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Abstract. The objective of this research was to study the spatial variability of NDVI and 
chlorophyll sampled by different sensors, as well as to evaluate the correlation between them in 
a coffee field. The study was carried out on a coffee farm located in the municipality of Três 
Pontas, Minas Gerais. A sampling grid containing 30 points was created for the study area. Each 
sampling point was represented by one plant, which was georeferenced by a GNSS RTK. For 
each sample plant, NDVI and chlorophyll were obtained by the optical and active sensors 
GreenSeeker and ClorofiLOG, respectively. In addition, it was carried out a flight with an RPA 
equipped with a passive and multispectral sensor. Using the data obtained by active sensors, a 
geostatistical analysis was carried out to evaluate the spatial variability of NDVI and chlorophyll. 
The geostatistical analysis verified the existence of spatial dependence for the two attributes, and 
thus it was possible to generate spatialization maps through kriging. The images obtained by the 
passive sensor resulted in five multispectral orthomosaics, making it possible to calculate the 
NDVI, thus generating a spatialization map of this index. It was possible to observe in the 
generated maps, points that presented a certain similarity and for this purpose a correlation 
analysis was carried out for the values of each attribute, sampled directly in the maps, and in 
different sampling grids (30, 60, 90 and 120 points). By analyzing the Pearson coefficient (R) it 
was possible to quantify the level of correlation between the data obtained by the different sensors 
and through the t test it was possible to find significant correlations between them. 
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INTRODUCTION 
 
The term Precision Coffee Farming (PC) originated from the application of 

Precision Agriculture (PA) techniques and technologies to coffee cultivation (Alves et 
al., 2006). It is characterized as a set of techniques, technologies, and tools that 
efficiently characterize the spatial variability of coffee tree parameters (Ferraz et al., 
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2012; Santana et al., 2022). Through this set of characteristics, it is possible to obtain an 
integrated base of information and to understand the relationships between the 
production system, the attributes involving soil and plants, and their behavior in 
variations in space, time, and climate. 

In PA, a very important technological tool is remote sensing (RS), widely 
disseminated due to its various applications. Precision agriculture combined with 
computational tools has been studied and widely disseminated in terms of coffee crops 
(Santos et al., 2023). According to Amaral et al. (2020), sensors and applications in remote 
sensing (RS) at all levels (orbital, aerial and terrestrial) have significantly evolved. 

Spectral remote sensing enables early, efficient, objective and non-destructive 
assessment of plant responses to environmental stress factors (Li et al., 2010). According 
to Shiratsuchi et al. (2014) the sensors used by RS can be divided into two categories: 
passive or active. Passive sensors record electromagnetic energy reflected or emitted by 
the target, such as reflected solar radiation or emitted thermal radiation. Active sensors 
provide their own source of electromagnetic energy, such as radars, sonars, active 
canopy sensors (such as GreenSeeker and ClorofiLOG, for example). 

The combination of spectral data from two or more bands creates vegetation 
spectral indices. These improve the relationship between spectral data and the 
biophysical parameters of vegetation (Zanzarini et al., 2013). Vegetation indices allow 
determining the health status of crops, based on different characteristics (Main et al., 
2011; Yu et al., 2014). The normalized difference vegetation index (NDVI) is one of the 
technologies widely used in the field of remote sensing and has a strong relationship 
with morphophysiological variables, such as leaf health, leaf area index (LAI), biomass, 
plant productivity and chlorophyll concentration (Kim et al., 2022). 

In recent years, RS methodologies have been widely used in monitoring agricultural 
crops and in decision-making for better management practices (Marin et al., 2019). Jesus 
et al. (2014) states that RS techniques have been widely used to evaluate vegetation 
indices and chlorophyll levels, with the aim of identifying, in real time, possible changes 
due to variations that may occur in cultivation. Barbosa et al. (2019) and Santos et al. 
(2019a) stated that the use of Remotely Piloted Aircraft (RPA) in PA has increasing 
potential for agricultural monitoring through obtaining data with RS techniques. RPA’s 
can be used in smaller areas or in specific locations to obtain data in less time, being able 
to monitor crop growth. 

By identifying the spatial variability of the vegetative development of plants, it is 
possible to observe differences in productive potential in coffee plantations, where in 
most rural properties, they are treated in a uniform manner in terms of management 
(Rodrigues et al., 2019). Campos et al. (2022) state that adequate management of coffee 
plantations can be carried out in order to make the plants well-nourished and productive 
through geospatial and temporal monitoring of coffee trees. 

