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Abstract. The possibility of optimization of the system of varietal identification, particularly of 
cruciferous crops in the breeding programs an urgent task that needs a scientific solution. A 
system comparison of a complex model for assessing genotypes for plasticity and stability with 
indicative basic and derivative indicators of the chlorophyll fluorescence induction curve (CFI) 
is proposed as a possible solution to this problem. 14 varieties of oilseed radish of different 
ecological and geographical origin were chosen as the object of research. Widely tested indicators 
of both methodological approaches were applied, taking into account the agrotechnological 
aspects of the analysis of oilseed radish plants for uniformity and stability. 
The varietal specificity of the basic indicators of the induction of chlorophyll fluorescence of 
oilseed radish in response to changes in the stress level of the years of the research period  
was established. The determined interval of correlation-regression dependencies at the level  
of -0.382–(-0.658) (p < 0.05–0.01) between the indicators of genotypic stability (Gp), adaptability 
(bi), and selection value (Sv) and the basic indicators of the CFI curve such as minimal 
fluorescence (F0), fluorescence of the 'plateau' zone (Fрl), maximal fluorescence (Fm) and 
fluorescence stationary level (Fst). Direct correlations were determined at the level of 0.652–0.745 
(p < 0.01–0.001) in the same comparison system for maximal fluorescence (Fm), fluorescence 
rise (dFpl), maximum variable fluorescence (Fv), photochemical efficiency (EP), leaf water 
potential (Lwp), plant viability index (RFd), efficiency of the initial reactions of photosynthesis 
(Kprp), coefficient of decline of the fluorescence (Kfd). The indicated pair correlation dependences 
were confirmed by the results of multiple regression analysis for the value of multiple regression 
coefficients (R) in the interval of 0.793–0.833 (p < 0.05–0.01). 
On the basis of the obtained data, an integrated version of the assessment of varieties of 
cruciferous crops is proposed, which allows optimization of the system of varietal identification, 
particularly of cruciferous crops, in the breeding programs of their pre- and post-registration 
study, as well as the system of searching for donors and sources of relevant traits in the breeding 
hybridization programs at various levels. In terms of further research, it will be promising to apply 
this variant of the analysis to wild species of cruciferous crops in a single complex with their 
cultural forms to assess the regularities of the formation of adaptations under the directed trait 
selection process. 
 
Key words: adaptability, chlorophyll fluorescence, oilseed radish, plasticity, varieties. 

 



194 

INTRODUCTION 
 
Modern approaches to the assessment of plant stress-adaptation are based on 

determining reliable criteria for assessing their ability to reduce sustainable levels of 
biological productivity when environmental factors change by a value that differs 
significantly from the biological optimum for a given plant species (Pandey et al., 2021). 
There has been a wide range of methodological approaches to identifying, recording, 
and applying such criteria over many years of research. This range included both indirect 
methods based on mediated plant responses to the stress factor and direct methods based 
on explicit morphological and physiological changes in plants caused by the relevant 
stress factor (Mable, 2019). For example, direct methods include germination of seeds 
in appropriate osmotic solutions of different concentrations, while associating the nature 
of liquid uptake and the speed of seed germination with the traits of drought tolerance of 
a species or genotype (Marcińska et al., 2013). Other methods include cultivation in 
special drying tanks (Marchin et al., 2020), the use of climatisation chambers, the 
creation of artificially created germination regimes in a phytotron or greenhouse system 
(Bartlett et al., 2016; Snowdon et al., 2021). 

The range of indirect methods also includes a wide range of methodologies. The 
main and well-known ones include proline test (Signorelli, 2021; Berka et al., 2022), 
high and low temperature heat stress protein spectrum analysis (Jacob et al., 2017; Chi 
et al., 2019; Khan et al., 2021), thermal imaging study of plants with radiation spectral 
composition analysis using dedicated thermal imaging cameras (Pineda et al., 2020), and 
a method that has been used for a long time, but which has recently become increasingly 
popular due to the introduction of devices that give a new approach to its use in 
experimental work, namely, the chlorophyll fluorescence induction method (Kalaji et 
al., 2017a). This method is effective in assessing the state of plant stress reactions, which 
are displayed on the corresponding chlorophyll fluorescence induction curve (CFI) 
(Saglam et al., 2020). Under these conditions, the indicated reaction curve is effective in 
determining agrotechnological stress factors as well. The analysis of the dynamics of the 
curve allows to determine the mechanism of adaptations of the plant organism to changes 
in the edaphic environment (Kalaji et al., 2017b; Tsai et al., 2019; van Bezouw et al., 
2019; Schuback et al., 2021; Valcke, 2021). 

It is also noted the importance of identifying crop varieties and hybrids for stress 
tolerance in terms of plasticity and stability (Najafi et al., 2018; Macholdt et al., 2020; 
Tryhub et al., 2020; Prysiazhniuk et al., 2021). This will improve both the practical 
orientation of breeding and ensure food security in the world. An important aspect of 
modern approaches to genetically marker-assisted breeding with predictive identification 
is the identification of the relationships between the photosynthetic system of plants and 
their level of adaptability and stress tolerance (Mihaljevi´c et al., 2021; Hlahla et al., 2022). 

Given the presentability of the chlorophyll fluorescence induction methodology in 
modern scientific research and the extensive approval of methodological approaches to 
assess varieties and hybrids for plasticity and stability, we considered it relevant to find 
out the effectiveness of comprehensive assessment of the oilseed radish varieties for 
adaptability based on a combination of the CFI curve indicators and the main indicators 
describing the plasticity and stability of the variety. This will make it possible to assess 
the potential of this approach and the effectiveness of its application in modern breeding 
practice. 
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MATERIALS AND METHODS 
 
The six-year cycle of research (2015–2020) is based on dark gray forest soils (in 

the world soil classification Luvic Greyic Phaeozem soils (IUSS Working Group, 2015) 
typical for the region. The soil had the following properties: low humus content  
(2.02–3.20%), low content of mobile forms of nitrogen (67–92 mg kg-1), high 
phosphorus content (149–220 mg kg-1), average potassium content (92–126 mg kg-1) 
and slightly acidic reaction of the soil solution (5.5–6.0). 

The study covered 14 varieties of oilseed radish of different ecological and 
geographical origin and different breeding, obtained in cooperation with the National 
Center for Plant Genetic Resources of Ukraine. 

The establishment and methodological support of the study was carried out in 
accordance with the cruciferous crop experimentation methodology (Sayko, 2011) with 
a recording plot area of 25 m2 in a 4-fold replication. Sowing dates corresponded to the 
end of the first to the beginning of the second decade of April. 

Seed productivity was calculated during the brown pod phase (ВВСН 85-89) 
accordingly with the evaluation protocol on homogeneity and stability in oilseed radish 
(CPVO, 2017). The article presents the results of the different variants of line and  
wide-row sowing methods applied in the general layout of the experiment, when 
applying the wide-row sowing method (30 cm row-spacing) with the rate of 
1.5 mln.pcs per ha of germinable seeds on the unfertilized soil according to the 
recommendations for the study of the features of chlorophyll fluorescence induction 
indicators (Kalaji et al., 2017a, 2017b). The specified variant under the conditions of the 
research region makes it possible to combine the implementation of the varietal potential 
of oilseed radish plants and the technology of its application, considering the 
combination of high levels of individual plant productivity and standing density, which 
ensures the achievement of potential yield levels (Tsytsiura, 2020). 

The analysis of weather conditions and the level of their variability for the period 
2015–2020 was carried out on the basis of the coefficient of significance of deviations 
(Csd) of the elements of the agrometeorological regime of each of the studied years from 
the multi-year average according to formula 1: 
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where Xav – an indicator of the average multi-year value; S – mean square deviation; 
Xi – an indicator for a particular year. The level of Csd: 0÷ 1 – conditions close to normal; 
1 ÷ 2 – the conditions were significantly different from the long-term averages; 
> 2 – conditions close to extreme. 

