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Abstract. This paper aimed to evaluate the WindTrax model to quantify CO- (carbon dioxide)
emissions in a commercial dairy cattle farm in Central Italy with a low-cost measurement system.
A field trial of 20 minutes was conducted in February 2023, using two G-eko 2.0 MSPs
(multi-sensor platforms), an anemometer, and a GNSS receiver, in unstable atmospheric
conditions. Then, 5-minute averaged data were used as input in the WindTrax software for
applying the backward Lagrangian Stochastic model. The model was used for calculating four
mean CO; emission rates (0.20212 + 0.04994 ¢ m™ s!) with 50,000 particles and the horizontal
dispersion of CO, concentrations around the sources using different numbers of particles
(5,000, 10,000, 30,0000, and 50,000). Atmospheric dispersion maps, confidence interval
concentration maps, and vertical profile plots were obtained by increasing the number of particles.
The model shows better performances, in terms of confidence intervals, with a high number of
particles with a stabilization of modeled median values between 30,000 and 50,000 particles.
Horizontally, the lowest confidence intervals (near to zero) were obtained at 100—150 m from the
sources along the wind direction, suggesting that the downwind sensor could be placed at a greater
distance. Similarly, a better-defined vertical trend in modeled concentrations is observed as the
number of particles increases. Wind gusts could have a great effect on emission rate calculation
with limited sampling periods, as in this case, but simultaneously unstable atmospheric conditions
affect the increased dispersion and dilution of COs.
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INTRODUCTION

In recent decades, the exponential increase in human activities has significantly
intensified the anthropogenic greenhouse effect, resulting in rising global temperatures
and, consequently, climate change. This has increased public awareness of pollution
and environmental issues (Tagliaferri et al., 2020). According to the IPCC (2022)
report on global emission data from 2015, the livestock sector accounted for 12—17% of
total greenhouse gases (GHGs) emissions, with cattle farming contributing 62% of the
sector’s total emissions (Global Livestock Environmental Assessment Model 3
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dashboard, 2022). Within livestock farms, the primary sources of emissions are enteric
fermentation in ruminants (67-68%), manure and slurry storage (23-26%), and feed
production (Ripple et al., 2014; Grossi et al., 2019).

Environmental chemical monitoring is essential in bottom-up approaches for
emissions inventories and for identifying critical processes that could benefit from
targeted mitigation strategies. Various gas sensor technologies are available for this
purpose, including amperometric gas sensors (AGS), metal oxide semiconductor sensors
(MOX or MOS), nondispersive infrared sensors (NDIR), and photoionization detectors
(PIDs) (Cambra-Lopez et al., 2010; Burgués & Marco, 2020). To improve monitoring
efficiency, multi-sensor platforms (MSPs) have been developed, enabling the
simultaneous operation of multiple sensors. These platforms facilitate the collection of
gas concentration data alongside meteorological parameters, providing a comprehensive
assessment of emissions (Burgués et al., 2018).

Currently, monitoring GHG emissions is expensive due to the cost of accurate
sensors in the market, but the ongoing technological development provides low-cost
sensors. The objective of this study was to assess CO, emissions obtained with
self-engineered multi-sensor platforms on a dairy farm, through the estimation of
emission fluxes and the graphical representation of gas concentrations and concentration
confidence intervals across the farm area. By employing the WindTrax model to simulate
the horizontal and vertical dispersion of the target gas, farmers could adopt an accurate
low-cost measurement system that works autonomously, aiming to provide management
insights. WindTrax is widely used in agrometeorological studies to estimate emission
rates, particularly for GHGs and ammonia (Lin et al., 2015; Yang et al., 2016; Hrad et
al., 2021; Genedy & Ogejo, 2022). Existing research primarily evaluates its accuracy in
modeling pollutant emissions from area sources, highlighting its relevance as a tool for
emission assessment and atmospheric dispersion analysis. Thus, an affordable and
accurate emission measurement system that can be easily implemented on commercial
farms is needed by farmers to identify critical emission sources, adopting appropriate
mitigation strategies.

