The effects of microalgae (*Tetradesmus obliquus*, *Spirulina platensis* and *Chlorella vulgaris*) on the nutritional profile of broiler meat

A. Freiberga¹, A. Ilgaza¹, S. Jonova¹, S. Eglite¹, D. Gorbacevska¹, A. Plivca¹, K. Neiberts², M. Zolovs^{3,4} and P. Semjonovs²

¹Latvia University of Life Science and Technologies, Faculty of Veterinary Medicine, K. Helmana street 8, LV-3004 Jelgava, Latvia

²University of Latvia, Institute of Biology, Laboratory of Industrial Microbiology and Food Biotechnology, O. Vaciesa street 4, LV-1004 Riga, Latvia

³Statistics Unit, Riga Stradins University, Balozu street 14, Riga, Latvia

Received: July 5th, 2025; Accepted: September 26th, 2025; Published: October 23rd, 2025

Abstract. This study investigated the effect of dietary supplementation with three edible microalgae species (Tetradesmus obliquus, Spirulina platensis, and Chlorella vulgaris) on the nutritional profile of broiler chicken meat. Ross 308 broilers were fed a standard diet enriched with 0.5% of one of the microalgae species over a 43-day fattening period. Meat samples from the breast and thigh muscles were collected on days 35 and 43 to analyse its nutritional profile. Although no statistically significant differences were observed in growth performance, several biologically differences became apparent. C. vulgaris administration was associated with an initial increase in thigh meat fat content on day 35, followed by a notable reduction by day 43, and led to higher protein and polyunsaturated fatty acid levels. However, it resulted in the highest omega-6/omega-3 ratio among the groups. S. platensis contributed to a more favorable fatty acid profile, with the lowest omega-6/omega-3 ratio and increased protein levels, particularly in breast meat. T. obliquus supplementation produced leaner meat, improved vitamin B₁₂ content, and maintained a more balanced omega-6 to omega-3 ratio by day 43, suggesting a cumulative benefit with prolonged feeding. These findings indicate that each microalga has species-specific effects on broiler meat quality, supporting their potential use as sustainable functional feed ingredients tailored to specific nutritional goals in poultry production.

Key words: broiler, chickens, edible microalgae, *Spirulina platensis*, *Chlorella vulgaris*, *Tetradesmus obliquus*, meat quality, fatty acids.

INTRODUCTION

Poultry meat is a globally important source of high-quality protein due to its affordability, safety and short production cycle. (Wahyono et al., 2018; Biesek et al.,

⁴Daugavpils University, Institute of Life Sciences and Technology, Department of Biosystematics, Vienibas street 13, LV-5401 Daugavpils, Latvia

^{*}Correspondence: Correspondence: anete.freiberga@lbtu.lv

2020). However, rising costs of conventional feed ingredients, such as soybean meal and cereals, coupled with sustainability concerns, have driven interest in alternative feed sources. (Babatunde et al., 2021). Microalgae are considered a promising alternative because they contain proteins, polyunsaturated fatty acids (PUFAs), vitamins, minerals and pigments, which could enhance both animal performance and the nutritional quality of meat (Abdel-Wareth et al., 2024). Microalgae are distinguished from land plants by their high content of plastid pigments and diverse carotenoids, and they also synthesize a wide variety of bioactive compounds such as polysaccharides and polyunsaturated fatty acids (Bazarnova et al., 2020; Šefcova et al., 2021). The quantitative and qualitative composition of the intestinal microbiota in broiler chickens can be altered by stressors in industrial poultry farming (Eglite et al., 2024). Gut microbiota plays a key role in the health, growth and performance of poultry. While probiotics are well known to enhance these parameters, other feed additives, such as microalgae, also offer beneficial effects (Akinyemi et al., 2020; Šefcová et al., 2020; Šefcová et al., 2021). Positive outcomes also have been achieved through the administration of algae, regarding animal performance and immunity. (El-Bahr, et al., 2020; Liu, et al., 2021). A key advantage of algae supplementation is its ability to modulate the poultry gut microbiome by supporting beneficial bacteria and microbial diversity. This improves digestion and nutrient uptake (Abdel-Wareth et al., 2024). Studies have demonstrated that microalgae supplementation can enhance growth performance and meat quality in various livestock species, including poultry, although these effects largely depend on the algal species and inclusion level in the diet (Madeira et al., 2017). Microalgae are microscopic photosynthetic organisms that are found in both marine and freshwater environments (Privadarshani & Rath, 2012). T. obliquus contains significant levels of proteins, lipids, and carbohydrates, with a particularly high protein content under mixotrophic conditions; it is rich in essential amino acids (though limited in methionine and cysteine) and has a lipid profile dominated by polyunsaturated fatty acids, including omega-3 and omega-6 (Piasecka et al., 2020). The effects of Tetradesmus supplementation have been tested on both laying hens and pre-starter broilers, with changes observed in egg yolk colour, immune cells and gut microbiota (Rim et al., 2022; Kim et al., 2023). Spirulina (Arthrospira spp.) is a blue-green microalga with over 60% easily digestible protein, essential amino acids, vitamins, minerals, and bioactive compounds such as β-carotene, phycocyanin, phenolics, and polysaccharides, which contribute to its antioxidant, antiinflammatory, hypolipidemic, and immunomodulatory properties, making it a valuable functional feed ingredient (Finamore et al., 2017; Stunda-Zujeva & Berele, 2023; Stunda-Zujeva et al. 2023). The findings also show that spirulina supplementation increases the levels of antioxidants and n-3 polyunsaturated fatty acids (PUFAs) in meat, while concurrently lowering the levels of α -tocopherol and increasing the levels of saturated fatty acids (Costa et al., 2024). Spirulina is one of the most widely studied and in-demand species for food and feed applications. Its cultivation potential under natural light conditions in mid-latitude regions such as the Baltic States has been evaluated positively (Stunda-Zujeva et al., 2018). Chlorella vulgaris is a nutrient-rich green microalga containing high-quality protein, essential minerals and a broad spectrum of vitamins, including B-complex and fat-soluble vitamins (A, D, E and K). These compounds, along with carotenoids, chlorophyll, and polysaccharides, confer antioxidant, anti-inflammatory, immunomodulatory, and metabolic benefits, making

C. vulgaris a sustainable source of alternative protein with potential applications in human and animal nutrition (Spolaore et al., 2006; Alfaia et al., 2021; Orusmurzaeva et al., 2022; Maurício et al., 2023; Mendes et al., 2024a). Including C. vulgaris in the diet enhances the oxidative stability of broiler meat by increasing antioxidant levels, boosting carotenoid deposition and improving the balance between pro- and antioxidants (Mendes et al., 2024b). When included in poultry diets at appropriate low levels, seaweeds can enhance meat and eggs with valuable bioactive compounds (Michalak & Mahrose, 2020). Although previous studies have shown that algae in the diet can affect growth performance and meat composition, there is still limited comparative data on different species of microalgae. Furthermore, the mechanisms by which algal nutrients and percentage of inclusion level enrich meat have not been fully determined. The present study therefore aimed to evaluate the effects of low-dose supplementation with S. platensis, C. vulgaris and the lesser-known T. obliquus on the growth performance, fatty acid composition, and vitamin and mineral content of broiler chicken meat.

MATERIALS AND METHODS

The experimental part of the study was conducted at the Clinical Research Centre, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Jelgava, Latvia, from mid-April to the end of May 2024. Permit No. 152/2024 was obtained from the Food and Veterinary Service to conduct the experiment 'The effect of feeding microalgae on the health, productivity and production quality of laying hens and broiler chickens.