The hydrothermal coefficient (HTC) was determined according to formula 2 
(Evarte-Bundere & Evarts-Bunders, 2012): 
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where ΣR (mm) – the amount of precipitation for period with temperatures above 10 °С; 
Σt > 10 – the sum of effective temperatures for the same period. 
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According to the significance of the deviations of the average monthly value of 
HTC from the average multi-year data, the years of the research period according to the 
value of Csd (Table 1) was classified as 2015 - extremely dry, 2016 - dry with significant 
differences from the average multi-year data, 2017–2020 - conditions close to those 
typical for the multi-year hydrothermal regime of the research area. The years of research 
in the order of increasing stress impact on the growth processes of oilseed radish plants 
were placed in the following order: 2017–2019–2018–2020–2016–2015. 

 
Table 1. Significance of HTC during the growing season of oilseed radish, 2015–2020 

Year  
of  
research 

Months of the vegetation period The 
mean 
value 
V–IX 

V VI VII VIII IX 

Хі Csd Хі Csd Хі Csd Хі Csd Хі Csd Csd 
2015 0.719 -2.637 0.613 -1.264 0.230 -3.693 0.061 -5.961 0.684 0.011 -2.708 
2016 1.227 -2.096 0.893 -0.574 0.682 -0.739 0.486 -0.368 0.063 -2.359 -1.227 
2017 0.645 -2.716 0.349 -1.914 0.806 0.072 0.563 0.645 1.983 4.969 0.211 
2018 0.258 -3.128 3.124 4.921 1.349 3.621 0.349 -2.171 0.680 -0.004 0.648 
2019 4.710 1.613 1.555 1.057 1.003 1.359 0.235 -3.671 0.945 1.008 0.273 
2020 5.489 2.443 1.474 0.857 0.649 -0.954 0.474 -0.526 1.208 2.011 0.766 
Хav (1990–2020) 3.195 1.126 0.795 0.514 0.681 – 
S (2015–2020) 0.939 0.406 0.153 0.076 0.262 – 

 
The obtained significant differences in the weather regimes of the years during the 

research period allowed us to apply the system of evaluating the productivity of varieties 
for plasticity and stability according to the basic indicator of the annual conditions index. 

The portable chronofluorometer ‘Floratest’ with a functional measurement period 
of 90 seconds was used (Romanov et al., 2011). 

The measurement was carried out after shade adaptation (10 minutes) of 25 leaves 
of the middle layer in 4 repetitions per flowering phase of plants (BBCH 61-63). The 
leaf plate was oriented with its upper part towards the exciting light source and did not 
contain first-order venation. The obtained fixation points of the chlorophyll fluorescence 
induction curve were fixed by the device with the processing of the received data and 
the construction of a curve based on each fixation point. The data was transmitted from 
the device unit in file format with the extension csv. In the process of analyzing the 
obtained curves, basic indicators (in relative fluorescence units) were analyzed in 
accordance with the recommended system of indicator analysis of CFI curves (Brestic 
& Zivcak, 2013; Kalaji et al., 2017a–c): 

F0 – minimal fluorescence (O level in the O-I-D-P-T nomenclature of CFI curve); 
Fрl – florescence of the ‘plateau’ zone (I level in the O-I-D-P-T nomenclature of CFI 
curve); Fm – maximal fluorescence (P level in the O-I-D-P-T nomenclature of CFI curve); 
Fst – fluorescence stationary level (T level in O-I-D-P-T nomenclature of CFI curve). The 
date of the records corresponded to the phenological phase of flowering, which for 
oilseed radish corresponds to the maximum activation of the assimilation apparatus and 
its photosystem (Tsytsiura, 2020). 

Additionally, relative and calculated indicators to the defined basic indicators (F0, 
Fpl, Fm, Fst) were analyzed (formulas 3–14). 
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Fluorescence rise (dFpl) (Brestic & Zivcak, 2013; Korneev, 2002; Kalaji et al., 
2017a–c): 

0plpl FFdF   (3) 
Maximum variable fluorescence (Fv):  

0mv FFF   (4) 
An indicator of the influence of exogenous and endogenous factors (Stirbet & 

Govindjee, 2011; Stirbet et al., 2014, 2018; Sarahan, 2011): 

v
F

dFpl  (5) 

Photochemical efficiency or quantum efficiency (EP): 

m
F

F
EP v  (6) 

Photochemical extinguishing (Que) (Larouk et al., 2021):  

ν

0
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F
Q   (7) 

Leaf water potential (Lwp) (Larouk et al., 2021):  

0

m
wp F

F
L   (8) 

Plant viability index (RFd) (Korneev, 2002; Lichtenthaler et al., 2005; Stirbet & 
Govindjee, 2011; Stirbe & Govindjee, 2012; Derks et al., 2015): 
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Indicator of endogenous stress factors (Kef): 
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Photochemical quenching of fluorescence (QP) (Korneev, 2002): 
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Efficiency of the initial reactions of photosynthesis (Kprp): 
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The coefficient of decline of the fluorescence (Kfd): 
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Relative change in fluorescence at time t (Vt): 
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The relative value of comparison (%) (kcomparison) (formula 15) (Rumsey, 2016): 

100
k

k
k

2

1
comparison   (15) 

where k1 – the value of the indicator in the variant with which it is compared; k2 – the 
value of a similar indicator in the variant being compared. 
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An average seed yield (g plant-1) was calculated for the same plants on which the 
CFI curve indicators were determined. For this purpose, the specified plants were 
marked with labels with corresponding numbering. 

The parameters of ecological plasticity and stability of oilseed radish varieties were 
calculated according to the methods of Eberhart & Russel (1966) and Tai & Young 
(1972). 

The following model evaluation of plasticity and stability was considered 
(formula 16): 

ijjiiij σIβμY   (16) 
where Yij – the variety mean of the i-th variety in the j-th environment (i = 1, … v; 
j = 1, … n); µi – the mean of the i-th variety over all environments; βi – the regression 
coefficient, that measures the response of the i-th variety to varying environments; 
δij – the deviation from regression of the i-th variety at the j-th environment; Ij – the 
environmental index of the j-th environment, was calculated by the formula 17: 
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I ijjiiji

j
    (17) 

where n – number of years of observations; ν – the number of genotypes in the analysis 
system (at i = 1, … v; j = 1, … n). 

The first parameter of genotype stability (regression coefficient) bi (formula 18):  


 2
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b  (18) 

The second parameter of stability (Sdi
2) (deviation from the regression line) 

(formula 19): 

r

s

2n

δ̂
s

2
e

2
ijj2

di



   (19) 

where se
2 – the estimate of the pooled error; r – number of replications. 

The following grouping was used to evaluate plasticity (bi) and stability (Sdi
2) 

(according to Eberhart & Russel, 1966; Tai, 1971; Pakudin & Lopatina 1984; Callaway 
et al., 2003): I bi < 1, Sdi

2 > 0 – had better results under unfavourable conditions, unstable 
type; II bi < 1, Sdi

2 = 0 – had better results under unfavourable conditions, stable type;  
III bi = 1, Sdi

2 = 0 – responded well to improving conditions, stable type; IV bi = 1, Sdi
2 > 

0 – responded well to improving conditions, unstable type; V bi > 1, Sdi
2 = 0 – had the 

best results under favourable conditions, stable type; VI bi > 1, Sdi
2 > 0 – had the best 

results under favourable conditions, stable type. Genotypes with a coefficient of bi > 1 
are classified as highly plastic (group average), while 1 > bi = 0 is classified as relatively 
low plastic. 