The chlorophyll content of leaves is an indicator that represents the growth status 
of crops, and its monitoring in crops is crucial for agricultural practices (Pereira et al., 
2019). Chlorophyll can be subdivided into two classes: chlorophyll a and chlorophyll b, 
together with carotenoids, are part of the primary photosynthetic pigments of plants 
(Moreira, 2011). These photosynthetic pigments have an important role in plant 
physiology, as they are correlated with attributes such as nitrogen and magnesium 
(Marenco & Lopes, 2007) that are related to plant nutrition. Furthermore, chlorophyll 
absorbs energy at different wavelengths (Moreira, 2011), which makes it possible to use 
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remote sensing (RS) techniques to observe the behavior of this attribute in different crops 
(Santos et al., 2019b). 

Therefore, this work aims to study the spatial variability of the normalized 
difference vegetation index and chlorophyll obtained by active and passive sensors, as 
well as to evaluate the correlation between the data obtained by them in different 
sampling grids in coffee fields. 

 
MATERIALS AND METHODS 

 
The study was carried out in a coffee plantation located in an Experimental Field 

belonging to the Agricultural Research Company of Minas Gerais (EPAMIG, acronym 
in portuguese), located in the municipality of Três Pontas, southern region of the state 
of Minas Gerais, Brazil, at mean altitude of 905 m above sea level in the coordinates of 
the Universal Transverse Mercator (UTM) system S 7640030.4 and E 449531.5, 
Zone 23K. This municipality has at mean annual temperature of 20.3 °C and a mean 
annual precipitation of 1,429 mm. The soil in this area is classified as Oxisol. 

The experimental area comprised 1.2 ha of coffee trees of the Coffea arabica L. 
species, cultivar Topázio MG 1190. This crop was established in 1998 with spacing 
between rows of 3.70 m and 0.70 m between plants (Fig. 1). 

 

 
 
Figure 1. Location map. 

 
In this area, a sampling grid was developed containing 30 georeferenced points 

(Fig. 2), where sample data for the variables NDVIps (NDVI obtained from RPA images), 
NDVIas, NDVIas.east and NDVIas.west (NDVI obtained by GreenSeeker readings) and 
Chlorophyll. Each sampling point was represented by a plant. Both the study area and 
sampling points were georeferenced by a global navigation satellite system (GNSS)  
real-time kinematic (RTK). 

The data collection for this study was conducted in August 2022. All measurements 
with the different sensors were carried out simultaneously in the interval from 11:00 am 
to 12:00 pm. The methodology involved several steps, including field data collection, 
data processing, generation of maps, and comparison of values. 
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Field data collection 

specifically taken from the middle section. Ten leaves were selected from either the third 
or fourth node from the apex of the plagiotropic branch, ensuring they were healthy and 
devoid of signs of pests or diseases (Santos et al., 2022; Bento et al., 2022; Barata et al., 
2023). Sampling occurred around 11:00 a.m., coinciding with the timing of the Remote 
Piloted Aircraft (RPA) flight for image collection. In total, 300 chlorophyll readings 
were recorded, resulting in a dataset comprising 30 attribute values, derived from the 
mean of 10 readings per sampled plant. 

 
NDVI active sensor (NDVIas) 
For the Normalized Difference Index (NDVI) readings obtained by an active sensor 

(NDVIas), the commercial GreenSeeker® 505 HandHeld Sensor was used, which is a 
non-image-forming optical sensor capable of measuring this index. The measurements 
of this index using this device were carried out using a method similar to scanning. 

 

 
 

Figure 3. NDVI data sampling using the active sensor. 
 