Microalgae biomass. Biomass of Spirulina and Chlorella for poultry experiments was purchased from Buxtrade.de., in Germany. T. obliquus (OM02) is an isolate from the Laboratory of Industrial Microbiology and Food Biotechnology (LIMFB) that was obtained from waterbodies in Riga, Latvia. The maintenance of microalgae culture prior to utilisation in a photobioreactor (PBR) and throughout the entirety of the experimental stages was facilitated by employing the standard HP medium procured from VariconAqua (United Kingdom). Inoculations were prepared from stock culture. The initial inoculum was constituted of 10% of the total volume of the starting culture, which was derived from the original stock cultures. The inoculum was gradually increased in scale (250 mL, 500 mL, 1 L, 2 L Erlenmayer flasks and 10 L airlift PBR) until it reached 10 L, which was designated as the final inoculum stage prior to its transfer to an air lift PBR of 140 L capacity. Each stage of inoculum was cultivated for a period of seven days. The first four stages were cultivated statically under a 12:12 hour day: night cycle at room temperature (20 °C). The final stage was cultivated under a 10:10 hour day: night cycle in an airlift PBR. In conclusion, a total of 10 litres of culture medium was utilised to initiate the 140-litre airlift of the PBR. The cultivation of the green microalga T. obliquus was performed in a 140 L Phyco-Lift vertical tubular air-lift photobioreactor (Varicon Aqua, UK) under semi-continuous operation. The photoperiod employed was 10 h of light followed by 10 h of darkness, the light intensity of which was gradually increased over time. The light source used was LED panels emitting red and white light. The cultivation process was initiated with an inoculum of 10 L, which possessed an initial optical density (OD540) of approximately 0.2. The aeration process was continuous, with a rate of approximately 5 L min⁻¹. The

air was enriched with CO₂ and the pH was maintained within the range of 7.5 to 9.5, with the CO₂ supply being adjusted in real time based on continuous pH monitoring. The mean temperature of the culture medium was sustained within the range of 25–30 °C. The growth medium employed throughout the experiment was HP medium. On a weekly basis, 50% of the reactor volume was harvested for the collection of biomass, followed by replenishment with fresh medium. At each harvest, samples were examined by light microscopy to assess microbial contamination. The biomass was harvested and subsequently concentrated through a combination of elevated pH and centrifugation.

Table 1. Summary of fatty acid profile, nutrient composition, vitamins, minerals, and antioxidant content of microalgae biomass (*C. vulgaris*, *S. platensis*, and *T. obliquus*)

Parameter	Unit	C. vulgaris	S. platensis	T. obliquus
Total saturated fatty acids	g/100 g	2.5	2.8	1.9
(SAFA)	g/100 g	2.3	2.0	1.9
Total monounsaturated fatty acids	σ/100 σ	0.7	0.4	1.9
(MUFA)	g/100 g	0.7	0.1	1.7
Total polyunsaturated fatty acids	g/100 g	6.1	2	3.1
(PUFA)	g/100 g	0.1	2	5.1
Sum of trans fatty acids isomers	g/100 g	$< 0.1 (0.1 \pm 0.1)$	$< 0.1 (0.1 \pm 0.1)$	0.7
Total Omega-3 fatty acids	g/100 g	0.4	$< 0.1 (0.1 \pm 0.1)$	
Total Omega-6 fatty acids Total Omega-9 fatty acids	g/100 g	4.5	2	1
Total Omega-9 fatty acids	g/100 g	0.4	0.1	1.7
Aspartic acid	mg/100 g	3,550	4,340	2,260
Glutamic acid	mg/100 g	6,100	7,840	3,850
Serine	mg/100 g	1,800	2,940	1,740
Histidine	mg/100 g	960	1,000	662
Glycine	mg/100 g	2,520	3,020	2,400
Arginine	mg/100 g	3,580	3,940	2,140
Threonine	mg/100 g	1,890	2,950	1,970
Alanine	mg/100 g	3,670	4,600	3,470
Proline	mg/100 g	2,110	2,310	2,020
Tyrosine	mg/100 g	1,340	2,490	1,350
Valine	mg/100 g	2,450	3,490	2,200
Methionine	mg/100 g	1,010	1,550	947
g Cysteine	mg/100 g	360	340	318
Isoleucine	mg/100 g	1,580	3,130	1,440
Leucine	mg/100 g	3,950	5,270	3,460
Cysteine Isoleucine Leucine Phenylalanine Lysine	mg/100 g	2,170	2,770	2,120
Lysine	mg/100 g	3,530	2,940	2,050
Vitamin E (α-tocopherol)	mg/100 g	17.3	2.8	8.3
Vitamin B1 (thiamine)	mg/100 g	0.08	1.15	nd
Vitamin B2 (ryboflavin)	mg/100 g	3.86	2.19	nd
Vitamin B3 (niacin)	mg/100 g	22.9	16.2	nd
Vitamin B5 (pantothenic acid)	μ g/100 g	1.23	96.1	nd
2 Vitamin B6 (pyridoxine)	mg/100 g	1.52	0.61	0.38
Vitamin B7 (biotin)	μ g/100 g	21.5	1.62	nd
Vitamin Bo (pyridoxine) Vitamin B7 (biotin) Vitamin B9 (folic acid) Vitamin B12 (cyanocobalamin)	μ g/100 g	1030	108	nd
Vitamin B12 (cyanocobalamin)	μg/100 g	1.54	168	105

				(
Sodium (Na)	mg/100 g	434	322	nd
Salt as sodium chloride (NaCl)	mg/100 g	1,085	805	nd
Iron (Fe)	mg/100 g	14,026	75.4	28.3
Zinc (Zn)	mg/100 g	0.99	1.34	26.2
Magnesium (Mg)	mg/100 g	258	254	357
Moisture	g/100 g	2	4.4	nd
Protein (N*6.25)	g/100 g	56.9	69.6	54.8
Dietary fiber Energy value Carbohydrates	g/100 g	10.4	7.8	nd
∵≝ Energy value	kcal/100 g	406	372	nd
☐ Carbohydrates	g/100 g	15.8	6.7	28.5
Fat Ach	g/100 g	10.5	5.7	9.4
∞ Ash	g/100 g	4.38	5.78	nd
ਾਲੂ Total sugars	g/100 g	0.22	0	nd
Total sugars Total polyphenols as gallic acid Total Carotenoids	mg/100 g	528.03	188.93	nd
≥ Total Carotenoids	mg/100 g	13.63	15.41	11.45

Symbols such as '<' indicate values below the detection limit of the accredited method; nd – not detected.

Following this, the biomass was washed in distilled water and dried at 45 °C to prevent the degradation of bioactive compounds. Microalgae biomass samples (*C. vulgaris*, *S. platensis*, and *T. obliquus*) were submitted to the Hamilton Laboratory for detailed compositional analysis. The evaluation included quantification of fatty acid profiles, amino acid composition, vitamins, minerals, proximate nutritional content, and antioxidant compounds such as polyphenols and carotenoids.

