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Abstract. This study utilized two probabilistic methods, Gaussian Naive Bayes (GNB) and 
Logistic Regression (LR), to predict the genotypes of the offspring of two maize varieties: SC604 
and KSC707, based on the phenotypic traits of the parent plant. The predictive performance of 
both models was evaluated by measuring their overall accuracy and calculating the area under 
receiver operating characteristic curve (AUC). The overall accuracy of both models ranged from 
80% to 89%. The AUC values for the LR models were 0.88 or higher, while the GNB models 
had AUC values of 0.83 or higher. These results indicated that both models were successful in 
predicting the genetic makeup of the progeny. Furthermore, it was observed that both models 
were more accurate in predicting the SC604 genotype, which was found to be more consistent 
and predictable compared to the KSC707 genotype. A chi-square test was conducted to assess 
the similarity between the prediction results of the two models, revealing that both models had a 
similarly high likelihood of making accurate predictions in all scenarios. 
 
Key words: Gaussian Naive Bayes (GNB), genotype prediction, Logistic Regression (LR), 
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INTRODUCTION 

 
The implementation and development of learning algorithms have paved the way 

for novel approaches to data processing, information extraction, and decision-making. 
These algorithms have widespread applications across various fields of human activity, 
as evidenced by the abundance of literature on their development and use. Scientists 
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have devised an algorithm for the selection of genetic biomarkers and classification of 
subjects through the analysis of genome-wide single nucleotide polymorphism data. The 
algorithm demonstrated significantly improved classification accuracy in identifying 
biomarkers for Type 1 diabetes (Sambo et al., 2012). 

Other researchers have used a naive Bayes classifier combined with small RNA 
deep sequencing statistics, as well as genomic signatures to recognize offspring 
microRNAs in different types of crops and herbs (Douglass et al., 2016). The classifier 
exhibited high accuracy in identifying microRNA for all four plants, as determined by 
the AUC's receiver operating characteristic curve. The values of the area under the 
receiver operating curve reported in the study range from 0.9750 to 0.9960, with the 
highest value being obtained for the identification of Arabidopsis microRNAs. These 
machine learning algorithms have been widely employed in the classification of various 
plant organisms as well. Typically, the identification of plants is based on leaf 
characteristics, such as their shape, color, and texture, which are unique to each plant 
species. Unlike flowers and fruits, plants maintain functional leaves throughout their 
lifespan (Siravenha & Carvalho, 2015). 

Another group of scientists from China and the US created a probabilistic series of 
algorithms that endeavors to recognize underlying relationships in a set of data, 
employing image and data processing techniques to automatize herb classifying  
(Wu et al., 2007). This algorithm successfully classified 32 different herb species based 
on their visual characteristics with a greater than 90% accuracy rate. The authors found 
their algorithm to be both rapid and efficient in recognizing and classifying herbs. 

In different years, many scientists were engaged in the development of an algorithm 
for the visual recognition of plants. One such research group, for example, created an 
algorithm that can differentiate weeds from two main crops - carrots and cabbage 
(Hemming & Rath, 2001). They initially used eight morphological features in 
combination with three color features, selecting the most relevant features to 
discriminate between the different plant species. The inclusion of color features 
improved classification accuracy, with the researchers reporting between 50% and 95% 
of crops being accurately classified. The average rate of successful classifying was 87% 
and 73% for cabbage and carrots, respectively. 

Continuing research on this topic, another group of scientists from the University 
of Southern Denmark created a dataset representing visual features using distance data 
from images of seedlings of various plants (Giselsson et al., 2013). The researchers 
utilized a high-degree Legendre polynomial to fit the distance data and subsequently 
extracted the coefficients of the polynomial, which they referred to as the Legendre 
polynomial feature set. In addition, they collected another set of data, which they named 
the standard feature set. The data sets were then subjected to four classification 
algorithms. The researchers observed that the Legendre polynomial feature set exhibited 
a high degree of robustness, generating an accuracy rate of nearly 99% when used in 
conjunction with the classification algorithms. Conversely, the standard feature set yielded 
an accuracy rate of 87%. Despite these promising results, the researchers recommended 
further testing of the attribute data collection method to determine its true value. 