The sum of the squares of deviations from the regression line was calculated by the 
formula 20 (Tai, 1971; Tai & Young, 1972): 
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A model of analysis of variance with random effects of the environment was 
considered (formula 21): 

ijkijk(j)jiiijk egγεdμy   (21) 

where yijk (i = 1, …v, j = 1, … n, k = 1, … r) – the value of the trait of the i-th genotype 
in the j-th environment in the k-th replication; µi – the overall mean; di – the effect of the 
i-th genotype; ϵj – effect of the j-th environment; γk (  j) – the effect of replicates within 
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environments; gij – the effect of genotype × environment interaction; eijk – the residual 
variation due to replications. 

The linear response of the genotype to the effect of the environment (αi) and the 
deviation from the linear response (λi) was calculated by the formulas 22 and 23 (Tai & 
Young, 1972): 
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where MSL, MSB, MSE – mean squares, due to environments, replicates within 
environments and error, respectively; r – number of replications; Sdi

2 – the second 
parameter of stability; n – number of years of observations; ν – the number of genotypes 
in the analysis system; m – degrees of freedom for the error. 

The graphical interpretation of the parameters αi and λi according to Pakudin & 
Lopatina (1984) was made. 

The coefficient of homeostaticity (Homi) (stability index) (formula 24) (Khangildin 
et al., 1979): 
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  (24) 

where σi – the standard deviation of the trait for the i-th genotype; Ῡi, Ῡi (opt), Ῡi (lim) – the 
mean values of the trait for the i-th genotype in all environments, in the optimal and 
limited environment, respectively. 

Agronomic stability coefficient (As) was determined as the residual of the 
difference between the total stability of the genotype and the level of its variation during 
the evaluation period (Bacsi & Hollósy, 2019; Reckling et al., 2021). 

The selection value indicator (Sv) was calculated according to the formula 25  
(De Jong, 1994): 
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where Ῡi – average yield over the evaluation period for a given genotype, Ῡi(min), 
Ῡi(max) – respectively, the minimum and maximum recorded yields for a given genotype 
during the evaluation period. 

Coefficient of dryness (Cd) was determined as the percentage ratio of the yield of 
the respective variety in the driest year to its yield in the year with maximum moisture 
(Becker & Léon, 1988). 

Coefficient of stress resistance (Csr) and genetic plasticity (Gp) was determined 
according to the recommendations of Pakudin & Lopatina (1984). 

The coefficient of productivity (Cp) was determined as percentage ratio of the 
average yield of the variety during the study period to the maximum potential yield 
shown by the variety during the period of variety production in the conditions of the 
zone of research (Fernandez, 1991; Fikere et al., 2014). 

The evaluation of the variation was carried out according to the gradation of the 
coefficient of variation (CVi,%) according to the methodological guidelines (Temesgen 
et al., 2015; Urruty et al., 2016): up to 10% – low, 11–20% – medium and > 21% – high. 
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The coefficient of variation of the i-th genotype is actually determined by a standard 
formula 26 (Snedecor, 1989): 

100%
Y

σ
CV

i

i
i  

 
(26) 

where σi – the standard deviation of the trait for the i-th genotype; Ῡi – the mean value 
of the trait for the i-th genotype in all environments. Genotypes with yield above overall 
mean yield and CVi below overall coefficient of variation was considered as more stable 
than the others. 

The degree of integrated connection of plant morphological features was assessed 
using the weight correlation graph method (Kakade & Foster, 2007; Hajjar et al., 2022) 
using the formula 27: 





αr

ij

ij

rG  
(27) 

where rij – correlation coefficient between i-th and j-th indicator. Reliable correlation 
coefficients was considered. 

The percentage dependence of the variation of the performance indicator on the 
influence of the selected factor is determined through the coefficient of determination 
(dxy) according to formula 28 (Davide et al., 2021): 

100rd 2
ijyx   (28) 

where rij – correlation coefficient between i-th and j-th indicator. 
The periodization of the phenological development of oilseed radish varieties 

corresponds to the BBCH periodization scale (CPVO, 2017). 
To compare the average data in the experimental variants, the indicator of the least 

significant difference (LSD0.5) was used (for the lower limit of the permissible level of 
significance p < 0.05) (Marques de Sá, 2007; Hinnkelmann & Kempthorne, 2019). 
Standard methods of regression and correlation analyzes using the Statistica 10 
framework were also applied (StatSoft – Dell Software Company, USA). 

 
RESULTS AND DISCUSSION 

 
The identification of oilseed radish varieties by plasticity (b) and stability (Sdi

2) 
(Table 2) allowed to divide the studied genotypes by the corresponding rank gradations. 
The first rank includes varieties ‘Alfa’, ‘Iveia’, ‘Pryhazhunia’, ‘Raiduha’, ‘Snizhana’, 
‘Nika’, ‘Liniia IRHSHI’, ‘Tambovchanka’, ‘Sabina’. The VI rank includes varieties 
‘Olha’, ‘Ramonta’, ‘Zhuravka’, ‘Lybid’, ‘Fakel’. Varieties of I rank according to the 
classification given in the methodology section are classified as unstable type with 
possible manifestation of maximum productivity in years with unfavorable 
environmental conditions. Varieties of VI rank are referred to a stable type with a 
positive increase in productivity (in our case, the resulting value of seed yield (SY)) 
under optimized environmental conditions. Thus, the influence of selective origin of 
oilseed radish varieties in the expression of their adaptive potential can be traced. This 
is essentially correct, as most of the varieties under study belong to the Eur asian 
selection group with the inclusion of local source forms of oilseed radish from the 
territories of northern and central Ukraine, Russia and Belarus with a certain 
recombination of breeding forms from Poland and Germany (Blume et al., 2020). 
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Table 2. Parameters of stability, plasticity, resistance and yield potential of varieties of oilseed 
radish, (average for 2015–2020) 

Variety 
SY,  
t ha-1 

CP,  
% 

CVi,  
% 

Сst Gp Cd As Нomi Sv bi Sdi
2 ai λi 

Olha 1.81 88.13 23.59 -1.23 1.83 0.70 89.14 2.79 8.96 1.10 2.29 0.46 0.84 
Alfa 1.28 69.00 19.58 -0.77 1.26 0.66 89.68 3.81 6.81 0.39 1.56 -0.64 -1.22 
Ramonta 2.08 87.62 15.63 -1.00 2.10 0.76 90.97 5.94 12.72 1.09 0.10 -0.13 0.15 
Iveia 1.71 67.06 23.25 -1.24 1.67 0.61 86.93 2.65 7.84 0.57 4.23 0.37 -0.47 
Pryhazhunia 2.03 78.44 18.84 -1.12 1.91 0.65 88.05 4.31 11.10 0.95 0.48 0.23 0.45 
Raiduha 1.82 86.83 17.77 -0.95 1.72 0.63 88.91 4.93 10.32 0.71 1.04 -0.24 0.82 
Zhuravka 2.12 87.76 17.37 -1.06 2.05 0.68 88.41 5.19 12.46 1.11 2.39 0.01 2.07 
Lybid 1.77 87.71 22.60 -1.23 1.71 0.57 88.62 2.88 8.32 1.08 0.50 0.35 -0.22 
Fakel 1.88 88.60 18.08 -1.06 1.82 0.68 92.53 4.39 10.31 1.01 0.69 -0.06 0.68 
Snizhana 1.96 82.98 19.50 -1.17 1.94 0.69 83.96 3.84 10.49 1.24 0.26 0.25 0.04 
Nika 1.86 73.94 19.35 -1.07 1.93 0.82 89.94 4.10 10.53 0.81 3.17 0.004 1.15 
Liniia 
IRHSHI 

1.45 81.10 24.78 -1.06 1.35 0.54 88.87 2.48 6.33 0.65 1.53 0.06 0.77 

Tambov-
chanka 

1.70 69.11 18.09 -0.91 1.58 0.67 87.05 4.62 9.38 0.51 0.95 -0.32 0.83 

Sabina 1.72 66.54 17.00 -0.89 1.71 0.72 91.19 5.10 10.10 0.366 3.426 -0.34 -0.23 
Parameters (Fisher criterion)  
for SY (yield, t hа-1) 

