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Abstract. The monitoring of greenhouse gas (GHG) emissions in dairy cattle facilities is essential 
for understanding and mitigating the environmental impact of livestock farming. Among the main 
gases emitted in dairy production systems, methane (CH4) and carbon dioxide (CO2) play 
significant roles in global warming. The objective of this research was to evaluate the spatial 
variability of CH4 (ppm) and CO2 (ppm) concentrations, as well as environmental variables (dry 
bulb temperature, tdb, °C, and relative humidity, RH, %), in a compost barn dairy production 
system. For gas concentration monitoring, an electrochemical sensor was used for CH4 and a 
non–dispersive infrared (NDIR) sensor for CO2. For the environmental variables, a Hobo® 
MX2301A datalogger was used, and both pieces of equipment were attached to a remotely piloted 
aircraft (RPA), the DJI Matrice 350. Measurements were carried out over three days, with flights 
conducted over the facility's roof. The data obtained were analysed using geostatistics to 
characterise spatial variability of the GHG. A strong spatial dependence was observed in gas 
concentrations and environmental variables. The highest concentrations of CH4 (129–134.4 ppm) 
and CO2 (434–479 ppm) were recorded on the first day. Tdb ranged between 24.2 °C and 32 °C, 
while RH fluctuated between 38.8% and 68%. The use of RPA proved to be an efficient tool for 
GHG monitoring, allowing the identification of spatial distribution patterns. This technology 
provides a novel approach to measuring GHG emissions, addressing the environmental 
challenges of the agricultural sector. 
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INTRODUCTION 
 
The consumption of milk and dairy products benefits more than 6 billion people 

worldwide (FAO, 2019; Dordevic et al., 2023). According to the Organization for 
Economic Cooperation and Development (OECD-FAO, 2022), global milk production 
is projected to grow by 1.8% per year between 2022 and 2031. However, despite its 
economic significance, dairy cattle production faces increasing environmental 
challenges, such as greenhouse gas (GHG) emissions and waste generation, which are 
linked to both environmental and socio-economic factors (Carvalho et al., 2022; Ferraz 
et al., 2024). With global milk production projected to grow by 1.8% annually from 2022 
to 2031 (OECD-FAO, 2022), these challenges are expected to intensify. In response, 
countries have committed to reducing GHG emissions under the Paris Agreement, with 
a target of achieving carbon neutrality by 2050 (Horowitz, 2016; Richardson et al., 
2024). The dairy industry, particularly in confined animal production systems, is a 
significant source of GHG emissions, primarily methane (CH4) and carbon dioxide 
(CO2), which result from enteric fermentation and manure management (Dzermeikaite 
et al., 2024; Oliveira et al., 2024). To address these issues, it is critical to develop 
accurate methods for measuring and monitoring emissions in real time. The use of 
Remotely Piloted Aircraft (RPA) in environmental monitoring has shown promise, 
providing an efficient, non-invasive approach to measure GHG emissions over large 
areas (Daugela et al., 2019; Shaw et al., 2021). The importance of using RPA lies in their 
ability to cover extensive areas easily, ensuring a more comprehensive and representative 
mapping of emissions, unlike traditional methods, which are often limited to small areas 
or specific points. Additionally, it is a non-invasive method that allows measurements 
without compromising the behaviour and welfare of animals. RPAs can be equipped 
with various types of sensors (Giordan et al., 2017), allowing real-time data collection 
and operation at different altitudes. In precision agriculture, RPAs have stood out by 
promoting sustainability through remote sensing, image analysis, and spatial variability 
mapping, contributing to increased agricultural productivity (Ahmad et al., 2020). 

In confined animal production facilities, the continuous release of heat, moisture, 
and gases such as CH4 (methane), CO2 (carbon dioxide), H2S (hydrogen sulphide), and 
NH₃ (ammonia) is a direct reflection of the intensive activities occurring in this 
environment (Oliveira et al., 2024). These gases are closely linked to the biological and 
operational processes characteristic of animals, such as enteric fermentation, manure 
management, and handling practices (Dzermeikaite et al., 2024), as well as the 
variability of microclimatic and environmental conditions around the building. For the 
analysis of gas emissions using RPA to be effective, it is important to understand the 
processes that generate these emissions within the facility. CH4 is primarily produced 
through enteric fermentation and results from biological processes associated with the 
metabolic activity of methanogenic archaea, a specific group of anaerobic 
microorganisms (Liu et al., 2024). CO2 is generated through two processes: anaerobic 
digestion of manure, which leads to the decomposition of organic matter (Halim et al., 
2017), and eructation during enteric fermentation, a digestive process characteristic of 
ruminants (Astuti et al., 2024). Animal management facilities play a significant role in  
GHG emissions, particularly the compost barn, a dairy production system where cattle  
remain on a bed of organic material, allowing them to move freely (Silva et al., 2022).  
However, the measurement of CH4 and CO2 in compost barns remains a challenge due 
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to the reactive behaviour of these gases in the atmosphere and their tendency to disperse 
easily within the production system, mainly due to environmental factors that may 
interfere with data collection. 