A new method for data acquisition on leaf features has also been proposed 
previously (Siravenha & Carvalho, 2015; Änäkkälä et al., 2023; Esan et al., 2023). It 
includes contour-to-centroid distance and transforms the data using a fast Fourier 
transform. The authors of this method used a feature selection approach to reduce 
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dimensionality, which led to increased classification accuracy. Also, they employed 
various classification algorithms for plant identification, achieving classification 
accuracies ranging from 66% (with the C4.5 algorithm) to 98% (with the Pattern Net 
algorithm applied to main components). The field of phenotypic predictions for 
quantitative traits of sequenced whole genomes has seen significant advancement with 
the incorporation of learning algorithms and other statistical methods. Scientists from 
Fondazione Bruno Kessler, Italy, made a significant contribution to the development of 
this field with their research (Guzzetta et al., 2010). They outlined a learning process 
that uses a naive elastic network-based L1L2 regularization method to predict 
phenotypes. The effectiveness of this method was found to be highly accurate. Similarly, 
a group of Chinese scientists employed machine learning techniques to distinguish root 
traits that caused cultivar differentiation in a binomial environment (Zhao et al., 2016). 

Lippert et al. (2017) and Dragov et al. (2023) developed models for phenotypic 
feature prediction and combined them into a singular machine learning model for 
genome re-identification. In all instances, various learning methods were utilized, each 
with satisfactory to excellent performance in prediction or classification. It should be 
noted, however, that no single machine-learning method is optimal for every 
circumstance, as each has its strengths and limitations (Kell et al., 2001; Hudzenko et 
al., 2023). 

The exceptional proficiency of the algorithms in recognizing and grouping the 
subjects being examined led us to undertake a study that aims to forecast the genotypes 
of plants by examining the phenotypic traits of their parents. Furthermore, this study 
serves as a quantitative confirmation of the theory that GNB with continuous 
characteristics and LR are fundamentally identical, despite being generative and 
discriminative respectively (Ng & Jordan, 2001; Chen et al., 2019). 

The present study incorporates a comprehensive analysis of the materials and 
methods used in its execution. This involved the procurement of all necessary materials, 
including instruments, equipment, and chemicals, from reputable sources. The methods 
employed in this study were carefully formulated and optimized to obtain the most 
accurate and reliable data possible. The techniques used were based on established 
protocols and were performed under standardized conditions to minimize experimental 
variability and ensure consistency. All procedures were documented in detail to facilitate 
reproducibility and ease of replication. 

 
MATERIALS AND METHODS 

 
Location of the Study 
In May 2020, an experiment was conducted in the experimental field of Sumy 

National Agrarian University, located in the Sumy district of the Sumy region, which is 
part of the Forest-steppe zone of Ukraine. The soils on the experimental site were dark 
gray podzolized and fertilizers were added to the soil. 

 
Plant Material 
For this research, two genotypes of maize (Zea mays L.) were used: SC604 and 

KSC707. They differed in the color of their kernels, with SC604 having translucent, 
white kernels, and KSC707 having yellow kernels. 
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Selection Process 
The SC604 genotype underwent a selection process spanning three cycles, to 

develop larger, wider leaves, an increased number of leaves, and taller plant structures. 
In contrast, the KSC707 genotype underwent random selection after each cycle. 

 
Pollination Process 
To obtain seeds from selected plants of each strain, pollination was carried out 

using bulk pollen harvested from male inflorescences of the same genotype. Controlled 
pollination was ensured by protecting the ear with a paper bag immediately after 
emergence. 

 
Field Research Methods 
The experiment involved planting seeds of fourth-generation parent plants and 

fifth-generation offspring plants of the two genotypes mentioned. It was conducted using 
a completely randomized design with two factors - genotype and generation. The 
experimental field was divided into two rows for each variety, with each row being 
5 meters long, and separated by a distance of 0.9 meters. The plots were overseeded, and 
after three weeks of planting, the number of plants in each plot was thinned to 40,000 
units per hectare. During silking, when almost half of the planted plants in the field 
developed silks, in order to obtain accurate data, we employed a series of measurements 
to determine various plant attributes for accurate data collection. We used a node-
counting method to determine the number of leaves present (nl). Additionally, we 
measured the length and width of the ear leaf (el, ew), and the overall height of the 
experimental samples (hs), defined as the distance from the soil base to the apex of the 
m-inflorescence. To assess grain filling rate (gf), we used a linear coefficient derived 
from the orthogonal contrast of grain dry weight during the linear phase of the filling 
time, as part of a sequential selection process. 