Ff Ft05 LSD05 (yield, t hа-1) 

Variety 284.23 1.82 0.041 
Year conditions 111.36 2.46 0.029 
Interaction of variety x 
conditions of the year 

9.82 1.48 0.049 

 
Thus, the varieties of Ukrainian selection ‘Raiduha’, ‘Zhuravka’, ‘Lybid’, ‘Fakel’ 

were created by repeated individual selection from earlier varieties of German (Skletta) 
and Polish selection (Bashta, Snopkowska), which in turn were created by population 
selection from local species forms of oilseed radish common in Central and Eastern 
Europe (Tsitsiura & Tsitsiura, 2015). The use of positive selection contributed to the 
selection of genotypes with stable adaptive potential, increasing against the background 
of optimization of plant growth and development conditions. Oilseed radish varieties of 
Belarusian selection ‘Iveia’, ‘Pryhazhunia’, ‘Snizhana’, ‘Nika’, ‘Sabina’ were created 
on the basis of hybridization of such varieties as ‘Raiduha’, ‘Tambovchanka’, as well as 
varieties of own selection of an earlier period with varieties of the already mentioned 
Polish and German selection and subsequent multiple individual selection. 

The variety of German selection ‘Ramonta’ was also created by hybridization. The 
use of hybridization allowed to increase the overall heterozygous state of the initial 
population with subsequent stabilizing positive multiple selection. As a result, this 
contributed to the formation of an unstable type in terms of the ratio of plasticity and 
stability with a potentially positive reaction of yield growth under the appropriate 
combination of environmental conditions and genotypic characteristics of the variety. 
Thus, the use of hybridization in oilseed radish breeding complicates the rank reaction 
of varieties in the tested model of Eberhart & Russell (1966) with the expansion of the 
adaptive response of genotypes and at the same time reducing the predictability of such  
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a reaction (increasing the probability of Sdi
2 > 0). This conclusion was confirmed by 

graphical interpretation of the spatial relationship of the linear response of the genotype 
to the effect of the environment ai and the deviation from the linear response λi (Fig. 1). 
 

 
 
Figure 1. Distribution of varieties of oilseed radish into classes by plasticity (ai) and stability (λi) 
at a 5% significance level, 2015–2020 (indexation of varieties: 1 – ‘Olha’; 2 – ‘Alfa’; 3 – ‘Ramonta’; 
4 – ‘Iveia’; 5 – ‘Pryhazhunia’; 6 – ‘Raiduha’; 7 – ‘Zhuravka’; 8 – ‘Lybid’; 9 – ‘Fakel’; 
10 – ‘Snizhana’; 11 – ‘Nika’; 12 – ‘Liniia IRHSHI’; 13 – ‘Tambovchanka’; 14 – ‘Sabina’).  

 
It was found that the varieties of the first (I) zone (‘Olha’, ‘Iveia’, ‘Pryhazhunia’) belong 
to genotypes with high response to changes in growing conditions. That is, such varieties 
should be recommended for cultivation in conditions of high culture of agriculture. 
However, on a low agricultural background, their yields are sharply reduced. In contrast, 
the varieties whose coordinates are located in the second (II) zone (‘Ramonta’, 
‘Raiduha’, ‘Zhuravka’, ‘Lybid’, ‘Fakel’, ‘Snizhana’, ‘Nika’, ‘Liniia IRHSHI’, 
‘Tambovchanka’) are more conservative in response to changing environmental 
conditions. Ecological plasticity of varieties placed coordinately in the third (III) zone 
(‘Alfa’, ‘Sabina’) is at the level of average plasticity, typical for the studied set of 
varieties. This distribution is consistent with the level of realization of the genetic 
potential of the variety (productivity coefficient (Cp)) of oilseed radish varieties, which 
are the result of Ukrainian breeding, in particular ‘Raiduha’, ‘Zhuravka’, ‘Lybid’, 
‘Fakel’ showed the highest levels of this indicator, which is evidence of their adaptation 
to local conditions and hydrothermal regime of the territory. On the contrary, varieties 
of the most geographically distant selection ‘Alpha’, ‘Tambovchanka’ showed the 
lowest value of C index in the group. These levels of adaptability for varieties ‘Raiduha’, 
‘Zhuravka’ and ‘Fakel’ were confirmed by the values of the coefficient of variation (Cv) 
at the level of 17.37–18.08 and the coefficient of stress resistance (Cst) at the level  
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of -0.95– -1.06 in relation to the effective indicator of seed yield in the applied analysis 
system. The maximum indices of genetic plasticity (Gp) were determined in varieties 
Ramonta’ and ‘Zhuravka’, which, taking into account the statements of a number of 
researchers (Ghanem et al., 2015; Subira et al., 2015), indicates significantly higher 
values of breeding value of these varieties (Sv) and the level of their homeostasis (Homi) 
in the general comparison group. As for the level of homeostasis, according to Xu 
(2016), its value indicates the level of adaptive adaptations of the genotype to the given 
environmental conditions of the territory of its cultivation. On the basis of this, it was 
found that for the varieties of oilseed radish ‘Olha’ and ‘Liniia IRHSHI’, the breeding 
centers of which belong to the zone of central Siberia, the level of these adaptations is 
minimal. At the same time, among the varieties selected in geographically close to the 
research area, the level of homeostasis is also low, in particular in the varieties ‘Lybid’ 
and ‘Iveia’. Such results are explained from the point of view of certain properties of the 
genotype, which are the resultant in the formation of its productivity, as confirmed by 
Brouziyne et al. (2018). In our case, this is the value of the drought tolerance index by 
the value of the aridity coefficient (Cd), which for the varieties ‘Lybid’, ‘Iveia’ and 
‘Liniia IRHSHI’ was minimal among the studied varieties 0.57, 0.61 and 0.54, 
respectively. 

According to the general combinatorics of indicators characterizing the adaptive 
properties of the variety, its breeding value and agronomic stability (As), the studied 
varieties of oilseed radish were placed in the following order ‘Ramonta’, ‘Zhuravka’, 
‘Pryhazhunia’, ‘Nika’, ‘Snizhana’, ‘Raduha’, ‘Sabina’, ‘Tambovchanka’, ‘Olha’, ‘Lybid’, 
‘Iveia’, ‘Alfa’, ‘Liniia IRHSHI’. Each of these genotypes according to additional criteria 
ai and λi showed additional features that determine the variety-specific response to the 
combination effect of genotype and environmental conditions. This is confirmed by the 
nature of placement of the studied varieties in the cordinal plane of the ratios of stability 
and plasticity of varieties (Fig. 1). There are significant differences (p < 0.05–0.01) in 
the ratio of Fisher’s criterion (Ff/Ft05-01) for the main parameter of determination of 
varieties - seed yield (SY) allowed to interpret the results from the point of view of 
genotypic expression of adaptations of varieties and compare them with physiological 
aspects of growth and photoassimilation processes, in particular with the induction of 
chlorophyll a florescence. The possibility and feasibility of such a comparison is 
substantiated in a number of studies (Olivoto et al., 2019; Pour-Aboughadareh, 2022). 