Experimental design and animal management. A total of 140 unsexed Ross 308 broiler chicks were obtained from a commercial hatchery within two hours of hatching, to minimise environmental exposure and reduce the risk of pathogen contamination strict biosecurity measures were implemented throughout the study, including restricted access to the experimental facility and the use of protective equipment, such as disposable clothing, gloves and footwear. Personnel visited the site twice daily for feeding purposes to monitor the health and welfare of the birds. During the study, the broiler chickens were not given any vaccinations. After being brought to the Clinical Research Centre, the chickens were weighed and then randomly divided into four study groups (control (BK), S. platensis (BS), C. vulgaris (BC) and T. obliquus (BT)), each containing day-old Ros 308 broiler chickens (n = 35, total n = 140). The broilers were reared for 43 days under controlled conditions abided by the Ross Broiler Management Guide (Aviagen Ross Broiler Guide, 2024). For body weight measurements, animals were weighed at day 1; 8; 14; 22; 29; 35 and 43 and the averaged values were used for analyses. To examine the fatty acid, vitamin and mineral profile of the breast and thigh meat, we randomly selected and euthanised five chicks from each group on day 35 and 7 chicks from each group on day 43. The broiler chickens were stunned with a blowgun and euthanised by bleeding. All chickens were fed basal diets free of probiotics, antibiotics, or anticoccidiostats. All four study groups were given the same amount of food on the feeding tables twice a day. The poultry-based diet for all groups was specifically formulated for Ross 308 broiler chickens aged 1-35 days and above and consisted of three phases. Starter (from day 0 to day 18: 14.5 MJ kg⁻¹), Grower (from day 18 to day 35: 14.46 MJ kg⁻¹) and Finisher (from day 35 until the end of the study on day 43: 14.39 MJ kg⁻¹). The primary

protein sources in the feed were wheat grains, soybean meal (GMO), corn, and rapeseed cake. The chemical composition of the feed is detailed in Table 2.

Table 2. Feed components and proximate composition of starter (days 1–18), grower (days 18–35) and finisher (above 35th day) diets for the control and experimental groups, granulated (crushed)

Starter	Grower		Finisher		
Wheat	Wheat		Wheat		
Soybean meal (GMO)	Soybean meal (GMO)		Soybean meal (GMO)		
Corn	Corn		Corn		
Rapeseed cake	Rapeseed cak	e	Rapeseed cake		
Rapeseed oil	Rapeseed oil		Rapeseed oil		
Ca carbonate	Ca carbonate		Ca carbonate		
Monocalcium phosphate	Monocalcium	phosphate	Monocalcium phosphate		
Na chloride	Na chloride	Priespriate	Na chloride		
Nutritional additives		Starter	Grower	Finisher	
Vitamins (3a):					
A (3a672a), IU kg ⁻¹		14,853.96	14,853.96	14,853.96	
D ₃ (3a671), IU kg ⁻¹		2,983.86	2,983.86	2,983.86	
E (3a700, all-rac-alfatoko.acet)), mg kg ⁻¹	41.5	42.62	43.16	
B ₁ (thiamine 3a821), mg kg ⁻¹		6.25	6.11	6.03	
B ₂ (riboflavin 3a826), mg kg ⁻¹		7.85	7.72	7.63	
B ₅ (Ca-d-pantothenic acid 3a84	11), mg kg ⁻¹	46.87	46.33	46.07	
B ₄ (choline chloride 3a890), m		1,599.07	1,475.36	1,397.6	
B ₃ (niacin 3a315), mg kg ⁻¹		44.37	44.01	44.3	
B ₆ (pyridoxine 3a831), mg kg ⁻¹		8.8	8.59	8.42	
B ₁₂ (cyanocobalamin 3a835), n		23.74	23.74	23.74	
K ₃ (methadone 3a711), mg	C	2.3	2.37	2.37	
B ₇ (H-biotin 3a880), mg		0.05	0.05	0.05	
B _c (folic acid 3a316), mcg		0.59	0.59	0.59	
Micronutrients (3b):					
Iron sulfate (3b103), (Fe), mg kg ⁻¹		126.04	116.32	111.71	
Copper sulfate (3b405), (Cu) mg kg ⁻¹		18.77	18.1	17.67	
Manganese oxide (3b502), (Mn) mg kg ⁻¹		112.26	110.14	109.79	
Zinc oxide (3b603), (Zn) mg kg ⁻¹		89.55	87.91	86.94	
Sodium selenite (3b801), (Sn) mg kg ⁻¹		0.32	0.32	0.31	
Calcium iodate (3b202), (J) mg kg ⁻¹		1.22	1.22	1.22	
Cobalt carbonate (3b304), (Co) mg kg ⁻¹		0.67	0.66	0.66	
Analytical components:					
ME (metabolizable energy), MJ		14.5	14.46	14.39	
crude protein, %		22.79	20.31	19.1	
Crude fat, %		4.54	4.73	4.79	
Fiber, %		4.89	5.38	5.5	
Ash, %		4.76	4.48	4.28	
Starch, %		36.31	39.78	41.82	
Calcium (Ca), %		0.99	0.90	0.93	
Phosphorus (P), %		0.54	0.52	0.51	
Sodium (Na), %		0.15	0.15	0.14	
Methionine, %		0.38	0.37	0.33	
Lysine, %		1.32	1.6	1.06	

All experimental diets were provided with the same dose of biomass (5 g kg⁻¹) of the respective microalgal supplement, which was added to the BS, BC and BT groups. All groups were housed in four identical bio-chambers (total floor area of the room 20.76 m², divided in four equal parts - 5.19 m²), equipped with a comprehensive microclimate control system. This system regulated temperature, humidity and air supply, as well as controlling the composition of incoming and outgoing air and light cycles. Each bio-chamber was also fitted with video surveillance equipment to enable continuous monitoring. The chambers were equipped with stationary automatic watering systems and movable feeding tables which were adjusted according to the age of the chicks prior to placement. Clean wood shavings covered the flooring of each chamber to maintain hygiene and ensure animal comfort. The broiler chickens were raised until the 43rd day of life. The lighting and temperature regime was established based on prior research and Ross 308 breeder guidelines (Aviagen Ross broiler guide, 2024). During the first week of the experiment, the ambient temperature in the chambers for all groups was kept between 27 and 30 °C. As the birds grew, the temperature was gradually reduced until it reached 20–22 °C by the end of the study. On the first day, the light/dark cycle consisted of 23 hours of light and 1 hour of darkness (23/1). Subsequently, the darkness period was progressively increased to six hours, with a regime of 18 hours of light and six hours of darkness (18/6) from day eight to 26th. During the final week, the dark period was gradually shortened to create a light/dark cycle of 20 hours of light and 4 hours of darkness (20/4). The switch from light to dark occurred through the red light.

Body weight. All birds were weighed, and the averaged values were used for analyses. This was carried out on day 1; 8; 14; 22; 29; 35 and 43.

Meat quality parameters. Samples of breast and thigh meat were analysed on days 35 and 43. Five samples were taken from each group on day 35, and seven samples from each group on day 43. The pooled meat samples were prepared in accordance with laboratory requirements for minimum sample volume providing a representative overview of the overall meat composition. These samples were examined for their fatty acid, vitamin and mineral content. Only vitamins and minerals were determined on day 43. The samples were frozen at -22 °C for later examination. To determine the nutritional composition of chicken breast and thigh meat, the samples were sent to the J.S. Hamilton Poland Sp. z o.o. laboratory for testing. The results of the analysis of the fatty acid profile of the chicken breast and thigh meat samples were expressed in g/100 g of fresh weight. To detect minerals in the meat samples, they were sent to Eurofins Labtarna Lietuva, JSC laboratory. Mineral concentrations (Fe, Se, K, Mg) were expressed in mg kg⁻¹, vitamin E in mg kg⁻¹, and vitamin B₁₂ in μ g/100 g, all calculated on a fresh weight basis.