For NDVIas data sampling, the plant was divided into three sections, referred to as 
thirds (upper, middle, and lower), and two sides of solar exposure (east and west) were  
 

Chlorophyll 
Chlorophyll data were acquired 

employing an active sensor, designated 
as chlorofiLOG, produced by Falker. 
The measurement by this sensor is 
conducted optically, utilizing the 
optimal light frequencies absorbed by 
chlorophyll during photosynthesis. 
This instrument assesses three 
frequency bands and can discriminate 
between the two chlorophyll types: 
Chlorophyll a and Chlorophyll b. Each 
sampled plant was stratified into three 
sections (upper, middle, and lower), 
and the chlorophyll measurements was  

 

 
 
Figure 2. Sample grid. 
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considered. On each side of sun exposure, 9 readings were taken, with 3 in each third. 
represented by Fig. 3. So, 540 NDVIas values were obtained, divided into 18 readings 
for each sample plant (considering the 9 readings obtained for the east side and the 9 
readings obtained for the west side). The readings were divided as follows: NDVIas 

(mean of 18 readings obtained in the three thirds of the plants for the east and west sides), 
NDVIas.east (mean of 3 readings obtained from the upper third of the sample plants facing 
east) and NDVIas.west (mean of 3 readings obtained in the upper third of the sample plants 
facing west). 

This methodology for NDVI readings obtained by the GreenSeeker sensor was 
adopted considering that due to the high height of the coffee trees (above 2 m) it would 
be impossible to read the crown of the plants. 
 

NDVI passive sensor (NDVIps) 

To generate NDVI values by the passive sensor (NDVIps), a flight was carried out 
with an RPA, model EBee SQ from the manufacturer senseFly. This aircraft has the 
following characteristics: fixed wing, a wingspan of 110 cm, rated radio range of 3 km, 
cruising speed of 40–110 km h-1, wind resistance of up to 45 km h-1 (12 m s-1), electric 
motor, maximum payload of 1.1 kg (including camera and batteries) and flight autonomy 
of up to 55 min. 

The aircraft was equipped with a Parrot camera (Sequoia model) with a high-
resolution red-green-blue (RGB) sensor with a focal length of 4.88 mm. This camera 
also has four monochromatic sensors for the spectral bands: green (550 ± 40 nm), red 
(660 ± 40 nm), near infrared (NIR) (790 nm ± 40 nm) and red edge (735 ± 40 nm). The 
resolution is 1,280×960, with a pixel size of 3.75 μm and a focal length of 3.98 mm;  
the ground sample distance (GSD) is 6.8 cm at a flight height of 50 m (above ground 
level – AGL), which was adopted for the described study. 

In addition to the RGB and monochromatic sensors, Sequoia has a luminosity 
sensor to correct the influence of the sun by obtaining data with radiometric corrections. 
This sensor records not only the current lighting, but also the location of the center of the 

direction changes and image acquisition. During the flight, images are stored on the 
memory card contained in the multispectral sensor. After the flight, these images will be 
downloaded and sent to processing software. The flight plan followed the parameters 
represented in Table 1. 

 

the photo and inertial data. 
Flight planning and execution 

was carried out through the base 
station, which was developed by the 
same aircraft manufacturer (senseFly) 
with the following set: the eMotion 
software, responsible for flight 
programming and execution of the 
aircraft's path, and a transmitting 
antenna that allows real-time 
monitoring of the overflight, as well 
as sending commands for landing,  

 
Table 1. Flight planning parameters 
Camera Parrot Sequoia 
Resolution of the RGB camera 16 megapixels 
Resolution of the multispectral 
camera 

1.2 megapixels 

Focal length 3.98 mm 
Vertical cover 70% 
Horizontal cover 70% 
Spatial resolution 6.8 cm 
Flight altitude 50 m 
Speed 12 m s-1 
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Processing of data obtained by active Chlorophyll and NDVIas sensors 
Chlorophyll measurements using the ClorofiLOG sensor were downloaded using 

specific software provided by the equipment manufacturer. In this way, it was possible 
to download the measurements stored in the device and determine chlorophyll a (Chla) 
and chlorophyll b (Chlb). The sum of these two types of chlorophyll (Chla + Chlb) 
results in Total Chlorophyll (TC), which was used in this work. 

Mean values of NDVIas, NDVIas.east, NDVIas.west, and chlorophyll were utilized to 
analyse the spatial dependence of these attributes using semivariograms. Semivariance 
is classically estimated by Eq. (1), according to Vieira (2000). 