To evaluate the distribution of CH4, CO2, and environmental variables around the 
compost barn facility, geostatistics was used - a tool that enables the analysis of the 
spatial variability of attributes characterising the production environment (Ferreira et al., 
2024). According to El Hamzaoui et al. (2021), geostatistical methods allow the 
generation of maps from samples collected in a study area, and when subjected to kriging 
interpolation, these samples provide a detailed visualisation of the dispersion of a 
variable in the environment. 

The objective of this study was to monitor and analyze the spatial distribution of 
GHG concentrations, specifically methane (CH4) and carbon dioxide (CO2), and 
environmental variables such as dry bulb temperature (tdb, °C) and relative humidity 
(RH, %) in the surrounding area of a compost barn system using a remotely piloted 
aircraft (RPA). 

 
MATERIALS AND METHODS 

 
This research followed all experimental procedures approved by the Animal Ethics 

Committee (CEUA) of the Federal University of Lavras, in accordance with protocol n° 
044/22 and n° 010/21. 

 
Characterisation of the Facility 
The experiment was conducted in May 2024 in a dairy cattle production system of 

the compost barn type, located in the municipality of Lavras, MG, Brazil, at an altitude 
of 920.62 m and geographic coordinates 21°15' South latitude and 45°09' West 
longitude. 

 

 
 
Figure 1. Schematic representation of the compost barn production system and its respective 
dimensions in metes. 
 

The facility (Fig. 1) was oriented in an east-west direction and has dimensions of 
54 m in length, 22 m in width, and a ceiling height of 4.5 m, with four meters of the 
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width allocated to the feed alley, located on the northern side. The facility (Fig. 1) was 
oriented in an east-west direction and has dimensions of 54 m in length, 22 m in width, 
and a ceiling height of 4.5 m, with four meters of the width allocated to the feed alley 
located on the northern side. The facility was covered with Galvalume roofing sheets 
installed at a 30% slope, featuring eaves extending three meters on the north and south 
sides, and one meter on the east and west sides. Additionally, it included a shed-type 
ridge vent with a central opening. 

Mechanical ventilation was implemented from the eastern to the western portion of 
the facility using 12 Ziehl–Abegg® axial fans, installed 2.5 meters above the bedding 
and arranged in four rows. These fans operate at at high volume and low speed (HVLS), 
with a diameter of 1.10 m, three blades, a rotation speed of 950 rpm, a power rating of 
0.86 kW, and an airflow rate of 23,000 m³·h⁻¹. The compost bedding consisted of wood 
shavings with a depth of 65 cm and was turned twice daily during milking sessions. 

The production system housed 86 lactating cows, with a stocking rate of 13.81 m² 
per cow. Milking was carried out twice a day: the first at 05:00 and the second at 16:00. 
Throughout the experimental period, the farm's standard routine was maintained, 
adhering to the usual milking times, feeding management, and bedding turning schedule. 

 
Acquisition of the Evaluated Variables 
To obtain the environmental variables, a Hobo® MX2301A datalogger (Fig. 2) was 

used, with an accuracy of 0.2 °C for air temperature (tdb, °C) and 2.5% for relative air 
humidity (RH, %). 
 

 
Figure 2. System for CH4 and CO2 concentration acquisition (a); Remotely piloted aircraft (RPA) 
with attached sensor (b). 