Statistical analyses. Generalised linear models (GLMs) were used to assess the effects of different dietary treatments (Control, *Tetradesmus, Spirulina*, and *Chlorella*) on chicken weight, with chicken age and initial weight included as covariates. The chi-squared test was applied to evaluate differences in categorical meat quality parameters. Descriptive statistics (mean, standard deviation, minimum, and maximum) were calculated. Statistical data analysis was performed with Jamovi (v.2.5). The results were considered statistically significant when the *p value* was < 0.05.

RESULTS AND DISCUSSION

Effects of diet on body weight. After adjusting for chicken age, no statistically significant differences in body weight were observed between treatment groups (p = 0.777; see Table 3). All groups exhibited consistent weight gain from day 1 to day 43, indicating normal growth trajectories regardless of dietary treatment. By day 43, the BT group reached the highest individual weight (4,029 g), followed by the BC group (3,903 g).

Table 3. Average body weight (g) of broiler chickens by treatment group from day 1 to day 43

		Weight			
Age	Group	Average	SD	Min	Max
Day 1	Control (BK)	61.49	1.43	59.90	63.40
	Tetradesmus obliquus (BT)	60.55	2.03	57.30	63.00
	Spirulina platensis (BS)	61.72	1.27	59.80	63.00
	Chlorella vulgaris (BC)	60.67	1.07	59.00	61.60
	Control (BK)	181.09	6.03	169.80	189.80
∞	Tetradesmus obliquus (BT)	176.57	7.86	166.80	191.20
Day	Spirulina platensis (BS)	180.17	4.99	172.40	187.80
	Chlorella vulgaris (BC)	170.56	6.46	160.20	180.60
	Control (BK)	454.07	26.86	421.60	513.30
Day 14	Tetradesmus obliquus (BT)	431.29	30.64	375.30	483.00
ay	Spirulina platensis (BS)	437.22	25.06	396.60	467.30
Д	Chlorella vulgaris (BC)	429.13	34.50	377.60	508.60
	Control (BK)	895.68	28.29	829.00	933.50
22	Tetradesmus obliquus (BT)	882.16	74.97	761.50	1,068.00
Day	Spirulina platensis (BS)	881.46	79.89	726.50	1,009.00
	Chlorella vulgaris (BC)	884.32	82.17	731.50	1,084.00
	Control (BK)	1,556.92	184.91	1,298.00	2,028.00
29	Tetradesmus obliquus (BT)	1,514.84	167.01	1,179.00	1,889.00
Day	Spirulina platensis (BS)	1,473.36	143.81	1,241.00	1,760.00
<u> </u>	Chlorella vulgaris (BC)	1,521.88	173.53	1,,245.00	1,881.00
Day 35	Control (BK)	2,225.25	289.01	1770.00	2,890.00
	Tetradesmus obliquus (BT)	2,034.36	319.11	1,203.00	2,624.00
	Spirulina platensis (BS)	2,185.20	197.94	1,936.00	2,563.00
	Chlorella vulgaris (BC)	2,145.56	242.37	1,690.00	2,607.00
Day 43	Control (BK)	3,061.00	468.75	2,122.00	3,903.00
	Tetradesmus obliquus (BT)	3,032.89	462.71	1,676.00	4,029.00
	Spirulina platensis (BS)	3,046.00	276.40	2,509.00	3,566.00
	Chlorella vulgaris (BC)	2,964.85	306.37	2,403.00	3,506.00

Includes mean, standard deviation (SD), minimum and maximum weight values for each group at different time points.

Although the differences were not statistically significant the BS and BK groups consistently showed higher average body weights compared to the BC and BT groups throughout the rearing period. Standard deviation values increased across all groups over time particularly after day 22 suggesting greater variability in growth as the birds aged.

Meat quality parameters. It should be noted that pooled meat samples were used for the analysis of fatty acids, vitamins and minerals. While this approach provided sufficient material for accurate laboratory testing and offered a representative overview

of the group's composition, it may have reduced statistical power and limited the ability to detect differences between groups. This should be considered a methodological

limitation of the study. Although no statistically significant differences in meat quality parameters were observed between the treatment groups (p > 0.05), various nutritional patterns were identified that may have biological or practical significance, see Table 4.

By day 35, the *Spirulina* (BS) group exhibited the most favorable fatty acid profile (MUFA and PUFA at 0.9 and 05 g/100 g), with the lowest omega-6 to omega-3 ratio (4.3), which matched the lower PUFA level of the Spirulina biomass (2.0 g/100 g), see Table 1. Meanwhile, the Chlorella (BC) group had the highest total fat (2.8 g/100 g) and energy content (115 kcal/100 g) including highest levels of monounsaturated (1.3 g/100 g) and polyunsaturated (0.7 g/100 g) fatty acids, as well as omega-6 (0.6 g/100 g) and omega-9 (1.1 g/100 g) fatty acids. This corresponded with the algae biomass profile of Chlorella, which had highest PUFA content (6.1 g/100 g) and omega-6 (4.5 g/100 g) see Table 1. The Tetradesmus obliquus group had a lower breast fat content (2.4 g/100 g) with MUFA and PUFA levels at 1.1 and 0.6 g/100 g, respectively. The algae biomass for Tetradesmus also contained **PUFA** moderate (3.1 g/100 g)and the lowest SAFA content (1.9/100 g). Similar persisted up to day 43. The BC group

Table 4. Fatty acid profile, proximate composition, energy value, and micronutrient content of broiler breast meat at days 35 and 43

	Day 35 Breast meat				
Fatty acids g/100 g	BK	BT	BS	BC	
Total (SAFA)	0.5	0.7	0.6	0.8	
Total (MUFA)	0.9	1.1	0.9	1.3	
Total (PUFA)	0.5	0.6	0.5	0.7	
Total Omega-3	0.1	0.1	0.1	0.1	
Total Omega-6	0.4	0.5	0.4	0.6	
Total Omega-9	0.8	0.9	0.8	1.1	
Water	75.7	75.8	75.4	75.1	
Total ash	1.29	1.24	1.29	1.17	
kcal/100 g	106	111	106	115	
Protein	21.9	22.3	22	22.4	
Fat	2	2.4	2	2.8	
	Day 43	Breast r	neat		
Fatty acids g/100 g	BK	BT	BS	BC	
Total (SAFA)	0.8	0.5	0.5	1.2	
Total (MUFA)	1.2	0.7	0.8	2.1	
Total (PUFA)	0.6	0.4	0.4	1	
Total Omega-3	0.1	0.1	0.1	0.1	
Total Omega-6	0.5	0.4	0.4	0.9	
Total Omega-9	1.1	0.6	0.7	1.9	
Water	74.3	75.8	76.1	74.6	
Total ash	1.14	1.28	1.15	1.04	
kcal/100 g	116	106	104	121	
Protein	23	22.6	21.8	20.2	
Fat	2.7	1.7	1.9	4.5	
Minerals and vitamins					
Fe mg kg ⁻¹	4.1	3.8	4.2	3.5	
Se mg kg ⁻¹	0.33	0.28	0.27	0.26	
K mg kg ⁻¹	3,120	3,250	3,060	2,990	
Mg mg kg ⁻¹	220	212	191	206	
E vit. mg kg ⁻¹	0.391	0.375	0.472	0.855	
B12 vit. μg/100 g	0.325	0.412	0.357	0.350	
Includes Saturated Fatty	Acids (S	SAFA), 1	nonouns	aturated	

Includes Saturated Fatty Acids (SAFA), monounsaturated fatty acids (MUFA - omega-9), polyunsaturated fatty acids (PUFA - omega-3, -6), fat, protein, water, ash, and energy values.