This study investigated the impact of livestock-related activities on GHG
emissions, with a focus on data analysis through specialized simulation methodologies.
Specifically, CO, (carbon dioxide) emissions were examined using low-cost sensing
platforms and atmospheric dispersion modeling as tools for rapid on-farm assessment.
This study represented the first application of low-cost sensing platforms combined with
dispersion modelling to assess gas emissions and dispersion from livestock buildings in
the study area. The study was conducted as part of a research project aiming at assessing
greenhouse gases emissions from dairy cattle and swine farming systems across
Northern, Central, and Southern Italy using innovative measurement techniques. In
Central Italy, the Tuscany region ranks second in terms of dairy cattle population
(data provided by the National Zootechnical Registry -BDN- of the Italian Ministry of
Health, managed by the 'G. Caporale' Institute in Teramo through the National Services
Centre -CSN-). One of the two main dairy production districts in Tuscany is located in
the Province of Florence, specifically in the Mugello area, which hosts both larger farms
(over 200 lactating cows) and medium-sized farms.
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MATERIALS AND METHODS

Study site

The experiment was conducted on a commercial dairy farm in the Mugello area,
Province of Florence (Central Italy). The selected farm is representative of the medium-
sized dairy farms commonly found in this region. The farm primarily focused on dairy
cattle breeding but also operated as an educational farm and agritourism. The cattle
housing facility was open on all four sides, and it was situated on relatively flat terrain.
At the time of the experiment, the farm housed 123 Holstein Friesian dairy cows in the
main building for milk production. Of these, 65 lactating cows were kept in a free-stall
pen with cubicles in the resting area and straw bedding, while the remaining 58 cows
and heifers were housed in deep-litter pens with permanent straw bedding. All pens had
concrete-floored feeding alleys and were equipped with water troughs. A Total Mixed
Ration (TMR) was distributed once daily at h 18 00, and a robotic feed pusher regularly
repositioned the feed along the self-locking headlocks.

Additionally, 12 calves were kept in individual pens adjacent to the stable, and 12
Belgian Blue White fattening cattle were also present in a pen in the south-east part of
the stable. The farm also accommodated a chicken coop and a few donkeys. Contributions
to the total emissions were considered negligible.

The slurry from the two rows of pens inside the livestock building, one with
permanent litter and the other in cubicles with straw bedding, was collected by automatic
scrapers into two underground concrete tanks. The solid fraction, separated from the liquid,
was stockpiled in a rectangular uncovered pit. In contrast, the liquid fraction was
transferred to an open-air, circular underground concrete tank located north of the
stable (Fig. 1).

@III..

Figure 1. View of the commercial dairy farm (latitude 43.963270°, longitude 11.418885°) and
inside the project of the WindTrax software environment. Point 1: upwind G-eko 2.0 multi-sensor
unit. Point 2: downwind G-eko 2.0 multi-sensor unit.
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Instrumentation

A dual-frequency GNSS receiver (GCX2, Sokkia, Netherlands) with centimetric
accuracy was used to georeference the measurement points. Gas concentrations and
microclimate parameters were measured using the G-eko 2.0, a self-engineered
multi-sensor prototype described in Becciolini et al. (2023). The module, measuring
120x100%67 mm and weighing 0.75 kg, was designed for environmental monitoring.
G-eko 2.0 included sensors for measuring CO,, NH3, CH4, PM> 5 and PM o together with
atmospheric pressure, temperature, and humidity.

CO; was measured using a Non-Dispersive InfraRed (NDIR) sensor, which also
integrated temperature and humidity sensors within the same module. The CO./T/RH
module had dimensions of 23x35x7mm and a weight of 3.4 g. The technical
specifications of the sensing module are detailed in Table 1.

Table 1. Specifications of the cmOSens sensing module

Target parameter Measurement unit ~ Measuring range Accuracy

CO; ppm 0+ 5,000 + 30

Temperature Celsius degree —40 ++70 + (0.4 +0.023 (T - 25))
Relative humidity % 0-+100 +2

The NDIR sensor was selected due to its documented suitability for CO:
measurements, attributed to its strong and distinct absorption peak in the mid-infrared
region, and the absence of common limitations associated with low-cost electrochemical
sensors, such as inter-device variability and susceptibility to poisoning by silicone
vapours (Burgués & Marco, 2020). Given the documented influence of temperature on
the accuracy of NDIR sensors (Martin et al., 2017), the sensor integrated into the first
prototype of the multi-sensor system (G-eko 1.0) was calibrated by an independent
laboratory under controlled temperature and humidity conditions (Becciolini et al., 2024a).
To improve environments, an additional calibration was
conducted on the G-eko 2.0 prototype under different
temperature and humidity regimes, enabling the
development of correction equations applicable to diverse
environmental conditions (Becciolini et al., 2024b).