γ�(h) =
1

2 𝑁𝑁(h) � [𝑍𝑍 (𝑥𝑥𝑖𝑖) − 𝑍𝑍 (𝑥𝑥𝑖𝑖 + h )]2
𝑁𝑁𝑖𝑖=(h)

𝑖𝑖=1

 (1) 

Where N(h) is the number of experimental pairs of observations Z(xi) and  
Z(xi + h), separated by a distance h. The semivariogram is represented by the graph γ�(h) 
versus h. From the adjustment of a mathematical model to the calculated values of γ�(h), 
the coefficients of the theoretical model are estimated for the semivariogram, called 
nugget effect (C0), contribution (C0 + C1) and range (a), as described by Bachmaier & 
Backers (2008). 

For this study, the ordinary least squares (OLS) method and spherical model were 
used to fit the semivariogram. To check whether the model adjustments met the  
cross-validation requirements, the mean error (ME) was calculated according to Isaaks 
& Srivastava (1989). The ME must have a value as close to zero as possible. 

After adjusting the semivariograms and verifying spatial variability, the data were 
interpolated using ordinary kriging. Thus, the variables were estimated in locations 
where they were not sampled, which made it possible to visualize their distribution in 
space through thematic maps. 

The calculation of the degree of the spatial dependence (DSD) of the variables 
followed the classification proposed by Cambardella et al. (1994). In this classification, 
the authors point out that there is strong spatial dependence when the semivariogram 
presents a nugget effect equal to or less than 25% of the sill variance, moderate spatial 
dependence when this relationship is between 25% and 75%, and weak spatial 
dependence when it is greater than 75%. 

The geostatistical analysis carried out by adjusting the semivariograms and 
ordinary kriging was carried out in the RStudio software using the geoR package 
(Ribeiro Jr & Diggle, 2001). Kriging generated interpolated and georeferenced points, 
which were exported to the QGis version 3.22.9 software to create isocolour maps for 
the attributes NDVIas, NDVIas.east, NDVIas.west and chlorophyll. 

 
Processing of NDVI data obtained by the passive sensor 
The normalized difference index (NDVI) consists of calculating the difference 

between emission and reflection of two wavelengths of the electromagnetic spectrum: 
near infrared (0.725–1.1 μm) and red (0.58–0.68 μm) (Rouse et al., 1973). 

After completing the flight and capturing images using the multispectral camera, 
the images were processed using the Pix4D software, resulting in four orthomosaics for 
the spectral bands and one orthomosaic for the RGB composition. The orthomosaics  
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were imported to the geoprocessing software QGis, where NDVI was calculated using 
the raster calculator tool and using Eq. 2, enabling to obtain the NDVI values for the 
study area. 

NDVI =
NIR − RED
NIR + RED

 (2) 

whereNIR – near infrared spectral band; RED – red spectral band 
The NDVI value varies from -1 to 1 and shows us the vigor of the crop. Values 

close to 1 mean that the more intense the green, the more vigor there is in the vegetation 
and vegetation cover. We must take into account whether we are working with extensive 
or intensive cultivation, or if there is no bare soil, as all of this will be taken into account 
by the index. And this will also measure the vigor of the weeds. Values close to 0 
correspond to areas with little vegetation, initial stages of cultivation, bare soil or  
non-productive areas. Negative values are generally associated with areas of water, 
snow, or clouds. 

 
Map generation and correlation analysis 
For this study, five maps were generated, one map through the calculation of NDVI 

using multispectral images (NDVIps) and four maps obtained by geostatistical analysis 
through ordinary kriging (NDVIas, NDVIas.east, NDVIas.west, and chlorophyll). All maps 
were created using QGis software. To compare map values of the studied variables, 
4 sample grids of 30, 60, 90 and 120 points were created within the area. To construct 
the grids, the following requirements were used: 

• Points have a minimum distance of 2 m from each other; 
• The points are 4 m away from the area's borders, so that there would be no 

interference in the results. 
Polygons of 0.8 m were created using the zonal statistical tool for each sampling 

point within the grids. These polygons were then sampled using the mean pixel values 
within the 0.8 m buffer for each sample point across the different grids. 

The sampling of NDVI data, for both sensors, and chlorophyll values resulted in 
4 tables, each of which is represented by a sampling grid. With the data from the tables, 
it was possible to perform correlation analysis using the RStudio software through the 
ggplot2 library. Correlation analysis summarizes the degree of relationship of two or 
more variables, its calculation results in the Pearson Correlation Coefficient (R). For its 
validation, the test followed the criteria: 

ρ ≤ 0.05: significant at the 5% probability level 
ρ > 0.05: not significant. 