 
To measure gas concentrations, a low-cost prototype was used, featuring an 

electrochemical sensor for CH4 and a non–dispersive infrared (NDIR) sensor for CO2, 
developed in collaboration with the University of Florence. To obtain the environmental 
variables, a Hobo® MX2301A datalogger (Fig. 2) was used, with an accuracy of 0.2 °C 
for dry-bulb temperature (tdb, °C) and 2.5% for relative air humidity (RH, %). The gas 
sensor operates within a range of 0 to 5,000 ppm for CO2, with an accuracy of  
 
 
 
 

a)  

 
 

b)   
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approximately ± 30 ppm, and 0 to 25,000 ppm for CH4, with a sensitivity of ± 500 ppm 
(Becciolini et al., 2022) (Fig. 3, a). This system was integrated into an RPAS, model DJI  

 
Evaluation of CH4 and CO2 Concentrations and the Thermal Environment 
The collected data were subjected to geostatistical analysis, aiming to characterise 

the spatial variability of CH4, CO2, tdb, and RH using the R® software. 
The data were initially analysed by semivariance to assess spatial dependence, 

followed by interpolation using kriging. The semivariance was calculated using Eq. 1, 
proposed by Bachmaier & Backes (2008): 

𝛾𝛾�(ℎ) =
1

2𝑁𝑁(ℎ) � [𝑍𝑍(𝑋𝑋𝑋𝑋) − 𝑍𝑍(𝑋𝑋𝑋𝑋 + ℎ)]2
𝑁𝑁(ℎ)

𝑋𝑋=1
 (1) 

where N (h) is the number of experimental pairs of observations Z(xi); and Z (xi + h) 
separated by a distance h.  

The semivariance was adjusted using the restricted maximum likelihood (REML) 
method, which results in less biased estimates (Ferraz et al., 2019). The mathematical 
model used for the semivariance adjustment was the spherical model, widely used in 
geostatistical studies. The nugget effect (C0), contribution (C0 + C1), and range (a) 
parameters were obtained from the semivariance equation adjusted according to the 
behaviour of the graphs. To assess the quality of the fit, the spatial dependence degree 
(SDD) was used, following the classification by Cambardella et al. (1994). 

After the adjustments, the data were interpolated using kriging to visualise the 
spatial distribution patterns of the variables across the facility. The maps were generated 
with Surfer® 13 software, which, through kriging, allows for predicting the value of a 
variable at unsampled points based on the information collected from other locations. 

 

Matrice 350 (Fig. 3, b). 
The data were collected over 

three consecutive days (May 13th, 23rd, 
and 28th), always starting at 12:00 PM, 
with an average of 27 points per flight. 
The RPA was programmed to stabilise 
for one minute at each point, allowing 
the sensor and datalogger to record  
the values of the evaluated variables. 
The flight altitude was maintained 
at 13.0 m relative to the starting  
point, while the speed between  
points was approximately 4 m s-1. 
After completing the data collection, 
the RPA returned to the starting 
point, concluding the flight plan, as 
shown in Fig. 3. 

 
 

Figure 3. Data collection points recorded during 
flights over the three evaluated days. 
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RESULTS AND DISCUSSION 
 

The results of the geostatistical analysis for assessing the spatial variability of the 
variables: CH4, CO2 tdb, and RH, based on the data collected during the three days of 
flights, are detailed in Table 1. 

 
Table 1. Geostatistical Analysis of the Spatial Variability of CH4, CO2, tdb, and RH 
D/V Variables C0 (C0+C1) A SDD Clas ME SME RME SRME 
D1 
F1 

CH4 0.0 3.02 4.0 0 Forte 9.47 1.86 -5.25 1,035 
CO2 0.0 204.7 2.0 0 Forte 2.65 15.33 -1.78 1,035 
tdb 0.0 0.22 2.5 0 Forte 7.34 0.50 -1.48 1,035 
RH 0.0 1.31 0.93 0 Forte 8.52 1.22 7.17 1,035 

D2 
F1 

CH4 0.0 29.45 1.32 0 Forte 7.49 5.74 1.34 1,028 
CO2 0.0 52.47 1.23 0 Forte 3.78 7.66 5.07 1,028 
tdb 0.0 0.52 1.15 0 Forte 5.33 0.76 7.16 1,028 
RH 0.0 1.96 1.25 0 Forte 1.18 1.48 7.99 1,028 

D2 
F2 

CH4 0.0 82.53 5.38 0 Forte -1.42 9.56 -0.15 1,028 
CO2 0.0 194.63 1.65 0 Forte 2.55 14.69 1.77 1,028 
tdb 0.0 0.23 1.02 0 Forte 5.32 0.51 1.10 1,028 
RH 0.0 1.04 1.56 0 Forte 3.19 1.07 -3.06 1,028 