The anemometer (WT87B, Shenzhen Wintact
Electronics Co., Ltd., China) used in this study is shown
in Fig. 2. This device measured wind speed, temperature

and humidity.

Through a dedicated mobile application, the sensor
can connect to a smartphone, enabling real-time data Figure 2. Anemometer
recording and storage. The technical specifications of (WT87B, Shenzhen Wintact
the sensor are provided in Table 2. Electronics Co., Ltd., China).

Table 2. Specifications of the WT87B anemometer

Target parameter Measurement unit Measuring range Accuracy Resolution
Wind speed ms’! 0+30 + 5% +0.1 0.01
Temperature Celsius degree -10 +~+45 +2 0.1
Relative humidity % 10 +90 +5 0.1
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Software

Two software packages were used for the analyses: WindTrax (version 2.0.9.7,
Thunder Beach Scientific) and QGIS (3.22.5 version, QGIS.org, 2023, QGIS
Geographic Information System. QGIS Association. http://www.qgis.org).

WindTrax incorporates the WindTrax atmospheric dispersion model (Flesh &
Wilson, 2005) and is designed to simulate the dispersion of target gases from both point
and extended area emission sources. It includes three modeling approaches: the
Atmospheric Surface Layer model, the forward Lagrangian Stochastic (fLS) model, and
the backward Lagrangian Stochastic (bLS) model. The bLS model is suited for extended
area sources and was used in this study to estimate the CO, emission rate (Q, g m? s™!)
from various sources, including two rows of pens in the main building, the manure
storage, and the slurry storage tank located north of the livestock building (Fig. 1). To
run the bLS model, WindTrax requires four parameters describing the surface layer wind
model: surface roughness length (z, cm), friction velocity (ux, ms™), atmospheric
stability or Monin-Obukhov length (L, m), and mean horizontal wind direction
(0, degrees) (Crenna, 2006a). Additionally, at least one gas concentration measurement
per source is needed to estimate the unknown emission rates (Flesch et al., 1995). The
model also requires a background concentration (Cgg), which can be entered directly if
known or derived from an upwind concentration measurement. The software then solves
a system of equations to calculate coefficients that relate emission rates to measured
concentrations and vice versa (Crenna 2006a; Crenna 2006b).

QGIS, an open-source geographic information system (GIS) software, was used
both before and after WindTrax simulations. Initially, it was employed to georeference
the two sampling points and generate a scaled map for exporting into WindTrax (Fig. 1),
ensuring accurate distance proportions within the software. After the simulations, QGIS
was used to create raster images visualizing the atmospheric dispersion of CO, as
modelled by WindTrax.

Experimental setup

The experiment was conducted during a single day in February 2023. First, the
prevailing wind direction was determined. Two G-eko 2.0 units were then positioned at
the height of 1 m from the ground, one upwind (sampling point 1) and one downwind
(sampling point 2) of the emission sources (Fig. 1), aligned with the wind direction. The
units were positioned away from obstacles (Flesch & Wilson, 2005; Crenna et al., 2008).
The anemometer was placed upwind, near the G-eko 2.0 unit, at a height of 2 m above
the ground. Both G-eko 2.0 units recorded CO; concentrations (ppm), atmospheric
pressure (Pa), and temperature (°C) at a sampling rate of 5 seconds. Wind speed (m s™)
was measured at a sampling rate of 1 second, while wind direction was estimated. Data
collection was conducted continuously for 20 minutes. The choice of the sampling period
is due to the fact that the 15-minute averaging period is the most commonly used to
include homogeneous weather conditions in the analysis, as suggested by the software
author (Crenna, 2006b) for capturing representative atmospheric conditions. Furthermore,
this work was part of a larger field trial involving measurements at different heights
above the ground, so only this data on a 20-minute sampling period was available.
Another reason to choose a 20-minute sampling period is the variability of the wind

direction, estimated during the field trial and considered with a constant value during the
field trial.
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Data processing

After the field trial, data were exported in .csv format. A verification process was
conducted to ensure data quality, which included assessing whether the recorded values
fell within expected ranges and evaluating the consistency between measurements
obtained from the two G-eko 2.0 units.