 
RESULTS AND DISCUSSION 

 
Descriptive statistics 
Table 2 presents the data from the descriptive statistical analysis of the variables 

under study that were obtained by the sensors directly and indirectly in the field. In the 
table it is possible to observe the minimum, maximum, median, mean, variance, standard 
deviation and coefficient of variation values for the attributes: NDVIas, NDVIas.east, 
NDVIas.west and chlorophyll. 
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Table 2. Descriptive statistics of data 
Attribute Minimum Maximum Median Mean Variance SD CV (%) 
NDVIps 0.27 0.77 0.51 0.51 0.01 0.13 25.87 
NDVIas 0.80 0.89 0.86 0.86 3.73 0.01 2.28 
NDVIas.east 0.40 0.79 0.65 0.64 0.01 0.09 15.56 
NDVIas.west 0.43 0.75 0.64 0.62 0.01 0.10 16.14 
Chlorophyll 40.10 64.20 52.44 52.44 29.71 5.45 10.39 
SD: standard deviation; CV: coefficient of variation. 
 

From descriptive statistics it is possible to observe that the mean for NDVI values 
was higher when considering all thirds and the east and west faces for GreenSeeker 
readings (mean NDVIas = 0.86), while the means for NDVIps, NDVIas.east and NDVIas.west 

were very close (0,51, 0.64,0.62) respectively. Regarding chlorophyll, the mean for this 
attribute was 52.44. 

Gomes & Garcia (2002) state that the variability of an attribute can be classified 
according to the magnitude of its coefficient of variation (CV), which according to the 
authors can be: low, when this is less than 10%; moderate when it is in the range of 10 
to 20%, high when it is between 20 and 30%; and very high when it is above 30%. 
Frogbrook et al. (2002) state that the first indicators of data heterogeneity are high CV 
values. According to the CV values represented in Table 2, we can state that the attribute 
NDVIps represent high variability, while the attributes NDVIas.east, NDVIas.west and 
chlorophyll represent moderate variability in their data sets, the NDVIas presented low 
variability (2.28%). 

 
Geostatistical analysis 
Table 3. shows the semivariogram adjustment parameters, as well as the mean error 

values and degree of spatial dependence. 
 

Table 3. Semivariogram adjustment parameters for the variables under study 
variable C0 C1 C0+C1 a DSD (%) ME 
NDVIas 0.01 3.50 3.51 40 0.28 Strong 0.0000 
NDVIas.east 0.00 0.01 0.01 45 0.00 Strong 0.0001 
NDVIas.west 0.00 0.01 0.01 25 0.00 Strong 0.0009 
Chlorophyll 0.01 20.00 20.01 65 0.05 Strong 0.0031 
C0: nugget effect; C1: sill; C0+C1: contribution; a: range; DSD: degree of the spatial dependence and ME: 
mean error. 

 
Through the results of the geostatistical analysis, it was observed that, for all 

variables, the ME presented very low values and close to zero, demonstrating that the 
adjustments made by the spherical model were well made and met the cross-validation 
requirements. All variables represented ME values very close to zero. 

This study identified that all variables studied showed a strong degree of spatial 
dependence (DSD). 

 
Thematic maps 
Fig. 4 represents the maps of NDVI (Passive sensor), NDVI (Active sensor), NDVI 

(Active sensor - East), NDVI (Active sensor - West), and Chlorophyll respectively. 
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The maps represented by Fig. 4 were created in the same color palette and also in 
the same range of values for the NDVI attribute (Figs 4, a; 4, b; 4, c and 4, d). 

When analyzing Table 2, it is possible to observe that the NDVI index obtained by 
the passive sensor varied from the lowest value of 0.27 to the highest value of 0.77, 
however, during the construction of the thematic map, it was observed that NDVI values 
below 0.50 were related to exposed soil, low vegetation and drought between the rows 
of coffee trees, so to facilitate the visualization of only the NDVI values in the coffee 
plants, NDVI values below 0.50 were omitted in the image, facilitating the comparison 
between the values of NDVI obtained actively by the interpolated maps. 

The visual analyzes that will be presented below will disregard Fig. 4, b, due to the 
little variation in its values (0.80 to 0.89 Table 2) the thematic map was represented by 
only one tone (dark green) which makes discussion difficult. of this image with the 
results obtained by the other methods in images 4, a, 4, c, 4, d and 4, e. 