D3 
F1 

CH4 18.9 29.45 10.6 0 Forte 0.07 4.34 0.01 1,031 
CO2 0.0 34.74 5.0 0 Forte 2.10 6.12 3.56 1.019 
tdb 0.0 1.25 2.0 0 Forte 9.21 1.16 8.07 1,019 
RH 0.0 4.87 31.6 0 Forte 0.02 1.11 0.01 0.913 

D3 
F2 

CH4 0.0 57.46 6.0 0 Forte 0.00 7.87 9.32 1,019 
CO2 2,594 11,091 10.9 0 Forte -1.85 120.14 -0.01 1,038 
tdb 0.0 0.69 1.30 0 Forte 1.05 0.87 1.24 1,019 
RH 0.0 4.6 4.30 0 Forte 1.58 2.23 7.21 1,019 

D – Day; F – Flight; C0 – Nugget effect; C1 – Contribution; C0 + C1 – Sill variance; A – Range; 
SDD – Spatial dependence degree; Clas – Classification; ME – Mean error; SME – Standard deviation of the 
mean error; RME – Reduced mean error; SRME – Standard deviation of the reduced mean error. 

 
The results obtained indicated a strong spatial dependence for all the analysed 

variables, suggesting that the evaluated environment exhibits significant spatial 
variability, which influences the concentrations of GHGs (CH4 and CO2) and 
environmental variables such as tdb and RH. To assess the spatial dependence degree 
(SDD) of the variables under study, the classification proposed by Cambardella et al. 
(1994) was adopted. According to this methodology, the SDD is determined by the ratio 
C0/(C0+C1) × 100, where values below 25% indicate strong spatial dependence, values 
between 25% and 75% indicate moderate dependence, and values above 75% 
characterise weak spatial dependence. The analysis revealed that most of the variables 
showed SDD values indicating strong spatial dependence, reinforcing the idea that gas 
concentrations and environmental variables are closely linked to the local conditions of 
the production environment. 
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The nugget effect (C0), which indicates the variability present at shorter distances 
between samples, was null for many of the variables analysed, indicating a discontinuity 
in the semivariogram for distances smaller than the minimum distance between the 
samples (Ferraz et al., 2017). This result suggests that samples very close to each other 
did not exhibit significant variations, possibly due to the homogeneity of the variables at 
shorter scales. This is important for optimising the sampling design in future 
measurements, considering the minimum distance required between points to capture 
significant variations. 

The range (a) was used to quantify the maximum distance at which sampled points 
maintain a significant correlation between each other, as per McBratney & Webster 
(1983) and Curi et al. (2014). The range values are highly relevant for defining the spatial 
dependence boundary, i.e., the extent to which a variable maintains its influence in space. 
It was observed that the ranges varied significantly across different days and flights, 
suggesting that the distribution of the analysed variables is not homogeneous over time 
and space. Specifically, the variables of tdb and CO2 exhibited shorter ranges, while RH 
showed a more extensive spatial range. These results indicate that the influence of 
environmental conditions (such as tdb and RH) tends to extend over greater distances 
than greenhouse gas concentrations, which may be related to air circulation dynamics 
and the dispersion of gases in the production environment. 

The mean error (ME) of the variables was close to zero, indicating that the applied 
model provided good fitting results (Ferraz et al., 2020). The standard deviation of the 
mean error (SDME) varied significantly between the variables, with lower values for tdb 
and higher values for CO2. This suggests that, although the model fitted most of the 
variables well, there was greater variability in the CO2 estimates, possibly due to the 
higher dispersion and spatial variability of CO2 concentrations in the environment. 

Furthermore, the reduced mean errors (RME) and their respective standard 
deviations (SRME) showed low values, reinforcing the reliability of the adjusted model 
for all variables. These results demonstrate that the applied geostatistical technique was 
efficient for the modelling and spatial analysis of the variables, contributing to a detailed 
understanding of the distribution of gas concentrations and environmental variables 
within the internal environment of the facility. 

Using the kriging technique in Surfer® software, contour maps were generated to 
illustrate the spatial distribution of the variables CH4, CO2, tdb, and RH around the 
facility. These maps provide a detailed view of the observed spatial patterns, allowing 
for the identification of areas with higher or lower concentrations of these variables. This 
approach aids in visualising patterns and facilitates the implementation of management 
strategies to mitigate GHG emissions, as well as optimising the control of environmental 
conditions in compost barn facilities. 