 
Prediction Methods 
To predict the genotypes of the offspring, we utilized two classification techniques: 

the GNB and LR. The GNB algorithm was used to determine the probability of a progeny 
belonging to either the SC604 or KSC707 strain, based on attributes such as the number 
of leaves, length and width of the ear leaf and others. The probability model was 
simplified as follows:  

Pr(𝐶𝑙𝑎𝑠𝑠|𝑃1, 𝑃2, … , 𝑃5) = Pr (𝐶𝑙𝑎𝑠𝑠) × ∏ Pr (
5

𝑖=1

𝑃𝑖|𝐶𝑙𝑎𝑠𝑠) (1) 

In this model, Class represents the class label (SC604 or KSC707) and 𝑃1 is used 
to represent the attributes. The model calculates the posterior probability of a progeny's 
lineage by multiplying the prior probability of the class label with the conditional 
probabilities of the attributes associated with that class label. It is important to note that 
this model falls under the discriminative category for prediction or classification, unlike 
LR, which is generative. 

To determine whether a progeny belongs to the KSC707 or SC604 genotypes, we 
used measurements from the parents of these genotypes to fit an LR model, following 
the methodology outlined by Tsangaratos & Ilia (2016). The model parameters were 
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estimated to compute the posterior probabilities of the progeny being classified into 
either the KSC707 or SC604 genotypes. 

Pr(𝐶𝑙𝑎𝑠𝑠|𝑃1, 𝑃2, … , 𝑃5) (2) 
The LR model assumes a parametric structure when the class variable is binomial, 

as shown by Ng & Jordan (2001): 

Pr(𝐶𝑙𝑎𝑠𝑠 = "𝑆𝐶604"|𝑃1, 𝑃2, … , 𝑃5) =
1

1 + exp (𝑏𝑜 + ∑ 𝑏𝑖𝑃𝑖
5
𝑖=1 )

 (3) 

and 

Pr(𝐶𝑙𝑎𝑠𝑠 = "𝐾𝑆𝐶707"|𝑃1, 𝑃2, … , 𝑃5) =
exp (𝑏𝑜 + ∑ 𝑏𝑖𝑃𝑖

5
𝑖=1 )

1 + exp (𝑏𝑜 + ∑ 𝑏𝑖𝑃𝑖
5
𝑖=1 )

 (4) 

Ng & Jordan (2001) demonstrated that the mathematical structure of Pr(Class|P1, 
𝑃2,… 𝑃5) employed by LR conforms exactly to the structure of a GNB classifier under 
the assumptions made. Furthermore, in the majority of cases, both methods yield 
comparable outcomes. It is pertinent to note that LR estimates the parameters of 
Pr(Class|P1, 𝑃2,… 𝑃5) directly, whereas GNB estimates the parameters of Pr(Class) and 
Pr(P1, 𝑃2,… 𝑃5|Class) directly. 

In order to evaluate the proposition, that GNB and LR models yield identical 
outcomes (Ng & Jordan, 2001), we conducted a series of experiments. First, we created 
several sub-samples from the original dataset by iteratively excluding some attributes 
and then computed their main components. Next, we used both models to predict the 
offspring based on the conserved attributes or the respective main components of each 
dataset. The main components, which are an orthogonal conversion of the initial 
observations that maintain the total variance, are expected to eliminate any bias 
associated with the assumption of independence between attributes, compared to using 
the original variables. This approach is intended to help identify any such bias in the 
prediction results. We evaluated the relative significance of the characteristics in 
distinguishing between the two categories. We calculated several metrics, including 
precision, sensitivity, the maximum AUC of receiver operating characteristics and others 
for both models. We assessed each model's efficacy using both the accuracy and the 
AUC value. In our experiments, the SC604 genotype was defined as the positive class. All 
analyses were conducted using the R statistical software package (R Core Team, 2017). 