Includes iron, selenium, potassium, magnesium, vitamin E, and vitamin B12 concentrations.

exhibited the highest levels of MUFA (2.1 g/100 g), PUFA1.0 g/100 g), omega-9 (1.9 g/100 g) (and total fat (4.5 g/100 g), as well as the highest calorie content (121 kcal/100 g). This mirrored *Chlorella's* high PUFA and omega-6 values in the feed. In contrast, the *Tetradesmus* (BT) and *Spirulina* (BS) groups exhibited leaner profiles, with lower fat content (1.7 and 1.9 g/100 g, respectively) and energy value (106 and

104 kcal/100 g, respectively), corresponding with its lower fat, PUFA and MUFA levels in feed. Additionally, the *Tetradesmus* group showed the highest vitamin B_{12} (0.412 $\mu g/100$ g) and potassium levels (3,250 mg kg⁻¹), which were also among the

highest in the algal biomass. The control group had the highest protein content (23 g/100 g),followed by the BTgroup (22.6 g/100 g). In terms of mineral and vitamin content on day 43, all groups had similar levels of iron, magnesium. selenium. and However, the Chlorella group had the highest concentration of vitamin E (0.855 mg kg⁻¹), almost double that of the control group.

Although no statistically significant differences in thigh meat quality parameters were observed between the dietary treatment groups (p > 0.05), several noteworthy nutritional trends emerged in the context of broiler meat enrichment and functional feed development. See Table 5. On day 35, the C. vulgaris (BC) group had the highest fat content (7.7 g/100 g), total monounsaturated fatty acids (MUFA; 3.7 g/100 g), **PUFA** (1.8 g/100 g),and omega-6 (1.6 g/100 g),aligning with Chlorella's high PUFA and omega-6 content in the algae composition. The Spirulina group showed a lower content (6.2 g/100 g)MUFA at 3.0 g/100 g and PUFA at 1.5 g/100 g. The *T. obliquus* (BT) group had slightly lower fat content (6.8 g/100 g), MUFA (3.2 g/100 g),and PUFA (1.7 g/100 g). Across all groups, omega-3 values in meat remained at 0.2 g/100 g, matching the modest omega-3 presence in the algal biomass. S. platensis group had

Table 5. Fatty acid profile, proximate composition, and micronutrient content of broiler thigh meat at days 35 and 43

	Day 35 thigh meat					
Fatty acids g/100 g		BT	BS	BC		
Total (SAFA)	1.8	1.8	1.6	2.1		
Total (MUFA)	3.7	3.2	3	3.7		
Total (PUFA)	1.8	1.7	1.5	1.8		
Total Omega-3	0.2	0.2	0.2	0.2		
Total Omega-6	1.5	1.4	1.3	1.6		
Total Omega-9	3.4	2.9	2.7	3.4		
Water	73.5	73.4	74.1	73.1		
Total ash	1.11	1.21	1.22	1.04		
kcal/100 g	141	136	133	145		
Protein	18.6	18.7	19.4	18.9		
Fat	7.4	6.8	6.2	7.7		
	Day 43	thigh m	eat			
Fatty acids g/100 g	BK	BT	BS	BC		
Total (SAFA)	1.5	1.5	2	1		
Total (MUFA)	2.6	2.7	3.5	1.6		
Total (PUFA)	1.5	1.3	1.7	0.9		
Total Omega-3	0.2	0.2	0.2	0.1		
Total Omega-6	1.2	1.1	1.5	0.8		
Total Omega-9	2.3	2.4	3.1	1.5		
Water	74.9	74.7	74.3	75		
Total ash	1.09	1.03	0.97	1.14		
kcal/100 g	129	128	142	117		
Protein	19.3	19.4	19.1	21.1		
Fat	5.8	5.6	7.3	3.6		
Minerals and vitamins						
Fe mg kg ⁻¹	6.1	6.9	6.3	6.5		
Se mg kg ⁻¹	0.31	0.3	0.3	0.28		
K mg kg ⁻¹	2,860	2,850	2,820	2,980		
Mg mg kg ⁻¹	191	190	184	195		
E vit. mg kg ⁻¹	0.220	0.221	0.141	0.152		
B_{12} vit. $\mu g/100$ g	0.368	0.414	0.383	0.390		
Luchala Catanata I Estas A sida (CAEA) waxayaa tanata 1						

Includes Saturated Fatty Acids (SAFA), monounsaturated fatty acids (MUFA - omega-9), polyunsaturated fatty acids (PUFA - omega-3, -6), fat, protein, water, ash, and energy values.

Includes iron, selenium, potassium, magnesium, vitamin E, and vitamin B_{12} concentrations.

the highest protein content (19.4 g/100 g), which also is the highest in algal biomass. By day 43, the trends in fatty acids had changed. The *Spirulina* (BS) group showed the highest concentrations of MUFA (3.5 g/100 g), PUFA (1.7 g/100 g), omega-6

(1.5 g/100 g), and omega-9 (3.1 g/100 g) in thigh meat, corresponding to the algae's composition, where Spirulina had moderate levels of omega-6 and higher antioxidant content. Meanwhile, the Chlorella (BC) group exhibited the lowest total fat content (3.6 g/100 g) and a notably higher protein content (21.1 g/100 g). MUFA and PUFA levels were 1.6 g/100 g and 0.9 g/100 g, respectively, which reflected Chlorella's higher PUFAS and protein content in the biomass. Water and ash content remained relatively constant across all groups. In terms of micronutrients, the highest iron (Fe) content was in BT group (6.9 mg kg⁻¹) and the concentrations of selenium were very similar between the groups (0.28–0.31 mg kg⁻¹) in thigh meat. Potassium and magnesium levels were relatively uniform, with the Chlorella group showing a slightly higher potassium (K, 2,980 mg kg⁻¹) and magnesium (Mg, 195 mg kg⁻¹) content. Regarding vitamin concentrations, Tetradesmus (BT) group had the highest levels of vitamin B₁₂ (0.414 µ g/100 g), and vitamin E content (0.221 mg kg⁻¹) and moderate thigh fat (5.6 g/100 g), again aligning with the nutrient composition of its algal supplement. Despite having a lower fat content, BC meat maintained a relatively high B₁₂ level $(0.390 \mu g/100 g)$.

This study examined how dietary supplementation with three edible microalgae species – T. obliquus, S. platensis and C. vulgaris – affects the growth and meat quality of broiler chickens. Although no statistically significant differences in body weight or meat quality were observed, several biologically relevant trends emerged that support existing research and shed insight on the functional properties of these microalgae. While body weight did not differ significantly between groups, the numerically highest final weight was observed in the *Tetradesmus* group (4,029 g) see Table 3, followed closely by the control and *Spirulina* groups. This aligns with previous findings indicating that microalgal supplementation can support growth performance without negatively impacting overall productivity (El-Bahr et al., 2020; Šefcová et al., 2021). The Spirulina group showed a favorable omega-6 to omega-3 ratio (4:1) and increased PUFA levels in both breast and thigh meat. Based on findings from (Simopoulos et al., 2002) and (World Health organization, 2003), a lower dietary omega-6 to omega-3 ratio is associated with improved health outcomes. While our results showed that Spirulina supplementation improved the fatty acid profile of broiler meat by increasing n-3 polyunsaturated fatty acids (PUFAs) and lowering the n-6/n-3 ratio, other studies have reported no significant effects on fatty acid methyl esters in breast meat (Yalçınkaya et al., 2025). In contrast, Spínola et al. (2024) observed enhanced fatty acid profiles and antioxidant capacity, with higher n-3 PUFA deposition and reduced lipid oxidation, likely due to Spirulina's βcarotene and other carotenoids, which protect cells from oxidative stress by preventing oxygen-induced damage (Tinkler, 1994). However, these effects were not strictly linear at higher inclusion levels, suggesting that dosage and dietary context play an important role in determining the impact of Spirulina on meat quality. Supplementation with Chlorella vulgaris was associated with increased concentrations of monounsaturated and polyunsaturated fatty acids, along with higher total fat and protein content in broiler meat. Boskovic Cabrol et al. (2022) reported that replacing soybean meal with C. vulgaris improved protein digestibility and amino acid availability, further supporting the role of *Chlorella* in enhancing meat protein deposition. In our study, breast and thigh meat from the C. vulgaris group showed higher fat content compared with the other treatments. This differs from previous findings where C. vulgaris supplementation

reduced or had little effect on meat lipid levels (Alfaia et al., 2021; Varzaru et al., 2024). The discrepancy may be related to differences in diet formulation, algal inclusion level and composition, or broiler strain.