All collected data were processed using Microsoft Excel to generate input files for
WindTrax simulations. The following data processing description has not previously
been applied, primarily due to the short duration of the field trial, which imposed specific
methodological constraints. Other authors (Lin et al., 2015; Pedone et al., 2017) used
data obtained by field trials of longer duration, so the sampling period suggested by the
author of the software (Crenna, 2006b) was used. Measurements from the G-eko 2.0
units were averaged at 1-minute intervals, resulting in two datasets of 20 values. The
same procedure was applied to wind data yielding, in total, three datasets of
20 measurements each. The scaled map of the farm, created in QGIS, was imported into
WindTrax to design the extended area sources and accurately locate the sampling points
used during the field trial (Fig. 1). The area sources are represented in lime green and
the orange arrow represents wind direction. WindTrax requires the specification of
sampling points locations and corresponding datasets; therefore, each point was linked
to the corresponding dataset (Fig. 1).

Each set of paired measurements of CO, concentration collected upwind (C1, N 20)
and downwind (C2, N = 20), along with wind data (N = 20) was entered into the model
to generate 20 simulations, each estimating an emission rate (Q, g m? s'). Regarding
model specifications, the surface roughness length (zo) was set to 2.3 to represent the
short grass surrounding the livestock farm, which is bordered by arable land. The friction
velocity ux was calculated by the model based on wind speed measurements recorded by
the anemometer during the field trial. Atmospheric stability was classified as B according
to the Pasquill-Gifford stability classes considering wind speeds below 2 m s™! and weak
daytime solar radiation. The mean horizontal wind direction (0) was determined using
topographic methods based on GPS coordinates of the two sampling points aligned with
the wind direction during the field trial, yielding a value of approximately 119.3°. The
number of particles in the simulation was set to 50,000.

The 20 calculated Q values were converted into a dataset obtained by averaging the
collected data over 5-minute intervals. These data were used to run additional 16
simulations to model CO; dispersion over a 270 m x 230 m area. The area was defined
based on emission sources and wind direction to represent CO, concentrations at a height
of 2 m above the ground. The simulation parameters remained the same as previously
stated, and the number of particles was set to 5,000 (N = 4 simulations), 10,000 (N = 4),
30,000 (N =4), and 50,000 (N = 4). Each simulation generated a raster image consisting
of 10,000 pixels, with each pixel representing an estimated CO, concentration (ppm).
These raster images were georeferenced in QGIS by constructing a rectangle of matching
dimensions. This kind of analysis was not used by any of the authors of the analysed
literature, but it helps to make the measuring system reliable. The method of
implementation for obtaining atmospheric dispersions was, however, in accordance with
the software manual (Crenna 2006a; Crenna 2006b).

A similar approach was applied to the calculation of vertical profile plots at the
sampling point 2. Using the calculated Q values, 16 vertical profile plots of estimated
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CO; concentrations were modelled. The simulation parameters were the same as those
used for the CO, dispersion model. Each vertical profile plot provided estimated CO»
concentrations at heights ranging from 1 to 10 m above the ground, at an interval of 1 m.
Both the CO; horizontal dispersion and vertical profile estimates were generated along with
their respective confidence intervals. R (R Core Team, 2024, version 4.4.0) and Rstudio
(Rstudio Team, 2024, version 2024.4.1.748) were used for data analysis by selecting the
library function ggplot2 (Wickham, 2016) for creating the vertical profile plots.

RESULTS AND DISCUSSION

The input data were averaged over five minutes and subsequently used for the
WindTrax simulations. This averaging period was selected because of the short sampling
period adopted during the field trial, despite WindTrax’s potential sensitivity to short-
term wind speed and direction variability. Table 3 shows measurements obtained from
the G-eko 2.0 units at sampling point 1 (upwind) and 2 (downwind), and the anemometer,
which were employed to calculate CO; emission rates (Table 4). The highest CO,
emission rate was obtained for the fourth step, which corresponds to the period with the
maximum detected wind speeds.