Through Fig. 4, it is possible to observe the behaviour of CH4 on the three collection 
days (D1, D2, D3) and flights (F1, F2), as demonstrated below. 

The CH4 maps indicate that on Day 1, the highest accumulation of CH4 over the 
facility was recorded, reaching 134.4 ppm, marked by the dark green colour (Fig. 4, a). 
CH4 emissions are associated with animal burping, as enteric CH4 emissions are strongly 
influenced by the ruminal digestibility of the food (Knapp et al., 2014). Additionally, 
according to González–Quintero et al. (2024), the management of animal waste is also a  
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determining factor in GHG emissions. The production of CH4 from manure is influenced 
by factors such as its composition, nutrient availability, oxygen and water content, pH 
levels, management practices adopted, and environmental conditions (Singaravadivelan 
et al., 2023). In compost barn systems, where manure is mixed with bedding material, 
the type of management adopted for this bedding directly impacts CH4 emissions in the 
environment and, subsequently, into the atmosphere. According to the EPA (2022), 
enteric CH4 and manure-derived CH4 can account for 26.9% and 9.2%, respectively, of 
the total atmospheric CH4 emissions in the United States, demonstrating the impact of 
CH4 produced in animal production systems on the atmosphere. 

 

 
 
Figure 4. Spatial distribution of methane (CH4) above the roof in the dairy cattle facility on the 
evaluated days (D1F1 = Day 1 – Flight 1 (a); D2F1 = Day 2 – Flight 1 (b); D2F2 = Day 
2 – Flight 2 (c); D3F1 = Day 3 – Flight 1 (d); D3F2 = Day 3 – Flight 2 (e). 

 
Aguirre-Villegas & Rebecca (2017) complement that CH4 emissions derived from 

manure primarily depend on the amount of undigested food excreted by the animals, as 
well as the practices adopted for the management, processing, and storage of this waste.  
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Therefore, the combination of these factors should be considered in strategies to mitigate 
GHG emissions in animal production systems and may fully influence the differences in 
the concentrations of these gases across the three analysed days. 

On Day 2, in F1, the lowest CH4 concentrations were recorded (Fig. 4, b), indicated 
by the light green colour. In the second flight (Fig. 4c), there was a greater distribution 
of the gas around the facility, evidenced by the higher gas concentration in the central 
region over the ridge. On Day 3 (Figs 4, d; 4, e), it was observed that the CH4 
concentrations exhibited opposite behaviours, with the highest gas concentrations in F1 
being distributed in the western part of the facility, while in F2, the highest 
concentrations were recorded in the eastern portion of the facility. According to 
Damasceno (2020), CH4 tends to concentrate in the higher parts of the compost barn. 
This information is crucial for understanding the dispersion patterns of this gas. 

CH4 has a global warming potential 25 times greater than CO2 over a 100-year 
horizon (IPCC, 2021). Inside the compost barn facility, this gas is predominantly 
generated by the anaerobic fermentation of organic matter present in the manure 
accumulated in the bedding, as well as by enteric emissions from cattle. The natural and 
mechanical ventilation of the facility promotes the release of this methane into the 
surrounding area, where it can disperse and reach higher layers of the atmosphere. As 
indicated by the maps generated in this study (Fig. 4), the external concentrations of CH4 
reflect the interaction between enteric sources and manure management practices, which 
are characteristic of animal production systems. Once in the atmosphere, CH4 acts as a 
highly reactive greenhouse gas, significantly contributing to global warming. Its ability 
to dissipate and rise into the troposphere favours the formation of ozone, making it a 
harmful pollutant for human health and ecosystems (Rodrigues et al., 2024). Despite its 
shorter persistence in the atmosphere compared to CO2, the high emission rate of CH4 
demands efficient mitigation strategies to reduce its climatic impact. Among the 
mitigation alternatives, modifications in animal diets, genetic improvement for selecting 
individuals with lower methane production, and proper bedding and organic waste 
management to reduce anaerobic fermentation and subsequent emissions stand out 
(Levrault et al., 2025). The combined adoption of these strategies can contribute to the 
mitigation of this gas in the atmosphere and the sustainability of livestock production. 

From Fig. 5, it is possible to observe the dispersion behaviour of CO2 around the 
facility on the three different collection days (D1, D2, D3) and flights (F1, F2), as 
demonstrated below. 