The results of accounting of the basic and derivative calculated parameters of the 
CFI curve (Table 3) showed their significant (at p < 0.5) differences within the studied 
varieties of oilseed radish. At the same time, the share of the influence of environmental 
factors in the dispersion analysis system was from 21 to 28% for the basic indicators of 
the CFI curve. Taking into account the share of the year conditions for the seed yield at 
the level of not less than 25% (Table 2), the significant role of the annual variation in the 
formation of stability and plasticity of varieties on the resulting trait and in the formation 
of the CFI curve indicators was proved. Taking into account the results of studies by 
Hoffmann & Woods (2003), Auld et al. (2010), Mohammadi (2014), Klingenberg 
(2019), the comparison of varieties evaluation indicators by classical breeding indicators 
and indicators of chlorophyll a fluorescence induction was applied. 
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Table 3. The value of the CFI curve indicators for oil radish varieties (relative fluorescence units for flowering phase BBCH 65–67), 2015–2020 

Variety 
Basic indicators Estimated indicators and indices 
F0 Fpl Fm Fst dFpl Fv dFpl/Fv EP Lwp Que RFd Kef QP Kprp Kfd Vt 

Olha 438 619 1,655 523 181 1,217 0.149 0.735 3.78 0.360 2.164 0.316 0.930 2.779 3.164 0.070 
Alfa 495 607 1,608 553 112 1,113 0.101 0.692 3.25 0.445 1.908 0.344 0.948 2.248 2.908 0.052 
Ramonta 454 681 1,814 518 227 1,360 0.167 0.750 4.00 0.334 2.502 0.286 0.953 2.996 3.502 0.047 
Iveia 520 674 1,578 623 154 1,058 0.146 0.670 3.03 0.491 1.533 0.395 0.903 2.035 2.533 0.097 
Pryhazhunia 460 633 1,592 525 173 1,132 0.153 0.711 3.46 0.406 2.032 0.330 0.943 2.461 3.032 0.057 
Raiduha 522 626 1,534 596 104 1,012 0.103 0.660 2.94 0.516 1.574 0.389 0.927 1.939 2.574 0.073 
Zhuravka 438 691 1,808 509 253 1,370 0.185 0.758 4.13 0.320 2.552 0.282 0.948 3.128 3.552 0.052 
Lybid 506 623 1,690 570 117 1,184 0.099 0.701 3.34 0.427 1.965 0.337 0.946 2.340 2.965 0.054 
Fakel 454 597 1,644 537 143 1,190 0.120 0.724 3.62 0.382 2.061 0.327 0.930 2.621 3.061 0.070 
Snizhana 455 617 1,734 526 162 1,279 0.127 0.738 3.81 0.356 2.297 0.303 0.944 2.811 3.297 0.056 
Nika 482 641 1,598 529 159 1,116 0.142 0.698 3.32 0.432 2.021 0.331 0.958 2.315 3.021 0.042 
Liniia IRHSHI 463 605 1,412 532 142 949 0.150 0.672 3.05 0.488 1.654 0.377 0.927 2.050 2.654 0.073 
Tambov-chanka 483 654 1,563 565 171 1,080 0.158 0.691 3.24 0.447 1.766 0.361 0.924 2.236 2.766 0.076 
Sabina 497 667 1,619 606 170 1,122 0.152 0.693 3.26 0.443 1.672 0.374 0.903 2.258 2.672 0.097 

LSD05 F0 Fpl Fm Fst 
The share of influence of experimental factors 
factors F0 Fpl Fm Fst 

LSD05 factor А (year) 5.96 6.83 5.91 5.25 А 21.369 23.551 28.129 27.884 
LSD05 factor В (plant species) 6.84 7.92 6.18 4.29 B 48.369 45.274 51.369 49.139 
LSD05 interaction АВ 8.92 10.12 9.24 8.87 AB 30.262 31.175 20.502 22.977 
Tukey HSD Test (Signifscant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1) 
 Df  Sum Sq Mean Sq  F value Pr (>F)  
F0 RE 13  27,197 2,092  6.75 **  
Residuals 84  26,027 310     
Fpl RE 13  42,030 3,233  10.80 ***  
Residuals 84  25,137 299     
Fm RE 13  29,434 2,264  24.74 ***  
Residuals 84  7,686 92     
Fst RE 13  11,450 881  15.08 ***  
Residuals 84  4,905 58     
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The obtained range of values of the basic indicators of the CFI curve (F0, Fpl, Fm, 
Fst) had extremely close intervals of values, which corresponded to a close numerical 
interval. This is confirmed by graphical interpretation of CFI curves (Figs 2a–2b) in 
oilseed radish varieties. Based on this, it was concluded that chlorophyll fluorescence 
induction indices can be used in the processes of genomic identification of plants. In 
addition to the conclusions of Kalaji & Guo (2008), Flood et al. (2011), Driever et al. 
(2014) and Flexas & Carriqu´ı (2020), the presented graphical data proved the similarity 
of the formation of dynamic changes in the process of chlorophyll fluorescence induction 
in terms of general formation and established the specific nature of the curve sections in 
terms of ordinal placement and specific formation features in the corresponding sections. 

At the same time, with the general similarity of the curves, specific features were 
noted. This specificity is defined as a factor of special adaptive reactions of the 
assimilation apparatus of oilseed radish plants due to appropriate responses to 
environmental stress factors. For example, comparison of CFI curves for significantly 
different by the established parameters of breeding value varieties of oilseed radish 
‘Ramonta’ (Fig. 2a) and ‘Liniia IRHSHI’ (Fig. 2b). For the variety ‘Ramonta’ high 
maximum ordinate position up to the level of 1800 relative units of fluorescence standard 
(F0), intensive decrease of the curve in the area of 33–60 second fixation, complex 
microrelief character of the curve in the area of 61 second fixation to the level of 
stationary fluorescence Fst. 

For the variety ‘Liniia IRHSHI’ the minimum ordinal position up to the level of 
1400 relative units of the fluorescence standard (F0), slower decrease of the curve in the 
33–60 second fixation, smoothed character of the curve in the 61 second fixation to the 
level of Fst were noted. 

Taking into account the fact that the photosynthetic apparatus of plants has certain 
idiosyncratic mechanisms of adaptation to stress, as noted in the studies of Ajigboye et 
al. (2016) and Araus & Cairns (2014) and genotypic features of the variety determine 
both the formation of the plant photosystem and the mechanisms of its functioning 
(Strasser et al., 2004), the obtained data confirm the conjugation of the formation of 
plasticity and stability of the genotype and the efficiency of its photosystem. In support 
of this, such a mechanism of formation was noted already at the early stages of formation 
of juvenile elements of the photosystem of cruciferous crops (Jalink et al., 1998). The 
possibility of such evaluation approaches was confirmed in the variants of drought 
tolerance, salinity tolerance and general stress tolerance of rapeseed genotypes (Kauser 
et al., 2006; Jafarinia & Shariati, 2012; Ayyaz et al., 2021), mustard (Irfan et al., 2015) 
and radish subspecies (Guo et al., 2005). 

A high value of the initial fluorescence index F0 at the level of 500 relative units of 
the fluorescence standard was noted, taking into account the results of studies by  
Gu et al. (2017), according to which the growth of F0 in the comparison of plant species 
indicates its sensitivity to an increase in plant density. On the basis of this, the studied 
varieties of oilseed radish are predictably attributed to those responding to thickening by 
reducing the level of individual bioproductivity with increasing planting density. 
Different gradations of the F index0 allowed to hypothetically determine the varieties of 
oilseed radish with different degrees of agrotechnological response to changes  
in the range of planting density. Thus, for the varieties ‘Raiduha’, ‘Iveia’, ‘Lybid’, 
‘Sabina’, the optimum standing density should be predicted in a narrower 
agrotechnological interval than for the varieties ‘Olha’, ‘Zhuravka’, ‘Fakel’, ‘Ramonta’. 
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Figure 2а. CFI curves (adjusted for the average multi-year values of the indicator at each fixation 
point) for oilseed radish varieties based on averaged data from fixation points in the 90 second 
interval over the 2015–2020 period. 
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The formation of the ‘plateau’ zone Fpl fluorescence also has few generic as well as 
varietal differences. Regarding varietal features, oilseed radish was characterized by a 
dynamically increasing level of formation of this index with a little expressed form of 
‘plateau’ zone at the level of 11–15 seconds of registration with a portable fluorimeter, 
followed by intensive increase of index of CFI curve up to the value of maximum 
fluorescence (Fm) (Figs 2a–2b). The varietal specificity of indicator formation  
should also be noted. Thus, in the varieties ‘Alfa’, ‘Raiduha’, ‘Iveia’, on average over a  
multi-year period of evaluation, the achievement of the ‘plateau’ zone in the  
intensively growing area F0–Fpl was noted. For the varieties ‘Zhuravka’, ‘Fakel’,  
‘Olha’, ‘Pryhazhunia’, the angular slope of the CFI curve in the F0–Fpl area was less. 
 