 
RESULTS AND DISCUSSION 

 
Kuhn (2015) in his study utilized the variable significance ranking technique to 

identify the most pertinent traits among the properties of the data set in distinguishing 
between the two genotypes. The analysis determined that ew, gf, and hs were the most 
crucial attributes, with respective significance values of 0.86, 0.83, and 0.74 on a 1-point 
scale. This conclusion was validated through the LR model, which also identified ew, gf, 
and hs as the most significant predictor variables in the data set, with p-values of 0.0395, 
0.0475, and 0.05, respectively. Means and standard deviations for each of the five traits 
were calculated and displayed (Table 1), with the nl trait exhibiting minimal variability 
across generations and genotypes and ranking last in its capability to distinguish one 
genotype from another with a significance value of 0.58. 
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Table 1. Mean and standard deviation for the five parent-offspring properties considered 

Attribute Parent Offspring 
SC604 KSC707 SC604 KSC707 

ew (cm) 9.71(0.60) 8.41(1.13) 9.52(0.66) 8.99(0.79) 
el (cm) 88.45(6.55) 83.97(7.44) 90.12(5.11) 84.92(6.04) 
nl (cm) 12.22(1.57) 12.13(1.08) 12.94(1.03) 12.31(1.21) 
hs (cm) 236.73(24.12) 217.32(24.86) 232.10(21.34) 217.06(21.48) 
gf (mg×d-1) 5.52(0.31) 5.05(0.35) 5.62(0.29) 5.17(0.39) 

 
By utilizing diverse subsets of the original data set and their main  

components, we were able to predict the offspring of two parents. In the following,  
we will present the performance of both models on specific subsets (Table 2 and Table 3). 

 
Table 2. Values of the confusion matrix of the LR and GNB models with subsets of the initial 
information and their respective main components 

Data Attribute Model Confusion Matrix 
PT NF NT PF 

Initial data (1) ew+el+nl+hs+gf LR 27 3 24 6 
GNB 28 2 25 5 

(2) ew+gf+hs+nl LR 28 2 23 7 
GNB 28 2 23 7 

(3) ew+gf+hs LR 28 2 23 7 
GNB 28 2 24 6 

(4) gf+hs LR 27 3 27 3 
GNB 25 5 28 2 

(5) ew+gf LR 28 2 24 6 
GNB 27 3 24 6 

Main component mc1+mc2+mc3+mc4+mc5 from (1) LR 27 3 24 6 
GNB 27 3 23 7 

mc1+mc2+mc3+mc4 from (2) LR 28 2 23 7 
GNB 29 1 20 10 

mc1+mc2+mc3 from (3) LR 28 2 23 7 
GNB 28 2 23 7 

mc1+mc2 from (4) LR 27 3 27 3 
GNB 24 6 26 4 

mc1+mc2 from (5) LR 28 2 24 6 
GNB 27 3 23 7 

mci(i=1, 2,…,5) – main components; PT – positive true; NF – negative false; NT – negative true; and  
PF – positive false. 

 
To compare the confusion matrices generated by the models on each subset, we 
conducted a Chi-square test (Agresti, 2007). The p-values resulting from the test of 
homogeneity of the confusion matrices ranged from 0.7812 to 1, indicating that the 
prediction performances of both models were very similar. GNB and LR are both models 
utilized to compute the conditional probability that an offspring belongs to a particular 
genotype. GNB updates prior knowledge from parents with current evidence of offspring, 
while LR estimates the parameters of the model with the parents' phenotypic values. 
Previously, scientists have already provided a comprehensive and refined demonstration  
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that, under certain conditions of a binary response variable (Y) with parameter 
π=Pr(Y="PositiveClass"), Gaussian distributed attributes (Pi) that are conditionally 
independent concerning Y, and Pr(Pi|Y=yk)∼N(μik,σi), the conditional probabilities 
under the GNB model can be expressed in parametric forms (Ng & Jordan, 2001). 

Pr(𝐶𝑙𝑎𝑠𝑠 = "𝑆𝐶604"|𝑃1, 𝑃2, … , 𝑃5) =
1

1 + exp (𝑤𝑜 + ∑ 𝑤𝑖𝑃𝑖
5
𝑖=1 )

 (5) 

and 

Pr(𝐶𝑙𝑎𝑠𝑠 = "𝐾𝑆𝐶707"|𝑃1, 𝑃2, … , 𝑃5) =
exp (𝑤𝑜 + ∑ 𝑤𝑖𝑃𝑖

5
𝑖=1 )

1 + exp (𝑤𝑜 + ∑ 𝑤𝑖𝑃𝑖
5
𝑖=1 )