The analysis of the maps on the dispersion of CO2 around the facility reveals that 
on Day 1, there was the highest recorded accumulation of CO2 over the facility, with 
concentrations reaching 479 ppm, the highest value among the three days analyzed, as 
indicated by the dark brown color (Fig. 5, a). This increase in CO2 can be explained, as 
noted by Acaravci & Erdogan (2016) and Zou et al. (2020), by the release of the gas 
during processes such as enteric fermentation and animal respiration. Hamilton et al. 
(2010) emphasize that cattle respiration significantly contributes to CO2 emissions. 
Furthermore, Giannone et al. (2023) highlight that under stress conditions, animals show 
changes in respiratory frequency, which can increase CO2 release within the facility. 

Although CO2 has a lower global warming potential compared to CH4 per unit, its 
contribution to the greenhouse effect is substantial due to the large amounts released into 
the atmosphere. The dispersion of CO2, as captured in the maps of this study, highlights 
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its rapid diffusion in the external environment, which reduces the local concentration of 
the gas but facilitates its incorporation into the atmosphere. 

On Day 2, the recorded CO2 concentrations were the lowest, reaching a minimum 
of 320 ppm, as indicated by the light brown color in the generated maps (Figs 5, b; 5, c). 
On Day 3 (Figs 5, d; 5, e), a significant variation was observed between Flights F1 and 
F2. In Flight F1 (Fig. 5, d), there was a higher concentration of CO2 in the central region 
of the facility, while in Flight F2 (Fig. 5, e), the levels were lower, particularly in the 
western portion of the assessed area. 

 

 
 
Figure 5. Spatial distribution of carbon dioxide (CO2) above the roof in the dairy cattle facility 
on the evaluated days (D1F1 = Day 1 – Flight 1 (a); D2F1 = Day 2 – Flight 1 (b); D2F2 = Day 
2 – Flight 2 (c); D3F1 = Day 3 – Flight 1 (d); D3F2 = Day 3 – Flight 2 (e). 

 
In a study conducted by Jungbluth et al. (2001) inside dairy cattle facilities, CO2 

concentrations ranged between 970 ppm and 1,480 ppm, values significantly higher than 
those observed in this study. This discrepancy may be attributed to the methodological 
difference, as the present study measured in the external environment, where CO2 has a 
greater ability to disperse. 



259 

Measuring CO2 concentrations in animal production systems is essential to 
understand the dispersion patterns of this gas and its dynamics at the interface between 
the facility and the external environment. CO2, in addition to being an indicator of indoor 
air quality, is also directly related to ventilation rates and the efficiency of greenhouse 
gas mitigation processes. Quantifying CO2 in the surrounding area allows for the 
assessment of spatial and temporal variability in emissions, contributing to the 
development of more effective strategies for reducing the environmental impact of 
production systems. 

High temperatures and elevated relative humidity also impact gas emissions, 
accelerating enteric fermentation processes and intensifying the release of methane from 
manure accumulated in the bedding of composting barns (Ding et al., 2016). From the 
following Figs (6 and 7), it is possible to observe the spatial distribuition of temperature 
(tdb, °C) and UR (%) on the three different days of evaluation (D1, D2, D3) and  
flights (F1, F2): 

 

 
 
Figure 6. Spatial distribution of dry bulb temperature (tdb, oC) above the roof of in the dairy cattle 
facility on the evaluated days (D1F1 = Day 1 – Flight 1 (a); D2F1 = Day 2 – Flight 1 (b); 
D2F2 = Day 2 – Flight 2 (c); D3F1 = Day 3 – Flight 1 (d); D3F2 = Day 3 – Flight 2 (e). 
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In Fig. 7, the spatial distribution of the thermal variables observed (tdb and RH) 
during the analysed days is shown. 
 

 
 
Figure 7. Spatial distribution of relative humidity (RH, %) above the roof of in the dairy cattle 
facility on the evaluated days (D1F1 = Day 1 – Flight 1 (a); D2F1 = Day 2 – Flight 1 (b); 
D2F2 = Day 2 – Flight 2 (c); D3F1 = Day 3 – Flight 1 (d); D3F2 = Day 3 – Flight 2 (e). 

 
During the evaluated period, the tdb ranged from 24.2 °C to 32 °C. On Day 1, 

regions with lower temperatures were identified across the analysed area, with values 
concentrated in the lower range (24.2 °C), as indicated by the light blue colour in the 
generated maps. 