When looking at Fig. 4, a, it is possible to state that most of the coffee trees had 
NDVI values in the range of 0.60 to 0.70. It is also possible to state that when drawing 
an imaginary line dividing the area into two hemispheres, the north of the area (above 
point 16) presents lower NDVI values, unlike the south side of the area (below point 16) 
where it is possible to find some concentrations of higher values (NDVI around 0.80). 
Throughout the area it is possible to observe some points with low NDVI values (around 
0.50) mainly in the coffee trees close to points 19 and 22 and also close to points 23, 26, 
27 and 28, which is also observed in the Figs 4, c and 4, d. 

In relation to Figs 4, c and 4, d, it is possible to observe that the NDVI values 
coincide in a large part of the area. A small difference is observed between the NDVI 
values only in coffee trees close to sampling points 3.5, 11, 15, 29 and in the zone below 
points 1.2 and 30. Furthermore, it is possible to observe that to the north of the area in 
Figs 4, c and 4d the NDVI values are lower when compared to the values in the southern 
part of the area, this same situation is found in Fig. 4, a. This can be justified due to the 
northern part of the area, mainly around points 19, 22, 23, 25, 26, 27 and 28, which are 
next to a very busy rural road that accesses a coffee processing plant, therefore, Coffee 
trees closer to both the road and the plant are affected by dust as well as higher 
temperatures, generating a greater set of stress on the coffee plants. 

When analyzing the map represented by Fig, 4, e, it is observed that lower 
chlorophyll values (around 40.10) are concentrated around points 19 and 22 and also 
close to points 23, 25, 27 and 28, coinciding with the lower NDVI values of Figs 4, a, 
4, c and 4, d. Regarding the highest chlorophyll values, these are found in coffee trees 
close to point 12 (southwest of the area), values that coincide with the NDVI values 
found in Fig. 4, a. 

Visual analysis of the maps is the first step to identify the existence of a possible 
correlation between the variables and the methods used, however a mathematical 
analysis is necessary to quantify the relationship between them, as well as verify their 
significance. Therefore, a correlation analysis was carried out by calculating the Pearson 
coefficient (R) as well as performing the t test to determine significance. 
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Correlation analysis 
In the literature, there are studies that evaluate the correlation between NDVIps x 

Total Chlorophyll (Bento et al., 2022; Santos et al., 2022 and Barata et al., 2023) as well 
as researches that evaluate the correlation of NDVI obtained by actives and passive 
sensors (Gomes et al., 2021 and Campos et al., 2022) in coffee cultivation. This research 
will be important to provide a basis for discussing the results presented in this paper. 

In Fig. 5 it is possible to observe the correlation graphs for the variables NDVIps, 
NDVIas, NDVIas.east, NDVIas.west, and chlorophyll. Table 4 shows the ρ values for each 
variable and sampling grid used in this study in order to verify their significance using 
the t test. 

 
 

 

 

 
 

 

 

 
 
Figure 5. Correlograms for sample grides with 30 points (a), 60 points (b), 90 points (c) and 120 
points (d). 
 

a) b) 

c) d) 
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Considering the data presented by the correlogram in Fig. 5, a, as well as the ρ 
values present in Table 4, it can be stated that the results of the 30-point sampling grid 
indicate that the NDVIas.east x NDVIps presented a correlation of 52%, NDVIas.east x 
NDVIas.west of 72% and NDVIas.east x Chlorophyll of 50%. 

In relation to the 60-point sampling grid, it can be observed that there was a 
significant correlation between NDVIps x NDVIas.east and NDVIps x NDVIas.west, with 
correlations of 37% and 29% respectively. Also, for this grid, a significant correlation 
of 60% can be observed when comparing the NDVI values measured by GreenSeeker 
on the east and west faces (NDVIas.east and NDVIas.west). 
 
Table 4. ρ value for correlations between variables in different sampling grids 

**: significant at the 5% level; ns : not significant. 
 
When considering the sampling grid of 90 points, a significant correlation can be 

observed between NDVIps x NDVIas.east (25%) and a significant and inverse correlation 
of -31% when comparing NDVIas and NDVIas.west. The NDVIas.east variable, In addition to 
its correlation with NDVIps, this variable also showed correlations of 67% and 31% with 
the NDVIas.west and Chlorophyll variables. 