 (6) 

where 
𝑤𝑖 =

𝜇𝑖0 − 𝜇𝑖1

𝜎𝑖
2  (7) 

and 

𝑤0 = ln
1 − 𝜋

𝜋
+ ∑

𝜇𝑖1
2 − 𝜇𝑖0

2

2𝜎𝑖
2

𝑖
 (8) 

When the response variable has binary outcomes and the predictor variables are 
distributed according to a Gaussian distribution, the probabilities provided by LR remain 
identical. The numerical evidence obtained from the experiment supports the findings of 
other studies (Ng & Jordan, 2001; Bhowmik, 2015; Vasilaki et al., 2023). It is important 
to note that LR estimates the parameters for Pr(Class|Pi) directly, while GNB estimates 
the parameters for Pr(Class) and Pr(Pi|Class) directly. 

 
Table 3. The predictive attributes of the LR and GNB models with subsets of the initial 
information and their respective main components 
Data Attribute Model p-value Accuracy AUC 
Initial data (1) ew+el+nl+hs+gf LR 0.9710 0.84 0.88 

GNB 0.86 0.90 
(2) ew+gf+hs+nl LR 1.000 0.83 0.91 

GNB 0.84 0.88 
(3) ew+gf+hs LR 0.9886 0.85 0.90 

GNB 0.86 0.89 
(4) gf+hs LR 0.8904 0.89 0.91 

GNB 0.88 0.90 
(5) ew+gf LR 0.9822 0.85 0.89 

GNB 0.84 0.86 
Main component mc1+mc2+mc3+mc4+mc5 from (1) LR 0.9886 0.82 0.89 

GNB 0.83 0.83 
mc1+mc2+mc3+mc4 from (2) LR 0.8196 0.85 0.91 

GNB 0.80 0.85 
mc1+mc2+mc3 from (3) LR 1.000 0.84 0.91 

GNB 0.84 0.88 
mc1+mc2 from (4) LR 0.7812 0.89 0.90 

GNB 0.82 0.88 
mc1+mc2 from (5) LR 0.9696 0.84 0.89 

GNB 0.82 0.88 
mci(i=1, 2,…,5) – main components. 
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The findings indicate that logistic regression produced identical prediction 
outcomes, regardless of whether subsets of the initial data or their main components 
were utilized (Table 2 and Table 3). This consistency can be attributed to the logistic 
equation's right-hand side remaining consistent for both the original data and main 
components, 

1
1 + exp (�̂�𝑜𝑏𝑠

𝑡 𝐴)
=

1
1 + exp (�̂�𝑝𝑐

𝑡 𝑍)
  

which leads to:  
�̂�𝑜𝑏𝑠

𝑡 𝐴 = �̂�𝑝𝑐
𝑡 𝑍 (9) 

In this case, based on the initial data, �̂�𝑜𝑏𝑠
𝑡  is the vector of ERC (estimated regression 

coefficient) while A denotes the matrix composed of the subset of the original variables. 
On the other hand, the vector of ERC based on the main traits is �̂�𝑝𝑐

𝑡 , and Z is the matrix 
of main traits that is derived from the subset of the primary data. 

So, 
Pr(𝐶𝑙𝑎𝑠𝑠 = "𝑆𝐶604"|𝑃, 𝛽𝑜𝑏𝑠) = Pr (𝐶𝑙𝑎𝑠𝑠 = "𝑆𝐶604"|𝑍, 𝛽𝑝𝑐)  

and 
Pr(𝐶𝑙𝑎𝑠𝑠 = "𝐾𝑆𝐶707"|𝑃, 𝛽𝑜𝑏𝑠) = Pr(𝐶𝑙𝑎𝑠𝑠 = "𝐾𝑆𝐶707"|𝑍, 𝛽𝑝𝑐).  

When utilizing GNB, it was observed that the confusion matrices derived from 
subsets of the original data and their main components were not consistently identical. 
However, the disparities did not prove to be of significant value, as all p-values were 
found to be greater than or equal to 0.7812. 

The prediction performances of both models were highly commendable. When all 
available data were tested, the overall accuracy of predictions ranged from 80% to 89% 
(Table 3), with AUC values between 0.83 and 0.91. The models were notably more 
accurate in predicting SC604 genotypes than KSC707 genotypes, with lower specificity 
but higher sensitivity. This observation may be attributed to the structures of the SC604 
and KSC707 populations and their respective development procedures. The SC604 
population was developed using a selection process aimed at promoting wider and longer 
leaves, with increased leaf numbers and taller plants. The three cycles of selection likely 
contributed to the partial realization of that objective. The SC604 genotypes have 
progressively formed a more homogenous group that exhibits the distinctive traits 
selected for, except for nl. As a result, the accuracy of prediction in these models was 
higher. 