T. obliquus demonstrated the most beneficial fatty acid profile, achieving omega-6/omega-3 ratios close to 4:1 or lower, especially on day 43. This improvement can be attributed to its ability to synthesise omega-3 fatty acids, including ALA, and possibly DHA under mixotrophic cultivation conditions (Piasecka et al., 2020). The trend toward improved fatty acid ratios over time suggests a cumulative effect, supporting previous research indicating that longer feeding durations promote omega-3 deposition in tissues, and decrease the n-6 to n-3 ratio (Shahid et al., 2019). Notably, the omega-6/omega-3 ratio in the Tetradesmus and Spirulina fed groups approached or fell below 4:1 on day 43, which aligns with the optimal range recommended by (Simopoulos et al., 2002) and the (World Health organization, 2003) for reducing inflammation and lowering chronic disease risk. The variation observed between breast and thigh meat is likely due to differences in lipid metabolism and muscle composition. Thigh meat has a higher fat content and may therefore allow for greater accumulation of dietary fatty acids. However, the distribution patterns were consistent across both tissue types (Crespo & Esteve-García, 2001). This finding supports the systemic availability and metabolic utilisation of algal-derived fatty acids. In terms of micronutrients, the concentrations of iron (Fe), selenium (Se), potassium (K) and magnesium (Mg) in broiler meat were relatively uniform across the different treatment groups, with only minor differences observed. Potassium levels were slightly higher in breast meat from the Tetradesmus group and in thigh meat from the Chlorella group. This is consistent with the nutrient profile of microalgae, which provide vitamins (A, C, E and B complex) and minerals such as iron, potassium, magnesium and calcium (Becker, 2013). Notably, C. vulgaris is characterised by higher phosphorus content and substantial potassium levels (Tokuşoğlu & Ünal, 2003). Therefore, the modest enrichment of meat potassium plausibly reflects dietary mineral contributions from the algae, at least in part, and aligns with reports that potassium is the predominant mineral in chicken muscle, followed by phosphorus and sodium (Demirbas, 1999). In addition to differences between species, the mineral composition of algae varies with growth conditions (Santhakumaran et al., 2020), which may further influence mineral deposition in meat. In addition to modulating lipid composition, supplementation with microalgae affected the vitamin profile of broiler meat, particularly vitamin B₁₂. It should be noted that the analytical method used in this study measured the total amount of vitamin B₁₂ present and did not distinguish between its active (methylcobalamin and adenosylcobalamin) and inactive (pseudovitamin B₁₂) forms. Future studies using advanced analytical methods are required to validate the specific forms deposited in poultry meat.

Notably, supplementation with *C. vulgaris* resulted in elevated vitamin B₁₂ concentrations in both breast and thigh muscles by day 43, despite the low cobalamin content measured in the algal biomass. This is consistent with previous research showing that *Chlorella* contains bioavailable forms of vitamin B₁₂, such as methylcobalamin and adenosylcobalamin (Kittaka-Katsura et al., 2002), which are efficiently absorbed and deposited in animal tissues. By contrast, Spirulina platensis exhibited a high total vitamin B₁₂ concentration in the biomass. However, previous studies have shown that most of its corrinoid compounds are pseudovitamin B₁₂ analogues with low intrinsic factor binding affinity and no bioactivity in humans (Watanabe et al., 1999; Watanabe et. al., 2014).

Therefore, while *Spirulina* supplementation led to increased total vitamin B₁₂ levels in meat, its nutritional value for human consumers remains uncertain. No significant data on the vitamin B₁₂ content of T. obliquus currently exist in the literature. However, in this study, birds supplemented with *Tetradesmus* also showed elevated B₁₂ levels in meat tissues. Whether this reflects true dietary contribution or indirect metabolic effects remains unclear and warrants further investigation. Regarding vitamin E (α -tocopherol), supplementation with Spirulina led to the highest concentrations in thigh meat, which is consistent with its well-documented abundance of tocopherols and carotenoids (Khan et al., 2005). In contrast, Chlorella vulgaris resulted in the highest α-tocopherol content in breast meat by day 43, indicating effective tissue deposition and confirming its classification as a rich natural source of fat-soluble vitamins, including α-tocopherol (Del Mondo et al., 2020). Although the biomass of T. obliquus used in our study contained a substantial amount of vitamin E (8.3 mg/100 g), this did not result in an increase in α-tocopherol levels in the broiler meat. On day 43, the vitamin E content of the breast meat in the *Tetradesmus* group (0.375 mg kg⁻¹) was slightly lower than in the control group (0.391 mg kg⁻¹), and much lower than in the Chlorella group $(0.855 \text{ mg kg}^{-1})$. These results imply that, despite its inherent α -tocopherol content, the bioavailability or metabolic utilisation of vitamin E from T. obliquus may be limited. This aligns with previous findings by (Chronopoulou et al., 2019), who demonstrated that the extraction and bioavailability of fat-soluble vitamins from T. obliquus can depend on specific processing methods.

CONCLUSION

This study demonstrated that microalgae supplementation alters broiler meat composition in a species-specific manner. *Spirulina* improved the n-6/n-3 ratio and increased n-3 PUFAs, *Chlorella* enhanced protein and vitamin E but also increased fat, and *Tetradesmus* produced leaner meat with higher vitamin B₁₂ level and a more balanced fatty acid ratio. These findings highlight the potential of different microalgae as functional feed ingredients to improve poultry meat quality. These results demonstrate that microalgae modulate the nutrient composition of broiler meat in species-specific ways.

ACKNOWLEDGEMENTS. This study was performed within the project 'Development of plant origin feed supplement for strengthening poultry immunity and increasing nutritional value of eggs with omega-3 fatty acids' (grant Nr.: 22-00-A01612-000015) co-financed by European Agricultural Fund for Rural Development (EAFRD) and supported by the Ministry of Agriculture and Rural Support Service of the Republic of Latvia.

REFERENCES

Abdel-Wareth, AAA., Williams, A.N., Salahuddin, M., Gadekar, S. & Lohakare, J. 2024. Algae as an alternative source of protein in poultry diets for sustainable production and disease resistance: present status and future considerations. *Front Vet Sci.* 11, 1382163. doi: 10.3389/fvets.2024.1382163

Akinyemi, F.T., Bello, S.F., Uyanga, V.A., Oretomiloye, C. & Meng, H. 2020. *International Journal of Poultry Science* **19**(7), 294–302.

