive stiffness and shear resistance which simulate 
the soil as a continuum. Moreover, surrounding temperature effects (Askari & 
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Esmailzadeh, 2017; Jiang & Wang, 2017; Lai & Zhang, 2018; Aria et al., 2019) on 
nanotube are also very important. Sometimes, researchers ignore the thermal effects. 
Whereas, the thermal effects on dynamic behaviour of nanostructure are very significant 
for designing nanostructure effectively. Dynamic characteristic of structure is 
significantly affected by the thermal load induced from temperature variation. Specially, 
lightweight structure such as nanotube is crucially affected by temperature where this 
element is extensively used in different nanocomposites. The end restrictions of the 
structural element are very important to induce the thermal effect. If the structure is 
restrained on the boundaries, it can’t elongate freely that induces thermal stress inside 
the restrained structure. This thermal stress is very critical for nanomaterial and can be 
the cause of failure. Nevertheless, the temperature can change material properties. For 
instance, Young’s modulus, density of nanotube can be significantly reduced by the rise 
of temperature. 

Researchers extensively investigated the single wall carbon nanotube due to its high 
demand in material and technology. The nanotube is modelled based on various theories 
such as Timoshenko beam theory (Jiang et al., 2017), Shear deformation theory (Malikan 
et al., 2018), and Euler beam theory (Ehteshami & Hajabasi, 2011). Dynamic behaviour 
of nanotube is also very popular topic among researchers. Chang (2017) investigated 
nonlinear vibration of single-walled carbon nanotubes under the longitudinal magnetic 
field. He concluded that the nonlinear damping tended to reduce the amplitude and 
increase the oscillation frequency of the nonlinear vibration response. Similarly, 
Holubowski et al. (2019) investigated transverse vibration analysis of single wall carbon 
nanotube under a random load. They described the relationship between stochastic loads 
and the applied loads. In addition, some researchers showed their interest in single wall 
carbon nanotube under elastic medium. Rahmanian et al. (2016) and Fernandes et al. 
(2017) investigated single walled carbon nanotube on elastic foundation. They 
considered single parameter Winkler’s foundation. They described the effects of 
mechanical properties and foundation stiffness on natural frequency of nanotube. 
Similarly, Rosa & Lippiello (2016) analysed the vibration of single wall carbon nanotube 
surrounded by two parameters elastic foundation. Their results showed that the influence 
of the nonlocal effect could be ignored in the case of specific boundary conditions. It is 
clear from the above discussion that the nanotube partially embedded into elastic 
medium under thermal load is rare in available literature. 

In this paper, single wall carbon nanotube is modelled by Euler-Bernoulli beam 
theory and nonlocal theory of elasticity. The nanotube is partially embedded into the soil 
where soil is simulated by two parameters Pasternak theory. The effects of temperature 
on the dynamic behaviour of nanotube are analysed in different support systems. An 
analytical solution technique is used to solve this problem. The results obtained from 
this analysis are compared with the results in available literature. The results show that 
the natural frequency is significantly affected by the position of embedded soil and the 
temperature variation. 

 
PROBLEM SETTINGS 

 
A schematic shape of a single wall carbon nanotube is included in Fig. 1. The origin 

of the coordinate system is considered at the left corner point of the tube. The axis of the 
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MATHEMATICAL FORMULATION 

 
Eringen (2002) proposed the theory of nonlocal elasticity which is very effective 

for nanomaterial. According to his theory, the constitutive relation of nonlocal elasticity 
can be presented in the partial differential form as follow:  

 (1) 

where , , ,  are the stress field, strain, material constant, internal characteristic 
length respectively.  is the scale coefficient which is also called nonlocal parameter. 
In one-dimensional stress state, the nonlocal continuum theory with Hook’s law can be 
presented as: 

 (2) 

where  is Young’s modulus. The displacement field can be described as: 

 (3) 

where  and  are the axial and transverse displacements respectively. According to 
the Euler-Bernoulli equations, dynamic behaviour of nanotube on elastic medium can be 
expressed as: 

 (4) 

where  are mass moments of inertia,  are spring constants for compression 
and shear respectively. In terms of bending moment , the nonlocal equation can be 
written as: 

 (5) 

 

Combining Eq. (4) and Eq. (5) can be presented as:  

 

(6) 

tube coincides with the -axis and 
radius along the -axis. The length of 
the tube is  and density of the material 
is . Tube is partially supported by the 
elastic medium at a distance  where 

. Here,  and  represent 
spring constants for shear and 
compression respectively. Thermal 
load  is applied laterally. The main 
concern is to scrutinize the dynamic 
behaviour of nanotube. 