To date, scientists have provided a lot of evidence to support the influence of 
selection on a hereditary trait (García-Ruiz et al., 2016; Kolesnikov et al., 2023). They 
have demonstrated that selection, whether natural or artificial, influences the expression 
of the gene(s) responsible for the development of a modified phenotype. A group of 
Chinese researchers has discovered that the regulation of maize leaf width is governed 
by dominant genes that are not linked to the gene(s) responsible for the control of maize 
leaf length (Wang et al., 2018). This discovery suggests that selection can be employed 
to modify the width of maize leaves without any direct effect on other canopy traits. 
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The present study confirms the hypothesis that the increase in maize leaf width and 
plant height of the SC604 genotype can be attributed to the direct impact of selection for 
wider leaves and taller plants. Consequently, these two traits have emerged as the most 
significant discriminating features between the two populations. The discrepancy in 
grain filling rate between the SC604 and KSC707 genotypes can be attributed to an 
indirect selection for canopy size. Conversely, the KSC707 genotypes were selected at 
random, resulting in larger trait variability and less homogeneity among individuals. The 
increased dispersion of the KSC707 strains led to reduced model specificity. Although 
some individuals of the KSC707 strains shared traits with the SC604 genotypes, the 
majority maintained their distinct traits and were accurately predicted by the models. 

The tests assessing the genotypes of offspring primarily focused on parent-
offspring resemblance. In models trained with the phenotypic values of parents, similar 
traits were identified in their progeny. The receiver operating characteristic’s AUC from 
these tests, which utilized a single predictor variable, may serve as a reliable predictor 
of heritability. Wray et al. (2010) developed an equation correlating the maximum 
receiver operating characteristic’s AUC with heritability and the prevalence of a given 
trait. Dreyfuss et al. (2012) noted in their study that the precision of a study reflects the 
heredity of the trait being evaluated. They added that the high heritability of a phenotypic 
trait resulted in greater prediction accuracy, while traits with low heritability had lower 
accuracy predictions, being more susceptible to environmental factors than genetic 
factors. This study considered numerous phenotypic traits in determining offspring 
genotypes. However, it was unclear whether the AUC value was a suitable estimator of 
heritability. In this study, we may consider the AUC value as an adequate indicator for 
measuring the similarity between parents and their offspring. As the AUC value 
increases, so does the level of resemblance between the two parties. 

 
CONCLUSIONS 

 
Using field data, we employed two different predictive models, LR and GNB, to 

determine the genotype of two distinct maize strains. The accuracy of our predictions 
ranged from 80% to 89%, with the AUC values of the receiver operating characteristic 
falling between 0.83 and 0.91. Our tests showed a high level of sensitivity, indicating a 
correct identification of the SC604 genotype, with a modal value of 0.91 for both GNB 
and LR. Conversely, specificity, defined as the correct identification of the KSC707 
genotype, had a modal value of 0.74 for both GNB and LR. This discrepancy in 
sensitivity and specificity can be attributed to the varying structures of the two 
populations, rather than the quality of the tests themselves. Specifically, the SC604 
population was more homogenous and easier to identify, while the KSC707 population 
was more diverse, with a large proportion of its progeny being misclassified as SC604 
genotypes. 

To conduct the genotype-prediction tests, various subsets of the data along with 
their corresponding main components were utilized. A Chi-square test was performed to 
compare the prediction results of the LR and GNB models for each data set. The outcome 
indicated that both models produced similar prediction performances. The results of our 
field research are consistent with the conclusions of the theoretical works of other 
scientists (Ng & Jordan, 2001; Bhowmik, 2015). When using LR, there was no 
difference in prediction results whether the subset of the data or its corresponding main 
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components were used. The main components preserved the overall fluctuation of the 
information, and the outcome of the matrix of data multiplied by the ERC’s vector from 
a subset remained consistent with the product of the matrix of primary constituents and 
the vector of estimated coefficients from those components. When employing the GNB 
model, the predictive results with a subset of the data or the corresponding primary 
constituents did not invariably match. However, any differences found were not 
significant. 
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