  
 

 

 

 
 

 

 

 
 

Figure 2b. CFI curves for oilseed radish varieties based on averaged data from fixation points in 
the 90 second interval over the 2015–2020 period. 
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Under these conditions, the formation of the Fpl indicator was noted on the intensively 
increasing segment of the CFI curve. At the same time, the nature of such formation was 
varietal specific. This indicates certain differences in the functioning of the photosystem 
of different oilseed radish genotypes and similarity in the reaction to a change in the area 
of plant nutrition. By the way, similar results were obtained in winter wheat (Brestič et 
al., 2012) and spring barley (Kalaji & Guo, 2008). 

A number of peculiarities of oilseed radish varieties in comparison with other 
cruciferous crops were also found in the area of the CFI curve between Fpl and Fm 
(Figs 2a–2b). The character of the graph in this area had the highest level of visual 
genotypic differences, which further proved the possibility of varietal identification of 
oilseed radish on the basis of basic indicators of chlorophyll fluorescence induction. In 
all years of research, a special area on the CFI curve in the period 61–65 seconds of 
registration was also recorded, which was typical for all studied varieties of oilseed 
radish. Similar analogies with different expression of the duration of this area were noted 
in our studies on spring rape, white mustard and spring rape (Tsytsiura, 2022). The 
presence of this area is explained by the fact that the nature of the curve formation in the 
area Fm–Fst indicates certain physiological mechanisms of pre-adaptation of the PSII 
photosystem in the transition to stationary fluorescence, which characterizes the stress 
sensitivity of the species. The low expression of this activity on the CFI curve of 
individual cultivars is explained by the higher rate of physiological aging of leaves than 
in other cruciferous species in the analyzed group, as indicated in the publications of 
Ward et al. (1995) and Hasanuzzaman (2020). 

It was found that the graphical altitudinal position of this transition area for different 
varieties of oilseed radish was significantly different. Over the long-term study period, 
it was recorded at the level of 997 relative fluorescence units in the variety ‘Olha’, 1,020 
relative fluorescence units in the variety ‘Fakel’, and 1125 units in the variety ‘Raiduha’, 
respectively (Table 3). In general, with these varietal differences in varieties of oilseed 
radish, a rather narrow niterval of fixation of this transition in the range of 950–1,150 
relative fluorescence units was noted. The very nature of the CFI curve in the area from 
Fm to the marked characteristic plateau at 61–65 seconds of registration has a pronounced 
varietal difference from a wide stretched character in the varieties ‘Raiduha’ and ‘Alfa’ 
to a narrow one with an intense decline in the varieties ‘Zhuravka’, ‘Ramonta’, ‘Nika’. 
Thus, this section of the curve in cruciferous plant species should be considered as an 
indicator of appropriate levels of stress resistance. This possibility by the nature of the 
CFI curve segment Fm–Fst in determining the species response to high or low 
temperatures, drought, soil salinity, heavy metal concentration, lack of nutrients is 
indicated in a number of studies on different plant species, in particular, Huner et al. 
(1993), Flexas et al. (2002), Adams & Demmig-Adams (2004), Gonçalves & dos Santos 
(2005), Urban et al. (2018), Khazaei et al. (2019), McAusland et al. (2019). At the same 
time, under intense stress, as well as under the conditions of natural stage aging of leaves, 
the value of Fst was significantly higher than F0 and vice versa under optimal conditions 
with a shorter time interval for reaching the level of Fst on the CFI curve. These 
generalizations are confirmed by the nature of the plot Fm–Fst (Figs 3a–3b). Thus, for the 
varieties ‘Snizhana’, ‘Fakel’, ‘Lybid’ a consistent slow character of its formation was 
noted, and for the varieties ‘Ramonta’, ‘Zhuravka’, ‘Lybid’ an intense downward 
character was observed when reaching the stationary level of Fst. 
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The index dFpl also had significant differences within the studied varieties based on 
statistically significant difference for the values Fpl and F0 (Table 3). In this case, the 
value of the indicator between the limit values was 141 conventional units of 
fluorescence, respectively 253 units in the variety ‘Zhuravka’ to 112 units in the variety 
‘Alfa’. It is proved for many plant species that induced stresses (herbicides, thickening, 
diseases, etc.) reduce the dFpl with simultaneous growth of both F0 and Fpl. However, the 
growth rate of initial fluorescence outpaces the growth rate of fluorescence of the 
‘plateau’ zone. This has been noted in a number of studies (Goltsev & Yordanov (1997); 
Lazár et al. (1997); Morales et al. (2000), Klinkovsky & Naus (2004); Papageorgiou & 
Govindjee (2004); Lazár & Schansker (2009); Rapacz et al. (2015); Ripoll et al. (2016); 
Østrem et al. (2018); Sánchez-Moreiras et al. (2020). However, the data presented in the 
case of oilseed radish varieties showed the lack of stable compliance with these patterns. 
Thus, varieties with different breeding value (Sv) such as ‘Pryhazhunia’, ‘Tambovchanka’, 
‘Snizhana’ had similar values of dFpl. Based on this, it was concluded that different 
varieties of oilseed radish have certain peak values of Fpl and F0, according to the level 
of physiological capacity of their photosystem. That is, for oilseed radish as for the 
species as a whole, a narrowed interval of possible genotypic stress response was 
determined, which is expressed in the formation of an adaptive niche of the reaction of 
its photosystem. 

The results of the correlation analysis between the studied parameters (Table 4) 
allowed to confirm the previously made conclusions and identify a number of features 
in the expression of adaptive varietal strategies of oilseed radish in the functioning of 
their photosystem. 

It was determined that the indicator Fm had a close relationship of a direct nature 
with the parameters SY, Gp, bi, Sv and Homi and the inverse of CVi Sdi

2. For the indicators 
Fo and Fst, the nature of the correlation between the same indicators had the opposite 
nature of formation. And for the Fpl indicator, a heterogeneous impact with a productive 
direct character was determined. 

At the same time, the effective significance of the dependencies of the indicators 
Fo, Fpl, Fm and Fst on the size of the correlation graph (G) in the interval of indicators SY–
Sv had corresponding differences. According to the size of this correlation graph, the 
indicators of the impact on the certainty of the main criteria for evaluating varieties for 
adaptability and stability can be placed in the following ascending order: Fst (G = -1,732) 
– F0 (-1,925) – Fpl (1,946) – Fm (2,459). Thus, the basic criteria for the induction of 
chlorophyll fluorescence are recommended as predicted for the evaluation and 
determination of adaptive properties of oilseed radish varieties at the corresponding 
already announced optimized ratio of bi and Sdi

2, according to the grouping ranks of their 
ratio. It was proved that the oilseed radish variety with higher plasticity and stability will 
be characterized by higher levels of maximum chlorophyll fluorescence (Fm), lower 
values of initial fluorescence (F0) and, as a result, higher values of Fv. At the same time, 
the indication of dependence was significantly higher for the parameter bi than for the 
parameter Sdi

2. This is explained by the levels of adaptive responses of varieties to 
environmental stress factors and genotypic features that determine the physiological and 
anatomical features of the structure and functioning of the plant photosystem. The 
presence of these physiological and anatomical features in other plant species is reported 
in the studies of Strasser & Tsimilli-Michael (2001), Lascano et al. (2003), Lepeduš et 
al. (2012) and Herritt et al. (2020). It should be noted that for the studied varieties of 
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oilseed radish, the range of Fm values was 402 conventional units of fluorescence (1,814 
in the variety ‘Ramonta’ and 1,412 in the variety ‘Liniia IRHSHI’) (Table 3). In relation 
to the average long-term value for the studied varieties of 1630 conventional units of 
fluorescence, it was 24.7%. Taking into account the results of studies by Middleton et 
al. (2019), Dechant et al. (2020), Quero et al. (2020), Jushkov et al. (2021), where it is 
noted that the increase in the range of values of basic indicators of fluorescence in a 
certain species population of plants at a very high gradation indicates its heterogeneity 
and significantly differentiated physiological stability of plant stress responses. In view 
of this, the genetically determined mechanisms of adaptive adaptability of oilseed radish 
varieties to changing environmental conditions was obviously due to the involvement of 
the original local populations and wild forms of oilseed radish well adapted to reactions 
to various changes in hydrothermal and edaphic conditions. The effectiveness of 
breeding to improve varieties in this way is noted in particular in the studies of Li et al. 
(2006), Long et al. (2006, 2015), Rapacz et al. (2015), Kromdijk et al. (2016), Khazaei 
et al. (2019) and Zhuang et al. (2020). 