Table 3. Input data averaged over five minutes detected by the two G-eko 2.0 units and the
anemometer at the sampling point 1 (upwind) and 2 (downwind)

Ste Upwind sampling point Downwind sampling point
P Time atm. wind wind atm.
(run temp. CO; .. temp. CO;
nr.) (CET) °C) pressure (ppm) speed direction °C) pressure (ppm)
' (Pa) PPV (msh () (Pa) PP

1 10:40 1047 99,568 450.14  0.73 119.3 9.59 99,636  637.68
2 10:45 10.55 99,561 45398 0.72 119.3 9.47 99,630  635.83
3 10:50  10.39 99,555 448.51  0.57 119.3 9.43 99,627  629.10
4 10:55 1043 99,557 44226 1.04 119.3 9.58 99,624  621.08

It should be considered that for all the four steps the atmospheric stability was
considered class B (unstable), hence the simulations calculating emission rates
are influenced by the wind gusts. For example, observing Tables 3 and 4, step 4 is
characterised by maximum wind speed and a consequent calculation of a notable peak
in CO, emission rate, compared to the

other steps. In order to understand the Table 4. CO, emission rates averaged over five
influence of the wind on measured minutes calculated using the WindTrax model
concentrations, i.e. whether the values (50,000 particles)

of detected concentration depends on a Step Time Q

real increase of emission rates or on (run nr.) (CET) (gm?s")
increased particle transport due to ! 10:40 0.19902
increased wind speed, a recent study g 18‘5‘8 81283‘2‘
(Mousavi et al., 2025) assessed the 1 10-55 0.26958

influence of meteorological variables
on measured CO» concentrations in the
Middle East. The correlation between wind speed and CO, concentrations is inverse
significantly in colder months. The paper explains that higher wind speeds lead to a
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reduction in detected concentrations through the dispersion and dilution processes.
Consistently, in this case, the maximum detected concentrations are not reached upwind
and downwind with the maximum wind speed (Table 4), thus it is possible to state a
greater dispersion of CO; at higher wind speeds. In this study, input data were averaged
over 5 minutes and not over an interval of 15-30, as recommended by the author of the
software. Shorter averaging periods are more subject to wind gusts and in conditions of
atmospheric instability, indeed some studies (Carozzi et a., 2013; Tagliaferri et al., 2023)
have highlighted a worse level of accuracy in the calculation of emission rates,
underestimating them.

Simulations were conducted for all the four steps, covering the entire sampling
period. Different numbers of particles (5,000, 10,000, 30,000, and 50,000) were tested,
yielding various outputs including concentration maps, confidence interval maps, and
vertical profile plots.

5,000 particles / 10,000 particles

LEGEND
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“ Direction
WindTrax
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S G-eko 2.0
A nis
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Figure 3. Concentration maps for estimated CO; horizontal dispersion at 2 m above ground level
modeled with WindTrax simulations using CO, measurements averaged at 5S-minute intervals.
From top left, horizontal contour plots (10 classes separated by 90-ppm intervals) for models
computed with 5,000, 10,000, 30,000, and 50,000 particles.

The concentration maps in Fig. 3 were generated for step nr. 1 using different
numbers of particles, and indicate the simulated CO; concentrations at the height of
2 m above the ground. A uniform colour scale was applied to all four concentration
maps, using ten value classes ranging from a minimum of 440 ppm to a maximum of
1,250 ppm, with intervals of 90 ppm, to create horizontal contour plots. Additionally,
Fig. 4 shows the concentration map generated for step nr. 1 using 50,000 particles at the
height of 2 m above the ground, also representing the emission sources.
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Figure 4. Concentration maps for estimated CO, horizontal dispersion at 2 m above ground level
modeled with WindTrax simulations using CO, measurements averaged at 5-minute intervals.
Horizontal contour plots (10 classes separated by 90-ppm intervals) for models computed with
50,000 particles. The sources are shown, as well.