Heat Stress and Gut Microbiota: Effects on Poultry Productivity. *International Journal of Poultry Science*. **19**, 294–304. 10.3923/ijps.2020.294.302

- Alfaia, C.M., Pestana, J.M., Rodrigues, M., Coelho, D., Aires M.J., Ribeiro, D.M., Major, V.T., Martins, C.F., Santos, H., Lopes, P.A., Lemos, J.P.C., Fontes, C.M.G.A., Lordelo, M.M. & Prates, J.A.M. 2021. Influence of dietary Chlorella vulgaris and carbohydrate-active enzymes on growth performance, meat quality and lipid composition of broiler chickens, *Poultry Science* **100**(2), 926–937. https://doi.org/10.1016/j.psj.2020.11.034
- Aviagen Ross Broiler Guide. Available online https://aviagen.com/assets/Tech_Center/Ross_PS/Ross_PS_PocketGuide Production 2024 EN.pdf (accessed on April 2024)
- Babatunde, O.O., Park, C.S. & Adeola, O. 2021. Nutritional Potentials of Atypical Feed Ingredients for Broiler Chickens and Pigs. *Animals* (Basel). **11**(5), 1196. doi: 10.3390/ani11051196
- Bazarnova, J., Kuznetsova, T., Aronova, E., Popova, L. & Pochkaeva, E. 2020. A method for obtaining plastid pigments from the biomass of *Chlorella* microalgae. *Agronomy Research* **18**(4), 2317–2327. https://doi.org/10.15159/AR.20.175
- Becker, E.W. 2013. Microalgae for human and animal nutrition. In A. Richmond & Q. Hu (Eds.). *Handbook of microalgal culture: Applied phycology and biotechnology* (2nd ed., pp. 461–503). Wiley-Blackwell. https://doi.org/10.1002/9781118567166.ch25
- Biesek, J., Kuźniacka, J., Banaszak, M., Kaczmarek, S., Adamski, M., Rutkowski, A., Zmudzińska, A., Perz, K. & Hejdysz, M. 2020. Growth performance and Carcass quality in broiler chickens fed on legume seeds and rapeseed meal. *Animals* (Basel). **10**(5), 846. doi: 10.3390/ani10050846
- Boskovic Cabrol, M., Martins, J.C., Malhão, L.P., Alfaia, C.M., Prates, J.A.M., Almeida, A.M., Lordelo, M. & Raymundo, A. 2022. Digestibility of Meat Mineral and Proteins from Broilers Fed with Graded Levels of *Chlorella vulgaris*. *Foods* 11(9), 1345. doi: 10.3390/foods11091345
- Chronopoulou, L., Dal Bosco, C., Di Caprio, F., Prosini, L., Gentili, A., Pagnanelli, F. & Palocci, C. 2019. Extraction of Carotenoids and Fat-Soluble Vitamins from *Tetradesmus Obliquus* Microalgae: An Optimized Approach by Using Supercritical CO₂. *Molecules* 24(14), 2581. https://doi.org/10.3390/molecules24142581
- Costa, M.M., Spínola, M.P., Tavares, B., Pestana, J.M., Tavares, J.C., Martins, C.F., Alfaia, C.M., Carvalho, D.F.P., Mendes, A.R., Ferreira, J.I., Mourato, M.P., Lordelo, M.M. & Prates, J.A.M. 2024. Effects of high dietary inclusion of *Arthrospira platensis*, either extruded or supplemented with a super-dosing multi-enzyme mixture, on broiler growth performance and major meat quality parameters. *BMC Veterinary Research* 20, Article 176. https://doi.org/10.1186/s12917-024-04144-1
- Crespo, N. & Esteve-Garcia, E. 2001. Dietary fatty acid profile modifies abdominal fat deposition in broiler chickens, *Poultry Science* **80**(1), 71–78. https://doi.org/10.1093/ps/80.1.71
- Del Mondo, A., Smerilli, A., Sané, E., Sansone, C. & Brunet, C. 2020. Challenging microalgal vitamins for human health. *Microbial Cell Factories* **19**, Article 201. doi: 10.1186/s12934-020-01445-6
- Demirbaş, A. 1999. Proximate and heavy metal composition in chicken meat and tissues. *Food Chemistry* **67**(1), 27–31. https://doi.org/10.1016/S0308-8146(99)00103-X
- Eglite, S., Jonova, S., Gorbačevska, D., Zolovs, M. & Ilgaza, A. 2024. Effects of *Lactobacillus farciminis* and *Lactobacillus rhamnosus* on the duodenal development of specific-pathogen-free broiler chickens. *Veterinary World* 17(11), 2517–2526. doi: 10.14202/vetworld.2024.2517-2526
- El-Bahr, S., Shousha, S., Shehab, A., Khattab, W., Ahmed-Farid, O., Sabike, I., El-Garhy, O., Albokhadaim, I. & Albosadah, K. 2020. Effect of Dietary Microalgae on Growth Performance, Profiles of Amino and Fatty Acids, Antioxidant Status, and Meat Quality of Broiler Chickens. *Animals* **10**(5), 761. https://doi.org/10.3390/ani10050761
- Finamore, A., Palmery, M., Bensehaila, S. & Peluso, I. 2017. Antioxidant, Immunomodulating, and Microbial-Modulating Activities of the Sustainable and Ecofriendly Spirulina. *Oxidative Medicine and Cellular Longevity*. https://doi.org/10.1155/2017/3247528