 
 
 
 
 
 
 
 
 
 
Figure 1. Nanotube partially embedded into 
elastic soil. 
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Deflection can be presented as the following function: 

 (7) 

Using this transformation (7), partial differential Eq. (6) can be transformed in the 
ordinary form:  

 

 (8) 

Introducing some dimensionless parameters as follows: 

 
(9) 

Applying the dimensionless parameters, Eq. (8) can be written as: 

 (10) 

where  can be expressed as follows: 

 
(11) 

Similarly, the equation of nanotube which is out of soil or elastic medium can be 
presented as: 

 (12) 

where  can be expressed as follows: 

 (13) 

Eqs (10) and (12) are the set of governing equations for embedded nanotube and exposed 
nanotube respectively. 
 

SOLUTION TECHNIQUE 
 

In this section, an analytical technique is described for solving this problem. Elastic 
foundation is placed from left corner to distance . So, the tube is divided into two 
segments at a distance  and two ordinary differential Eqs (10), (12) represent the 
behaviour of these two segments. To determine the characteristic equations, one can 
consider this function  as a transformation. Let consider the solution of 
Eq. (10) for the first segment  as follow: 

 (14) 
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where 

 
(15) 

 
(16) 

Similarly, the solution of the Eq. (12) for the second segment  as follow: 

 (17) 

where 

 
(18) 

 
(19) 

The Eqs (14) and (17) can be solved using the boundary conditions and intermediate 
conditions at the position of elastic medium. 
 

Boundary conditions 
In this paper, three different types of boundary condition are used as below: 
SS:  
CC:  
CS:  
 
Intermediate conditions 
Intermediate conditions are occurred due to the two different segments of the tube, 

those are as follows: 
 

 
Using one set of boundary conditions for example simply supported boundary conditions 
and intermediate conditions, Eqs (14) and (17) can be expressed as follow: 

 (20) 

The determinant of the coefficient matrix gives the value of natural frequency of 
nanotube. 
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RESULTS AND DISCUSSION 
 
Thermo mechanical vibration of single wall carbon nanotube partially embedded 

into soil is investigated using exact solution technique. This vibration is influenced by 
some physical parameters such as nonlocal parameter, temperature as well as some 
geometrical parameters such as embedded length, slenderness ratio. In this section, the 
obtained results of the presented technique are demonstrated using various tables and 
graphs. 

First of all, obtained results are compared with the results in available literature to 
examine the effectiveness of current method. Secondly, tabular data is presented to 
comprehend the effect of embedded length on the dynamic behaviour of nanotube. 
Finally, the graphs illustrate the effect of spring constant, slenderness ratio and 
temperature on the natural frequency of nanotube. 

 
Table 1. Comparison of results with the results in available literature 

 CC     

Slenderne
ss ratio 
( ) 

    
(Rosa & 
Lippiello, 
2016) 

Present 
(Rosa & 
Lippiello,
2016) 

Present 
(Rosa & 
Lippiello,
2016) 

Present 
(Rosa & 
Lippiello, 
2016) 

Present

10 4.5945 4.5943 4.432 4.432 4.0714 4.0715 3.6901 3.69 
7.1402 7.1401 6.3699 6.3698 5.2897 5.2898 4.5202 4.5201
9.256 9.258 7.5757 7.5769 5.9408 5.9419 4.9776 4.9787

30 4.714 4.7139 4.5749 4.5751 4.2512 4.2513 3.8894 3.8895
7.7557 7.7558 7.0299 7.0298 5.924 5.9242 5.0938 5.0939
10.7106 10.7125 8.9642 8.9665 7.1222 7.1242 6.0004 6.0024

 SC  
 (Rosa & 

Lippiello, 
2016) 

Present 
(Rosa & 
Lippiello,
2016) 

Present 
(Rosa & 
Lippiello,
2016) 