The use of RPA to measure tdb above the facility allowed for the observation of 
thermal variability in the external environment. While no interior measurements or 
detailed distribution of parameters within the facility were conducted in this study, the 
data collected above the installation provide valuable information into how external 
factors, such as tdb, RH, and V might influence the environmental conditions inside the 
production system. 
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On Day 2 (D2F1 and D2F2), as shown in Figs 7, b; 7, c, an increase in the tdb was 
observed, with values ranging from 29.3 °C to 32 °C, indicated by the red colour on the 
maps. This increase in tdb was recorded outside the installation, and although it does not 
directly cause thermal stress in the animals, it may influence the internal environmental 
conditions. Thermal stress in cattle occurs when the accumulation of metabolic heat, 
combined with environmental heat (temperature and relative humidity), exceeds the 
animal’s ability to dissipate the excess heat (Kadzere et al., 2002; Bertens et al., 2024). 

Regarding the RH, a variation ranging form 38.8% to 68% was observed above the 
roof of the facility over the three days analysed (Fig. 7). On Day 1, the RH values were 
predominantly around 60% across the entire installation (Fig. 7, a). On Days 2 and 3, 
Flight F1 recorded higher values of RH compared to Flight F2 (Figs 7b, 7c). However, 
on Day 3, a greater variation in RH levels was observed throughout the installation, with 
more pronounced differences, indicated by the dark blue colour (Figs 7, d; 7, e). 

The external tdb and RH conditions can directly influence the internal microclimate 
of the installation and impact the dispersion and concentration of GHGs, in addition to 
potentially affecting the comfort and well-being of the animals. External tdb and GHG 
emissions must be carefully considered, as the increase in tdb may be associated with the 
observed increase in CH4 and CO2 emissions. According to Ding et al. (2016), higher 
temperatures accelerate the enteric fermentation processes and intensify the release of 
methane from manure accumulated in the compost barn bedding. This suggests that more 
severe external thermal conditions can exacerbate GHG emissions, both through the 
intensification of biological activities, such as enteric fermentation and decomposition 
of manure, and by compromising the thermal comfort of the animals, which may reduce 
their ability to dissipate heat and thus increase metabolic heat production. 

Monitoring gas concentrations and climatic variables in livestock production units, 
particularly in bovine confinement systems, is essential for the development of effective 
environmental control strategies. The use of advanced technologies, such as RPAs and 
geostatistical analyses, shows promise in generating detailed spatial data, contributing 
to a more accurate understanding of environmental dynamics. However, the application 
of these approaches across different construction typologies can significantly expand 
knowledge regarding GHG emission levels in diverse production contexts. 

Additionally, the market for sensors designed for the instantaneous measurement 
of gases in open environments offers a wide range of devices based on various operating 
principles. Careful selection of these sensors is crucial, with preference given to those 
featuring high sensitivity and the ability to detect minimal gas fractions. Despite 
technological advances, the high acquisition costs of these sensors, as well as RPAs, 
remain a barrier to widespread adoption by producers. 

In this context, there is a clear need to promote research focused on developing 
environmental monitoring systems that are simultaneously accurate, economically 
viable, and non-invasive to animal welfare. Such advancements are vital for formulating 
sustainable strategies that enhance production efficiency while mitigating the 
environmental impacts of livestock farming. 
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CONCLUSIONS 
 

The use of remotely piloted aircraft has proven to be a valuable tool for obtaining 
gas concentrations in the exterior of cattle facilities. With the application of geostatistics, 
it was possible to identify the spatial variability of these concentrations throughout the 
facility. The combination of these two techniques is associated with the adoption of non-
invasive monitoring strategies, enabling environmental diagnosis without causing 
negative impacts on animal welfare. 

The variability maps of CH4 and CO2 gases allowed for the identification of dispersion 
and momentary concentrations, highlighting that these gases do not distribute 
homogeneously, even in areas distant from the emission sources. When measuring gas 
concentrations, it is important that environmental variables are monitored in an integrated 
manner to help identify possible aggravating or attenuating factors of the emissions. 

The monitoring of greenhouse gas concentrations, originating from the facilities 
and production environment, is still underexplored, despite being valuable information 
for understanding the contribution of the dairy sector to climate change. However, the 
technologies and equipment available can still be costly for the rural producer. 
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