- Khan, Z., Bhadouria, P. & Bisen, P.S. 2025. Nutritional and therapeutic potential of Spirulina. *Curr Pharm Biotechnol.* **6**(5), 373–9. doi: 10.2174/138920105774370607
- Kim, Y.B., Park, J., Heo, Y.J., Lee, H.G., Kwon, B.Y., Joo, S.S., Joo, S.Y., Kim, M., Kim, Z.H. & Lee, K.W. 2023. Effect of Dietary *Chlorella vulgaris* or *Tetradesmus obliquus* on Laying Performance and Intestinal Immune Cell Parameters. *Animals: an open access journal from MDPI* **13**(10), 1589.
- Kittaka-Katsura, H., Fujita, T., Watanabe, F. & Nakano, Y. 2002. Purification and characterization of a corrinoid compound from Chlorella tablets as an algal health food. *J. Agric Food Chem.* **50**(17), 4994–7. doi: 10.1021/jf020345w
- Liu, W.C., Zhu, Y.R., Zhao, Z.H., Jiang, P. & Yin, F.Q. 2021. Effects of Dietary Supplementation of Algae-Derived Polysaccharides on Morphology, Tight Junctions, Antioxidant Capacity and Immune Response of Duodenum in Broilers under Heat Stress. *Animals* 11(8), 2279. https://doi.org/10.3390/ani11082279
- Madeira, M.S., Cardoso, C., Lopes, P.A., Coelho, D., Afonso, C., Bandarra, N.M. & Prates, J.A. 2017. Microalgae as feed ingredients for livestock production and meat quality: A review. *Livestock science* **205**, 111–121. https://doi.org/10.1016/j.livsci.2017.09.020
- Maurício, T., Couto, D., Lopes, D., Conde, T., Pais, R., Batista, J., Melo, T., Pinho, M., Moreira, A.S.P., Trovão, M., Barros, A., Cardoso, H., Silva, J., Domingues, P. & Domingues, M.R. 2023. Differences and Similarities in Lipid Composition, Nutritional Value, and Bioactive Potential of Four Edible Chlorella vulgaris Strains. *Foods* 12(8), 1625. doi: 10.3390/foods12081625
- Mendes, A.R., Spínola, M.P., Lordelo, M. & Prates, J.A.M. 2024a. Chemical Compounds, Bioactivities, and Applications of Chlorella vulgaris in Food, Feed and Medicine. *Applied Sciences* **14**(23), 10810. https://doi.org/10.3390/app142310810
- Mendes, A.R., Spínola, M.P., Lordelo, M. & Prates, J.A.M. 2024b. Assessing the Influence of Cumulative *Chlorella vulgaris* Intake on Broiler Carcass Traits, Meat Quality and Oxidative Stability. *Foods (Basel, Switzerland)* **13**(17), 2753. https://doi.org/10.3390/foods13172753
- Michalak, I. & Mahrose, K. 2020. Seaweeds, Intact and Processed, as a Valuable Component of Poultry Feeds. *Journal of Marine Science and Engineering* **8**(8), 620. doi: 10.3390/jmse8080620
- Orusmurzaeva, Z., Maslova, A., Tambieva, Z., Sadykova, E., Askhadova, P., Umarova, K., Merzhoeva, A., Albogachieva, K., Ulikhanyan, K. & Povetkin, S. 2022. Investigation of the chemical composition and physicochemical properties of Chlorella vulgaris biomass treated with pulsed discharges technology for potential use in the food industry. *Potravinarstvo Slovak Journal of Food Sciences* 16, 777–789. https://doi.org/10.5219/1803
- Piasecka, A., Nawrocka, A., Wiącek, D. & Krzemińska, I. 2020 Agro-industrial by-product in photoheterotrophic and mixotrophic culture of Tetradesmus obliquus: Production of ω3 and ω6 essential fatty acids with biotechnological importance. *Sci. Rep.* **10**, 6411. doi: 10.1038/s41598-020-63184-4
- Priyadarshani, I. & Rath, B. 2012. Commercial and industrial applications of micro algae A review *J. Algal Biomass* **3**(4), 89–100.
- Rim, C.Y., Jung, H., An, S.H., Joo, S.S., Kim, Z.H., Kong, C. & Kim, M. 2022. Supplementation of microalgae (*Tetradesmus* sp.) to pre-starter diet for broiler chickens. *Korean Journal of Poultry Science* **49**(2), 125–137. https://doi.org/10.5536/KJPS.2022.49.2.125
- Santhakumaran, P., Ayyappan, S.M. & Ray, J.G. 2020. Nutraceutical applications of twenty-five species of rapid-growing green microalgae as indicated by their antibacterial, antioxidant, and mineral content. *Algal Research* **47**, 101878. doi: 10.1016/j.algal.2020.101878
- Šefcová, M.A., Santacruz, F., Larrea-Álvarez, C.M., Vinueza-Burgos, C., Ortega-Paredes, D., Molina-Cuasapaz, G., Rodríguez, J., Calero-Cáceres, W., Revajová, V., Fernández-Moreira, E. & Larrea-Álvarez, M. 2021. Administration of Dietary Microalgae Ameliorates Intestinal Parameters, Improves Body Weight, and Reduces Thawing Loss of Fillets in Broiler Chickens: A Pilot Study. *Animals* 11(12), 3601. doi: 10.3390/ani11123601

- Šefcová, M., Larrea-Álvarez, M., Larrea-Álvarez, C., Revajová, V., Karaffová, V., Koščová, J., Nemcová, R., Ortega-Paredes, D., Vinueza-Burgos, C., Levkut, M. & Herich, R. 2020. Effects of Lactobacillus Fermentum Supplementation on Body Weight and Pro-Inflammatory Cytokine Expression in Campylobacter Jejuni-Challenged Chickens. *Veterinary Sciences* 7(3), 121. https://doi.org/10.3390/vetsci7030121
- Shahid, M.S., Wu, Y., Xiao, Z., Raza, T., Dong, X. & Yuan, J. 2019. Duration of the flaxseed diet promotes deposition of n-3 fatty acids in the meat and skin of Peking ducks. *Food Nutr. Res.* **63**. doi: 10.29219/fnr.v63.3590
- Simopoulos, A.P. 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. *Biomedicine & Pharmacotherapy* **56**(8), 365–379. doi: 10.1016/S0753-3322(02)00253-6
- Spínola, M.P., Costa, M.M. & Prates, J.A.M. 2024. Effect of Cumulative Spirulina Intake on Broiler Meat Quality, Nutritional and Health-Related Attributes. *Foods* **13**(5), 799. doi: 10.3390/foods13050799
- Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. 2006. Commercial applications of microalgae, *Journal of Bioscience and Bioengineering* **101**(2), 87–96. doi: 10.1263/jbb.101.87
- Stunda-Zujeva, A. & Berele, M. 2023. Algae as a Functional Food: A Case Study on Spirulina. In: Abomohra, A., Ende, S. (eds) *Value-added Products from Algae*. Springer, Cham, pp. 563–594. https://doi.org/10.1007/978-3-031-42026-9 17
- Stunda-Zujeva, A., Berele, M., Lece, A. & Šķesters, A. 2023. Comparison of antioxidant activity in various spirulina containing products and factors affecting it. *Sci Rep.* **13**(1), 4529. doi: 10.1038/s41598-023-31732-3
- Stunda-Zujeva, A., Zuteris, M. & Rugele, K. 2018. Sunlight potential for microalgae cultivation in the mid-latitude region the Baltic states. *Agronomy Research* **16**(3), 910–916. doi: 10.15159/AR.18.126
- Tinkler, J.H., Böhm, F., Schalch, W. & Truscott, T.G. 1994. Dietary carotenoids protect human cells from damage. *Journal of Photochemistry and Photobiology B: Biology* **26**(3), 283–285. https://doi.org/10.1016/1011-1344(94)07049-0
- Tokuşoğlu, Ö. & Ünal, M.K. 2003. Biomass nutrient profiles of three microalgae: *Spirulina platensis*, *Chlorella vulgaris*, and *Isochrisis galbana*. *Journal of Food Science* **68**(4), 1144–1148. https://doi.org/10.1111/j.1365-2621.2003.tb09615.x
- Varzaru, I., Untea, A.E., Panaite, T.D., Turcu, R., Saracila, M., Vlaicu, P.A. & Oancea, A.G. 2024. *Chlorella vulgaris* as a Nutraceutical Source for Broilers: Improving Meat Quality and Storage Oxidative Status. *Foods* **13**(15), 2373. https://doi.org/10.3390/foods13152373
- Wahyono, N.D. & Utami, M.M.D. 2018. A review of the poultry meat production industry for food safety in Indonesia. *Journal of Physics:* Conference Series, **953**, 012125. https://doi.org/10.1088/1742-6596/953/1/012125
- Watanabe, F., Katsura, H., Takenaka, S., Fujita, T., Abe, K., Tamura, Y., Nakatsuka, T., Nakano, Y. 1999. Pseudovitamin B(12) is the predominant cobamide of an algal health food, spirulina tablets. *J. Agric. Food Chem.* **47**(11), 4736–41. doi: 10.1021/jf990541b
- Watanabe, F., Yabuta, Y., Bito, T. & Teng, F. 2014. Vitamin B₁₂-containing plant food sources for vegetarians. *Nutrient* 6(5), 1861–1873. https://doi.org/10.3390/nu6051861
- World Health Organization. 2003. Diet, nutrition and the prevention of chronic diseases (WHO Technical Report Series 916). https://www.who.int/publications/i/item/924120916X
- Yalçınkaya, H., Yalçın, S., Ramay, M.S., Onbaşılar, E.E., Bakır, B., Elibol, F.K.E., Yalçın, S., Shehata, A.A. & Basiouni, S. 2025. Evaluation of *Spirulina platensis* as a Feed Additive in Low-Protein Diets of Broilers. *International Journal of Molecular Sciences* **26**(1), 24. https://doi.org/10.3390/ijms26010024