Present 
(Rosa & 
Lippiello, 
2016) 

Present

10 3.8209 3.8208 3.7099 3.7101 3.4516 3.4515 3.1621 3.1621
6.4648 6.4647 5.8666 5.8665 4.9562 4.9563 4.2706 4.2705
8.6516 8.6519 7.2367 7.2368 5.74 5.7396 4.8245 4.8245

30 3.9141 3.9142 3.8078 3.8078 3.556 3.556 3.2683 3.2681
6.9867 6.9869 6.3822 6.382 5.4303 5.4305 4.6963 4.6964
9.9591 9.9597 8.4175 8.4176 6.7218 6.7213 5.6657 5.6653

 
Table 1 describes the square root of frequency  for different values of nonlocal 

parameter and slenderness ratio. Two different types of boundary conditions are 
considered such as fully clamped and clamped simply. The compressive spring constant 
and shear spring constant are not considered for this table. It is clear from this table that 
frequency decreases with increase in the value of the nonlocal parameter. Basically, 
increase of nonlocal parameter decreases the stress carrying capacity of the element 
according to the theory of nonlocal elasticity. That is why nonlocal parameter decreases 
the natural frequency of nanotube. On the other hand, frequency increases with increase 
in the value of slenderness ratio. Physically, increase the value of slenderness ratio increases 
length of the element. That is why, slenderness ratio increases the natural frequency of 
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nanotube. Obtained results are compared with the paper (Rosa & Lippiello, 2016) in 
available literature. The results show good agreement with the results of that paper. 
 
Table 2. Frequency of simply supported nanotube partially embedded into soil 
SS  Nonlocal parameter ( ) Nonlocal parameter ( ) 
Spring 
constant 

Embedded 
length       

 
 9.4155 33.4277 64.6445 7.9726 20.8141 30.2949 

 10.5419 33.6972  64.7461 9.2456 21.2559 30.5098 
 11.5831 33.9589 64.8476  10.4443  21.6582  30.7285  

 
 9.4155  33.4277  64.6445  7.9731  20.8144  30.2949  

 15.3349 42.8321 72.4336 11.7803 29.2324 38.4902 
 23.1895 50.3242 80.8047 22.6426 42.9961 57.1836 

 
 9.4155 33.4277  64.6445  7.9731  20.8144 30.2949 

 15.7509 43.1133 72.5195  12.0225 29.3809 38.6231 
 24.1504 50.6836 80.9766 23.6269  43.4102 57.4102 

 
Table 3. Frequency of fully clamped supported nanotube partially embedded into soil.  
CC  Nonlocal parameter ( ) Nonlocal parameter ( ) 
Spring 
constant 

Embedded 
length       

 
 21.1074 50.9805 85.7109 16.5771 27.9824 35.3066 

 21.6269 51.1523  85.7891 17.1728 28.2481 35.4551 
 22.1387 51.3154 85.8672  17.7725  28.5059  35.5996 

 
 21.1074  50.9804 85.7109 16.5771 27.9824 35.3066 

 25.8339 58.1992 92.1641 20.4512 34.6231 42.4961 
 31.3769 64.6523 99.1641 34.1465 53.2148 64.4258 

 
 21.1074  50.9805 85.7109 16.5771 27.9824 35.3066 

 26.1465 58.3789 92.2266 20.5645 34.6738 42.5195 
 32.0801 64.9179 99.2891 34.7441 53.4961 64.5820 

 
Tables 2, 3, 4 illustrate the three different modes of natural frequency for different 

values of nonlocal parameter, spring constants and different embedded lengths of 
nanotube. Each table is considered for specific type of boundary condition. The results 
describe that the frequency increases with the increase of spring constant value. 