Table 5 shows the results of the concentration maps corresponding to the four steps
in terms of maximum and
minimum values of the 10,000 Table 5. Simulated CO. concentrations (maximum
estimated concentrations, while and minimum values) at 2 m above the ground level
Fig. 5 shows the results of the using CO, and environmental parameter (temperature

. . and pressure) measurements averaged at 5-minutes
concentration maps corresponding 201 G TS 000, 10,000, 30,000, and 50,000
to the four steps in terms of

median values. The median particles for all the four steps
was selected to summarize the
distribution due to the high
number of minimum concentration
values located in the periphery

Step Particles number

(run nr.) 5,000 10,000 30,000 50,000

1 Max 1,250.00 1,140.00 1,130.00 1,140.00
Min 450.14 450.14 450.14  450.05

2 Max 1,230.00 1,121.46 1,110.00 1,130.00

of the raster files for each step. Min 45398 45398 453.98  453.89
Reporting mean values with 3 My 121000 1,110.00 1,100.00 1,120.00
standard  deviation  would Min 44851 44851 44851 448.42
have provided a misleading 4 Max 1,200.00 1,100.00 1,090.00 1,100.00
interpretation of the results of the Min 44226 44226 44226 442.17

simulations. A general trend was
noted across all the steps: the median concentration values tend to stabilise with a high
number of particles (30,000 and 50,000).
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Minimum concentration values remained consistent with the measured mean
background concentration at the sampling point 1 up to 30,000 particles, then it
decreased by a few decimals for 50,000 particles.

Inside the distribution of calculated CO, values, the median value is subject to an
upward shift to 30,000 particles and then to a downward shift with 50,000 particles for
all the steps.
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Figure 5. Median modeled CO, concentrations of the 16 concentration maps, increasing the
number of particles in WindTrax for each step (1-4).

Extending the analysis to the calculated confidence intervals of the estimated CO»
concentrations, horizontal dispersion maps by WindTrax calculated for the first step are
shown in Fig. 6. The same scale of values was used for all the four confidence interval
maps, by selecting values from a minimum value of 0 ppm to a maximum value of
290 ppm. It can be observed that by increasing the number of particles included in the
simulations, the calculated confidence intervals decreased. Furthermore, as the distance
from the source along wind direction increased, the confidence interval decreased.

Pedone et al. (2017) applied the WindTrax model using 2,000, 7,000, and 50,000
particles, obtaining a variability of 20% in CO, emission rate. Other authors (Shonkwiler
& Ham, 2018; Shaw et al., 2020; Hrad et al., 2021) used the WindTrax model by
selecting a number of particles greater than 50,000, mainly for reducing the uncertainty
of the model. Studies that selected 50,000 particles adopted smaller distances of sensors
from the source i.e. 100300 m (Hrad et al., 2021), 30 m (Riddick et al., 2022), 0.5 m
(Riccoetal.,2021). It should be considered that in studies where sensors are placed close
to the source, their number tends to increase. In this study, G-eko units were positioned
at 2040 m from the closer emission source i.e. the bedding inside the livestock building
and the manure storage. Hrad et al. (2021) stated that 50,000 particles is the default value
to shorten simulation.
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Figure 6. Confidence interval (CI) maps for estimated CO; horizontal dispersion at 2 m above
ground level modelled with WindTrax simulation using CO, measurements averaged at 5-minute
intervals. From top left, CI for models computed with 5,000, 10,000, 30,000, and 50,000 particles.

Therefore, simultaneous observation of the concentration maps and the confidence
interval maps for the first step (Fig. 3 and 6) showed that the highest values of CO,
concentration, represented with

darker areas, have wider confidence Table 6. Simulated CO, concentration confidence
intervals because they are close intervals (maximum and minimum values) at
to the sources. On the other hand, 2mabove the ground level using CO; and

environmental parameter (temperature and pressure)
measurements averaged at S5-minutes intervals,
using 5,000, 10,000, 30,000, and 50,000 particles
for all the four steps

the lowest values represented
with lighter areas have smaller
confidence intervals because they
are further away from the sources.
From these considerations, despite
the simplicity of applying the bLS
approach, the available sensors,
type, and positioning have a great