Taking into account the direct nature of the relationship between the parameters bi, 
Sv and Homi and the inverse relationship between Sdi

2 and Fm and the inverse relationship 
with a smaller value of the correlation coefficients with respect to F0 – the value of ER 
(FV/Fm) can be successfully used in breeding programs for evaluating oilseed radish 
varieties for stability and plasticity. At the same time, given the multidirectional 
correlation dependencies of ER components, the importance of the criterion Fm in the 
predicted assessment of the adaptive potential of varieties will be the main one. 

Based on the established in studies of varietal characteristics of the CFI curve 
section F0–Fpl–Fm, it was determined that the correctness of identification of oilseed 
radish varieties by varietal adaptability will be determined by the physiological response 
of the genotype at the initial stages of induction of chlorophyll fluorescence in the  
F0–Fpl section and the speed and intensity of the recovery of the acceptor mechanism of 
electrons of the PS II photosystem. The tendency of both ratios to the identical reduction 
reaction at the growth of stress factors causes a less significant level of dependence than 
in single correlation comparisons between dFpl and Fv, which is clearly confirmed by the 
data of Table 4. 

Genotypic differences in oilseed radish by the rate of change in the induction of 
chlorophyll fluorescence by Vt were also determined. On the basis of this, in oilseed 
radish varieties where this indicator was lower, the possibility of expanding the interval 
of the boundary limits of the corresponding stress factor was established, which 
provides a wider range of plasticity of the variety and its adaptations. This is confirmed 
by the inverse relationship between Vt and such criteria as bi (-0.561, at p < 0.05) and 
the indicator of breeding value of the variety (Sv) (-0.382, p < 0.05) and a direct 
relationship with the indicator of variant stability of the trait, Sdi2 (0.490, at p < 0.01) 
(Table 4). 

The potential possibility of using the vitality index RFd, (an indicator of the 
threshold level of exogenous stress (Korneev, 2002)) in identifying the adaptability of 
oilseed radish varieties on the basis of direct correlations (at p < 0.01) with such 
indicators as seed yield (SY) (0.649), genetic flexibility (Gp) (0.703), breeding value of 
the variety (Sv) (0.662) and regression coefficient bi (0.774). At the same time, inverse 
relationships of medium strength (at p < 0.05) were determined with the stability variant 
Sdi2 (-0.409) and the coefficient of genotypic variation of the variety CVi (-0.397). 
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Table 4. Correlation analysis of dependencies of the system of chlorophyll fluorescence induction indices and adaptive potential of oilseed radish 
varieties (comparing 28 correlation pairs by averaged indices for the pair of incompatible repeats from the total scheme of 56 observations during 
2015–2020 (for Snedecor, 1989)) 

Indicator Fpl Fm Fst dFpl Fv dFpl/Fv EP Lwp Que RFd Kef QP 
F0 0.031 -0.431* 0.890** -0.672*** -0.612*** -0.551** -0.824*** -0.817*** 0.824*** -0.777*** 0.786*** -0.419* 

Fpl  0.453* 0.155 0.719*** 0.390* 0.702*** 0.242 0.284 -0.227 0.225 -0.154 -0.132 
Fm   -0.396* 0.635*** 0.977*** 0.254 0.863*** 0.871*** -0.858*** 0.858*** -0.836*** 0.465* 

Fst    -0.504** -0.556** -0.348 -0.739*** -0.730*** 0.741*** -0.810*** 0.832*** -0.764*** 

dFpl     0.714*** 0.903*** 0.752*** 0.778*** -0.741*** 0.707*** -0.660*** 0.194 
Fv      0.352 0.950*** 0.955*** -0.945*** 0.934*** -0.917*** 0.505** 

dFpl/Fv       0.445* 0.479** -0.435* 0.381* -0.335 -0.058 
EP        0.995*** -0.999*** 0.964*** -0.960*** 0.522** 

Lwp         -0.991*** 0.966*** -0.954*** 0.512** 

Que          -0.960*** 0.960*** -0.525** 

RFd           -0.995*** 0.712*** 

Kef            -0.740*** 

Indices Kprp Kfd Vt SY Gp CVi bi Sdi
2 Нomi Sv   

F0 -0.817*** -0.777*** 0.419* -0.449* -0.466* 0.096 -0.632*** 0.381* -0.147 -0.413*   
Fpl 0.284 0.225 0.132 0.461* 0.473* -0.517** -0.059 0.440* 0.501** 0.532**   
Fm 0.871*** 0.858*** -0.465* 0.662*** 0.726*** -0.580** 0.638*** -0.231 0.478** 0.689***   
Fst -0.730*** -0.810*** 0.764*** -0.507** -0.410* 0.105 -0.658*** 0.503** -0.141 -0.378*   
dFpl 0.778*** 0.707*** -0.194 0.654*** 0.674*** -0.476* 0.396* 0.061 0.473* 0.681***   
Fv 0.955*** 0.934*** -0.505** 0.685*** 0.745*** -0.443* 0.707*** -0.292 0.454* 0.701***   
 dFpl/Fv 0.470* 0.381* 0.058 0.456* 0.450* -0.204 0.114 0.248 0.420* 0.467*   
EP 0.995*** 0.964*** -0.522** 0.658*** 0.710*** -0.449* 0.749*** -0.359 0.391* 0.652***   
Lwp 0.997*** 0.966*** -0.512** 0.674*** 0.722*** -0.387* 0.762*** -0.343 0.387* 0.680***   
Que -0.991*** -0.960*** 0.525** -0.649*** -0.703*** 0.385* -0.744*** 0.362 -0.358 -0.643***   
RFd 0.966*** 0.967*** -0.712*** 0.649*** 0.703*** -0.397* 0.777*** -0.409* 0.391* 0.668***   
Kef -0.954*** -0.995*** 0.740*** -0.621*** -0.678*** 0.388* -0.775*** 0.442* -0.360 -0.632***   
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Table 4 (continued) 
Indices Kprp Kfd Vt SY Gp CVi bi Sdi

2 Нomi Sv   
QP 0.512** 0.712*** -0.995*** 0.303 0.352 -0.217 0.561** -0.490* 0.207 0.350   
Kprp  0.966*** -0.512** 0.674*** 0.722*** -0.383* 0.752*** -0.343 0.387* 0.670***   
Kfd   -0.712*** 0.649*** 0.703*** -0.391* 0.774*** -0.409* 0.391* 0.662***   
Vt    -0.303 -0.352 0.217 -0.561** 0.490** -0.207 -0.382*   
YS     0.972*** -0.487** 0.731*** -0.225 0.519** 0.914***   
Gp      -0.571** 0.734*** -0.145 0.501** 0.906***   
CVi       -0.016 0.175 -0,978*** -0.777***   
bi        -0.540** 0.038 0.524**   
Sdi

2         -0.168 -0.204   
Нomi          0.809***   
* – reliable at 5% significance level; ** – reliable at 1% significance level; *** – reliable at 0.1% significance level. 
 