For the 120-point sampling grid, significant correlations can be observed between 
NDVIps x NDVIas (23%) and NDVIps x NDVIas.east (24%), as well as between NDVIas.east 

x NDVIas.west (69%) and NDVIas.east x Chlorophyll (48%). 
A general comparison of the variables that were correlated, it was observed that the 

variable that presented the highest number of correlations was the NDVIas.east 

(11 correlations) and it was also possible to observe that for the grides of 60, 90 and 120 
points this variable presented a correlation significant with NDVIps. The variable that 
presented the lowest number of correlations was NDVIas (only 2 significant correlations), 
this was already reflected in the discussion topic of the maps, where it was possible to 

Grid Variable NDVIps NDVIas NDVIas.east NDVIas.west Chl 
30 

 

NDVIps 0.00 0.27ns 0.00 ** 0.07ns 0.05ns 
NDVIas 0.26ns 0.00 ns 0.78ns 0.32ns 0.30ns 
NDVIas.east 0.00ns 0.78ns 0.00 0.00 ** 0.00 ** 
NDVIas.west 0.07ns 0.32ns 0.00 ** 0.00 0.27ns 

Chl 0.05ns 0.30ns 0.00 ** 0.27ns 0.00 ns 
60 NDVIps 0.00 0.37ns 0.00 ** 0.02 ** 0.66ns 

NDVIas 0.37ns 0.00 0.07ns 0.38ns 0.42ns 
NDVIas.east 0.00 ** 0.73ns 0.00 0.00 ** 0.08ns 
NDVIas.west 0.02 ** 0.38ns 0.00 ** 0.00 0.44ns 
Chl 0.66ns 0.42ns 0.08ns 0.44ns 0.00 

90 NDVIps 0.00 0.23ns 0.01 ** 0.35ns 0.81ns 
NDVIas 0.23ns 0.00 0.13ns 0.00 ** 0.08ns 
NDVIas.east 0.02 ** 0.13ns 0.00 0.00 ** 0.00 ** 
NDVIas.west 0.35ns 0.00 ** 0.00 ** 0.00 0.87ns 
Chl 0.81ns 0.08ns 0.00 ** 0.86ns 0.00 

120 NDVIps 0.00 0.01 ** 0.00 ** 0.62ns 0.46ns 
NDVIas 0.01 ** 0.00 0.90ns 0.55ns 0.71ns 
NDVIas.east 0.00 ** 0.90ns 0.00 0.00 ** 0.00 ** 
NDVIas.west 0.62ns 0.55ns 0.00 ** 0.00 0.09ns 
Chl 0.47ns 0.71ns 0.00 ** 0.09ns 0.00 
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observe the little variation in values of this variable. Regarding Chlorophyll, it presented 
only 3 significant correlations, and all cases were significantly correlated with the 
NDVIas.east for the 30, 90 and 120 point grids. 

Another noteworthy observation is the comparison between the NDVIas.east and 
NDVIas.west variables across all sample grids. A significant correlation was observed 
between these variables; however, despite their statistical significance, they exhibited 
moderate correlations (72% for the 30-point grid, 60% for the 60-point grid, 67% for the 
90-point grid and 69% for the 120-point grid). This indicates that despite utilizing the 
same data collection method with the GreenSeeker and considering only the readings 
from the upper third of the plant, these variables did not display high correlations. This 
observation can be attributed to the environmental conditions during data collection. 
Specifically, the shaded west side resulted in lower NDVI values, while the east-facing 
side of the plants, illuminated by sunlight, generated higher NDVI values. Additionally, 
there were more correlations observed with the NDVIps variable, as the RPA image 
collection coincided with peak solar irradiance and absence of cloud cover. 