Step Particles number

(run nr.) 5,000 10,000 30,000 50,000

1 Max  285.77 144.77 117.00 88.81
Min  0.00 0.00 0.00 0.16

2 Max  276.62 140.13 113.26 85.96

impact on atmospheric dispersion Min 000  0.00 0.00 015
simulations. 3 Max  274.50 139.06 11239 85.31
Table 6 also shows results of Min  0.00 0.00 0.00 0.15
the other confidence interval maps, 4 Max 271.71 137.64 111.25 84.44
referring to the other steps in Min  0.00  0.00 0.00 0.15

terms of maximum and minimum
confidence intervals, while Fig. 7 also shows results of the other confidence interval
maps, referring to the other steps in terms of median confidence intervals.
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For the other steps as well, there is a reduction in the calculated confidence intervals
by increasing the number of particles.

20 4

-
»

Modeled CO:2 confidence interval
concentrations (median)
o
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Step

Figure 7. Median modeled CO, confidence interval concentrations of the 16 confidence interval
concentration maps, increasing the number of particles in WindTrax for each step (1-4).
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Figure 8. Vertical profile plots of estimated CO, concentration (1 confidence intervals in the
sampling point 2 of the G—eko 2.0. Simulations were run using 5,000 (a), 10,000 (b), 30,000 (c),
and 50,000 (d) particles. Estimations are from heights equal to 1 m a.g.l. to 10 m a.g.l. The dotted
blue line indicates the height at which simulations of the horizontal dispersion were carried out.
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Additionally, vertical profile plots were calculated with the WindTrax software at
the sampling point 2 for observing estimated CO; concentrations + confidence intervals
with several numbers of particles at different heights above the ground, i.e. from 0 to
10 m with 1 m intervals. Fig. 8 shows narrower CO» confidence intervals as the number
of particles increases. Therefore, what has been observed horizontally with concentration
maps and confidence interval maps also occurs vertically with vertical profile plots.
Moreover, a better-defined vertical trend in concentrations is observed as the number of
particles increases. Again, it is observed that a large number of particles is necessary for
a better accuracy in estimating concentrations.

CONCLUSIONS

This study provided relevant insights into the performance of a Lagrangian
atmospheric dispersion model for estimating CO- emissions from livestock facilities and
mapping their dispersion in the surrounding environment.

The results highlight the importance of adapting the measurement protocol to the
specific emission sources under investigation. In this case, overall CO. emission rates
were estimated for three distinct sources: the livestock building, the manure pit, and the
slurry tank. To improve source-specific estimates, it is recommended to deploy at least
one sensing unit per emission source, along with one additional unit for background
concentration measurements. All sensors should be positioned at appropriate distances
within a 1 km radius from the sources, in accordance with model guidelines.

With regard to meteorological data processing, the choice of averaging intervals
proved critical. Short averaging periods (e.g., 5 minutes) are more susceptible to wind
gusts, potentially reducing the reliability of emission rate estimates, particularly under
unstable atmospheric conditions. Simulations revealed that increasing the number of
particles improved result stability and reduced the width of confidence intervals.
Specifically, median concentration values from simulations of horizontal dispersion
increased with higher particle counts up to 30,000. Confidence intervals also decreased
with greater downwind distance and with increasing number of particles. A particle
number of at least 50,000 is recommended to ensure robust model outputs, despite the
increased computational demand.

The study also identified several limitations. The limited number of sensing units
prevented the estimation of emission rates for individual sources, restricting the analysis
of their relative contributions to overall CO, emissions. In addition, the proximity of the
downwind sensor to the emission sources may have influenced concentration
measurements due to local turbulence effects caused by nearby structures. The short
duration of the measurement period (20 minutes) and the selected averaging time
(5 minutes) may have amplified the influence of wind fluctuations on emission
estimates. Furthermore, the use of an anemometer capable of measuring both wind speed
and direction-preferably in 2D or 3D-would have improved the characterization of local
atmospheric conditions.
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Despite these limitations, the WindTrax protocol proved practical and applicable
within a livestock farming context, provided that careful attention is paid to sensor
placement. Future studies should incorporate a greater number of sensing units and
extended monitoring periods to capture diurnal, seasonal, and annual variability in
emission rates. Such efforts are essential to improve the bottom-up assessment of
greenhouse gas emissions from livestock farming and to support the development of
effective mitigation strategies.
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