Table 5. The system of regression dependencies of basic indicators of chlorophyll fluorescence induction and the main criterion estimates of the 
adaptive value of oilseed radish varieties (based on the combined 2015–2020 data set) 

In
de

xe
s 

Parameters 

Dependence equation 

The coefficient  
of multiple 
regressiont  
(R/ R2) 

Assessment of the significance of 
dependence х y 

Fm bi Sv Fm = 2,223.9895 – 678.4613x – 3,448.9904y + 744.578x2 – 1,395.8739xy + 
7,748.952y2 

0.793*/0.629 F/SStotal = 5.18 (Ft05 = 4.67), (p < 0.05) 

Fv bi Sv Fv = 1,671.6984 – 1,388.0067x – 57.2714y + 807.98x2 + 32.3023xy + 3.1041y2 0.808*/0.653 F/SStotal = 5.37 (Ft05 = 4.67), (p < 0.05) 
EP bi Sv EP = 0.8332 – 0.294x – 0.0172y + 0.1742x2 + 0.0081xy + 0.0008y2 0.813*/0.661 F/SStotal = 5.98 (Ft05 = 4.67), (p < 0.05) 
Lwp bi Sv Lwp = 5,2719 – 3,3971x – 0.2887y + 1,9941x2 + 0.0984xy + 0.0148y2 0.823*/0.677 F/SStotal = 6.29 (Ft05 = 4.67), (p < 0.05) 
Que bi Sv Que = 0.185 + 0.5931x + 0.0289y – 0.3511x2 – 0.0163xy – 0.0014y2 0.803*/0.645 F/SStotal = 5.22 (Ft05 = 4.67), (p < 0.05) 
RFd bi Sv RFd = 3.7205 – 2.7856x – 0.2888y + 1.2207x2 + 0.1583xy + 0.0115y2 0.833*/0.694 F/SStotal = 6.51 (Ft05 = 4.67), (p < 0.05) 
Kef bi Sv Kef = 0.1805 + 0.3186x + 0.0232y – 0.1401x2 – 0.0182xy – 0.0007y2 0.819*/0.671 F/SStotal = 6.14 (Ft05 = 4.67), (p < 0.05) 
Kprp bi Sv Kprp = 4.2627 – 3.4087x – 0.2853y + 1.9895x2 + 0.1008xy + 0.0145y2 0.821*/0.674 F/SStotal = 6.23 (Ft05 = 4.67), (p < 0.05) 
Kfd bi Sv Kfd = 4.7205 – 2.7856x – 0.2888y + 1.2207x2 + 0.1583xy + 0.0115y2 0.831*/0.691 F/SStotal = 6.42 (Ft05 = 4.67), (p < 0.05) 
* Significant at 5% level. 
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Indirectly, the physiological state of oilseed radish varieties was assessed by the 
leaf water potential (Lwp), since, according to van der Tol et al. (2009), Vialet-Chabrand 
et al. (2017) and Zhang et al. (2020), the activity and efficiency of the plant photosystem 
depends on the total water content of the assimilation surface, its turgor state and water 
balance. Considering the already mentioned general physiological peculiarity of oilseed 
radish to intensive reduction of plant leafiness and its different tier physiological stages 
according to stem height (Tsytsiura, 2022), leaf water potential for oilseed radish 
cultivars is an important aspect of its photosystem functioning. According to our 
estimates, the highest value of this indicator in the range of 3.81–4.13 was established 
for varieties with high breeding value and adaptive properties such as ‘Ramonta’, 
‘Zhuravka’, ‘Snizhana’ and confirmed by direct correlations (at p < 0.01) with such 
indicators as seed yield (SY) (0.674), genetic flexibility (Gp) (0.722), breeding value of 
the variety (Sv) (0.670) and regression coefficient bi (0.752). That is, the indicators of 
effective water consumption of plants, the physiological state of the assimilation surface 
in the vertical profile of leaf placement determine the physiological mechanisms of 
adaptation of oilseed radish varieties. 

Taking into account the calculated derivative of the basic indicators of the CFI curve 
such as Que, Kef, QP, Kprp, Kfd, its application in the process of evaluating oilseed radish 
varieties for adaptability, plasticity and stability correlates with the already indicated 
features of application in terms of basic indicators and certain indices based on them. 

The results of multiple regression analysis confirm earlier conclusions and the most 
statistically significant results are shown in Table 5. Thus, the possibility of effective use 
of both basic and derivative indicators determined by estimating the chlorophyll 
fluorescence induction curve for the predicted assessment of both genotypic stability of 
the variety (bi) and its breeding value in the system of complex interaction of stressful 
and non-stressful growing years (Sv) with the level of multiple regression coefficient in 
the range of 0.793–0.833 (at p < 0.05) was proved. The determined level of significance 
in combination with the results of pairwise correlation (Table 4) according to  
Pour-Aboughadareh (2022) is sufficient to apply the criteria of the CFI curve of the 
corresponding variety to identify its adaptive properties. 

The established degree nature of the dependence in view of the study by Vaezi et 
al. (2019) indicates a complex configurational interaction of environmental factors both 
in relation to the physiological aspects of the photosynthetic activity of oilseed radish 
plants and in relation to the realization of the genetic yield potential of each variety. 

 
CONCLUSIONS 

 
It was determined that the complex indices of chlorophyll fluorescence induction 

F0, Fpl, Fm, Fst had genotypic differences with the possibility of identifying stress 
resistance and adaptability of oilseed radish varieties to limiting exogenous 
environmental factors in the process of determining its breeding value. The possibility 
of using a comparable systematic analysis of the characteristic areas of the chlorophyll 
fluorescence induction curve (CFI) of the photosystem of oilseed radish varieties during 
the period of its maximum activity and identifiers of its plasticity and stability 
(coefficient of genetic plasticity (Gp), coefficient of agronomic stability (As), coefficient 
of stress resistance (Cst), coefficient of homeostaticity (Homi)) has been proved. The use 
of this variant of evaluation is confirmed by the coefficient of determination (dxy) for the 
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inverse nature of the pair correlation (at p < 0.05–0.01) at the level of 14.6–53.3% in the 
comparison of genetic plasticity (Gp), regression coefficient of genetic stability of the 
variety (bi), breeding value of the variety (Sv) with such indicators as initial fluorescence 
(F0), stationary fluorescence (Fst), rate of change of fluorescence in time (Vt). Direct 
pairwise correlation dependences (at p < 0.01–0.001) for the same parameters of 
genotypic evaluation and a number of CFI curve parameters in the following order of 
increasing dxy were determined: fluorescence rise (dFpl, dxy = 15.6–46.4%) – maximum 
fluorescence (Fm, 40.7–52.7%) – photochemical efficiency (EP, 42.5–56.1%) – 
efficiency of the initial reactions of photosynthesis (Kprp, 44.9–56.6%) – maximum 
variable fluorescence (Fv, 49.1–55.5%) – leaf water potential (Lwp, 46.2–58.1%) – 
coefficient of decline of the fluorescence (Kfd, 43.8–59.9%) – plant viability index (RFd, 
44.6–60.4%). Predictability and applicability of these comparisons was confirmed by 
multiple regression analysis between genotypic stability (bi), breeding value (Sv) and 
CFI curve parameters such as Fm, Fv, EP, Lwp, Que (photochemical extinguishing), RFd, 
Kprp, Kef (indicator of endogenous stress factors), Kfd with the value of multiple 
regression coefficient (R) in the range 0.793–0.833 (at p < 0.05). 

From the point of view of prospects for further research, this system of evaluation 
of initial breeding material should be studied for the possibility of application to other 
types of cruciferous crops, including its wild forms. This will improve the process of 
selection of source material and search for an effective variant of its genetic 
recombination. 
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