Santos et al. (2022) investigated the effectiveness of various vegetation indices 
derived from multispectral imagery captured by a remotely piloted aircraft  
(RPA)-mounted sensor in predicting chlorophyll content in both coffee tree leaves 
(Chlleaf) and canopy (Chldossel). They also examined the correlation between these indices 
and chlorophyll levels across different seasons (rainy and dry). The study reported a 
significant correlation of 61% between NDVIps and Total Chlorophyll during the dry 
season (the same season and chlorophyll content used in our study). However, our 
research did not observe a significant correlation between these same attributes. By 
collecting data such as height, diameter, and chlorophyll, and together with  
high-resolution multispectral images obtained by RPA, Bento et al. (2022) evaluated the 
relationship between vegetation indices with total chlorophyll (TC) content and leaf area 
index to characterize different types of coffee cultivars. To evaluate the correlation 
between these attributes and vegetation indices, the authors used the Spearman 
correlation index. Through correlation between the NDVIps and TC, the authors found 
inverse and non-significant correlations of -0.05, -0.15 and -0.18 for the cultivars Catucaí 
2SL, Catucaí IAC62 and Bourbon IACJ10 respectively, corroborating the results of this 
study. work, despite the difference between age and cultivars of coffee trees. 

Barata et al. (2023), evaluating coffee trees transplanted to areas with different 
liming methods (surface and deep) through field measurements and vegetation indices 
obtained by RPA images, carried out a correlation analysis between VI and parameters 
such as height, crown diameter, chlorophyll, leaf area index, chlorophyll a, chlorophyll 
b and total chlorophyll. The results obtained by the authors for the correlation between 
NDVIps and Total Chlorophyll do not show significant correlations and once again 
corroborate the results found in this research. 

Gomes et al. (2021) compared the NDVI obtained by active (GreenSeeker) and 
passive sensors (Mica Sense and MAPIR). These authors found high and significant 
correlations (around 80 to 90%) when comparing the NDVIps (MicaSense multispectral 
sensor) in relation to the NDVI values obtained by GreenSeeker. These results differ 
from those found in this research, which despite significant correlations between these 
attributes, none presented such high values. 
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The discrepancy between the findings of this study and those presented by Gomes 
et al. (2021) lies in the methodology used by the authors to collect the index. For each 
sampling point, the authors carried out 3 readings using GreenSeeker, but these readings 
were carried out in the coffee tree canopy (at a distance of 30 cm from the plant canopy), 
therefore, the authors obtained values very close to those obtained by NDVIps. In this 
study, it was not possible to obtain NDVI measurements using the GreenSeeker from the 
crown of the sample plants, since, as it was a very old coffee tree (around 25 years old), 
the plants were very tall (above 2 m in height, on mean), making it possible to obtain 
only data from the upper third. 

Campos et al. (2022), evaluating the modeling of NDVI in coffee trees through the 
use of a passive RGB sensor coupled to RPA, evaluated the correlation of the NDVI 
obtained by GreenSeeker with red, blue, green bands and the normalized relationship 
between the RGB sensor bands. The authors find inverse and significant correlations 
(mean of 70% correlation between the bands evaluated). Like Gomes et al. (2021), the 
authors carried out NDVI readings with GreenSeeker in the coffee tree canopy, at a 
distance of 1m, following a methodology recommended by Ali & Ibrahim (2020). 

Enciso et al. (2019), evaluating the correlation of the GreenSeeker sensor and  
the NDVI obtained by a multispectral sensor embedded in an RPA, observed a  
non-significant correlation (ρ < 0.05), the justification is that the GreenSeeker 
measurements consider the plant canopy, while the NDVI calculated from multispectral 
images consider the entire vegetative area, resulting in an R of less than 0.45. 

 
CONCLUSION 

 
The geostatistical analysis was efficient to evaluate the spatial variability of 

chlorophyll and NDVI data obtained by the GreenSeeker and ClorofiLOG sensors. 
Through geostatistical analysis it was possible to model the data and generate 
semivariograms and perform ordinary kriging. The data resulting from ordinary kriging 
generated spatial distribution maps of these two attributes, and through visual analysis it 
was possible to observe the behavior of these two variables throughout the study area, 
indicating points of highest and lowest concentration of NDVI and chlorophyll 
attributes. 

In addition to the maps generated by kriging, the flight and processing of images 
obtained by RPA resulted in the calculation and generation of the NDVIps map. 
Considering the very high resolution of the images, it was possible to verify with detail 
and precision the spatial distribution of this vegetation index in the studied area, 
facilitating the identification of points with higher and lower concentrations of 
vegetative vigor. 

By calculating the Pearson correlation coefficient (R), it was possible to find 
significant correlations between the attributes, even when evaluated in different 
sampling grids. The results generated indicate the effectiveness of using sensors in coffee 
crops, benefiting producers in making decisions regarding the management of their crops 
quickly and efficiently. 
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