 
Table 4. Frequency of simply clamped supported nanotube partially embedded into soil 
SC  Nonlocal parameter ( ) Nonlocal parameter ( ) 
Spring 
constant 

Embedded 
length       

 
 14.5986 41.7929 74.8555 11.9131 24.5645 32.9434 

 15.5791 41.9726 74.9414 13.1455 24.8574 33.1387 
 16.0615 42.2148 75.0273 13.6240 25.2246 33.3027 

 
 14.5986 41.7929 74.8555 11.9131 24.5644 32.9434 

 23.0254 50.2852 83.3516 18.6709 32.9863 41.3398 
 26.7949 56.9883 89.5703 27.7676 48.2227 60.9883 

 
 14.5986 41.7929 74.8555 11.9131 24.5645 32.9434 

 23.4746 50.4961 83.4141 18.9072 33.1309 41.4961 
 27.6230 57.2929 89.7266 28.5449 48.5664 61.1836 
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Spring provides extra support as a foundation for nanotube. Increase the value of 
spring constant increases overall stiffness of the system. Similarly, the frequency 
increases with the increase of embedded length of the nanotube. Basically, an increase 
in embedded length increases the surface area covered by elastic medium or soil that 
increases the stiffness of the nanotube. 

Figs 2, 3 illustrate the relationship between frequency ratio and spring constants for 
different values of nonlocal parameter. Two different types of end support such as fully 
clamped and simply supported are considered. It is clear that the frequency ratio 
increases with the increase of spring constant. The shear spring is more effective than 
the compressive spring to increase the value of frequency ratio. The frequency ratio 
increases rapidly at the high value of nonlocal parameter. Another way, the effect of 
spring constant is very significant at the high value of nonlocal parameter. The shear 
spring layer resists the bending moment. On the other hand, the compressive spring layer 
resists the deflection of the nanotube. 

 

 
 

 
 

Figure 2. Frequency ratio versus compressive spring constant  for different values of 
nonlocal parameter  in fully clamped and simply supported nanotubes. 
 

 
 

 
 

Figure 3. Frequency ratio versus shear spring constant  for different values of nonlocal 
parameter  in fully clamped and simply supported nanotubes. 
 

Fig. 4 demonstrates frequency for different values of slenderness ratio and 
temperature. Thermal expansion coefficient  and nonlocal parameter 

 are considered. Frequency increases with the increase of slenderness ratio. 
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However, at the high temperature, frequency decreases with the increase of slenderness 
ratio. An increase in slenderness ratio increases the length of the nanotube that increases 
the frequency. On the other hand, effect of temperature increases with the increase of the 
length of the nanotube. 

An increase in temperature reduces the strength and stiffness of the nanotube that 
decreases natural frequency. That is why, temperature decreases frequency in spite of 
high slenderness ratio. 

 

 
 

 

 
 

Figure 4. Frequency versus slenderness ratio  for different temperatures  in fully clamped, 
simply supported nanotubes. 
 

Fig. 5 describes frequency ratio for different values of temperature and slenderness 
ratios. Simply supported and clamped supported nanotubes are considered. Thermal 
expansion coefficient  and nonlocal parameter  are used. 
Frequency ratio increases for the increase of temperature. At the high value of 
slenderness ratio, frequency ratio decreases more rapidly for the change of temperature. 
An increase in slenderness ratio, increases length of the nanotube that increases the 
thermal effect. That is why at high value of slenderness ratio, frequency decreases very 
rapidly for the change of temperature. 

 

 
  

 
Figure 5. Frequency ratio versus temperature  for different slenderness ratios  in simply 
supported, fully clamped nanotubes. 
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Figure 6. Frequency ratio versus embedded length  for different modes of frequency in simply 
supported, fully clamped nanotubes. 

 
Fig. 6 illustrates the frequency ratio versus embedded length for different modes of 

frequency. Simply supported and clamped supported nanotubes are considered. Spring 
constants and nonlocal parameter  are used. Frequency 
increases with the increase of embedded length. First mode of frequency is more 
influenced by the embedded length than the other modes of frequency. An increase in 
embedded length increases the stiffness of the nanotube where the embedded length is 
covered by the soil which is simulated by two types of spring.  

 
CONCLUSIONS 

 
In the present work, analytical solution technique is introduced to analyse the 

dynamic behaviour of nanotube partially embedded into soil with thermal load. Soil is 
simulated by the two spring constants such as compressive spring and shear spring. It is 
clear from this analysis that the effects of nonlocal parameter, embedded length of 
nanotube, spring constants and temperature on dynamic behaviour of embedded 
nanotube are significant. At low temperature, frequency increases with the increase of 
slenderness ratio. On the other hand, at high temperature, frequency decreases at high 
value of slenderness ratio. The results of this analysis show good agreement with the 
results of other researchers. 
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